CS 880: Pseudorandomness and Derandomization 4/1/2013
Lecture 18: Construction of Extractors

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Kevin Kowalski

DRAFT

In the previous lecture, we introduced randomness extractors, which take random bits from a
weakly random source and output bits that are close to uniform. We showed that deterministic ex-
tractors cannot exist, but that seeded extractors do exist. In this lecture, we present a construction
of one such seeded extractor.

1 Preliminaries

We begin by recapping some of the concepts we introduced in the last lecture. Recall that Shannon
entropy was deemed inappropriate as a measure for the amount of randomness contained in a weak
source, so we instead used the min- entropy H,,, defined as

1

Hoo(X) = log max, Pr[X = z]’

A random source X is then called a k-source if and only if Ho (X) > k, or equivalently, max, Pr[X =
r] <27k

We also defined seeded extractors E : {0,1}" x {0,1}¢ — {0,1}", where by convention {0,1}"
comes from a weak random source and {0, 1} comes from a uniform random source. The function
E is a (k, ¢)-extractor if for all k-sources X,

dstat(E(Xa Ud)7 Ur) <e

Last time, we showed that a random function E would be a good extractor, but we haven’t
yet addressed the question of whether we can both efficiently and deterministically construct an
extractor. This is the subject we will tackle in this lecture.

2 Construction of the Extractor

The main theorem of the section is as follows:

Theorem 1. For all « > 0, n, k < n, and € > 0, there exists an explicit (k,¢€)-extractor with
r>(1—a)k and d € O(log %) (where d also depends on o).

This theorem essentially states that we can construct an extractor that extracts almost all the
randomness from a k-source with a seed that is only logarithmic in n and % Additionally, though
it’s not explicitly stated in the theorem, r has to be at most k& + d because an extractor cannot
output more random bits than it takes in. It is currently an open question whether we can tighten
the lower bound on r to 7 > k +d — O(1) while d remains logarithmic in %, though we can achieve
this bound if we allow d to be polylogarithmic in %.

Overview of the construction The shape our final construction will take is shown below:

J—

{0,1}" x {0,1} §>0 {0,1}1F)k+d) {0, 1) (1—0)k
—_—— —\— -
X v, condenser Y mild extractor Z

Ho(X oUy) > k+d Hoo(Y) > k+d dstat (2, Ut o) < €

First, we apply a condenser to the original two input strings, which combines them into a slightly
longer string with the same lower bound on min-entropy. Then, we can use a simple construction
of a known extractor on this string to get a distribution on slightly fewer than k bits that is e-
close to uniform. Technically, the extractor will need an additional seed of length logarithmic in
(1 4+ 60)(k + d), but this can be easily collapsed into the original seed. Though this method of
construction might seem more convoluted than directly constructing an extractor that achieves the
desired properties, no such method is known.

We now formalize what it means to be a condenser or a mild extractor, and construct usable
examples of each.

Construction of the mild extractor We will frame our construction in the context of an
existence proof.

Lemma 2 (Existence of a Mild Extractor). For all € > 0, there exists a § > 0 and efficiently
computable E : {0,1}" x {0,1} — {0,1}" such that

|Y| S (1 + 6)H00(Y) — dstat(E(Y7 Uf)a UT) S €.

The extractor whose existence is asserted by this lemma is “mild” in that it is only guaranteed
to work for sources that already have a high degree of randomness to begin with. Informally, the
construction works by interpreting Y as encoding a start vertex and sequence of edge labels in
a random walk of length ¢ = 2¢ on a constant-degree expander. Given a perfectly random seed
i € {0,1} as input, the extractor outputs the i-th vertex of the walk specified by Y. In other
words,

E(y,s) = the s-th vertex in the walk encoded by .

The proof of the lemma is given below.

Proof. Let G be an explicit g-regular expander on {0, 1}" with expansion 7, where g and ~ are
constants. On input y € {0,1}" and s € {0,1}%, let yo be the first r bits of the weakly random
input, which will specify the starting vertex of our walk, so n—r bits are left to specify the remaining
vertices. Before proceeding, we will calculate how many steps we can take in the random walk with
the bits available.

Since it takes [log, d| bits to specify each step in the walk, we obtain the inequality

n—r

~ logyd
n—r

— 2t <
~ log, d

<= { <logy(n —r) — logy log, d,

so we can set £ = |logy(n — 1) — logy log, d]. In particular, this means that £ € O(logn).
Now, we need to find a § > 0 so that our output distribution is e-close to uniform. Let
A C {0,1}" be an event, so it suffices to show that

|Pr[E(Y,Uy) € Al — Pr[U, € A]| <e.

By Theorem 3 in Lecture 11 (i.e., the Chernoff bound for expander walks), we have that

1 € €2
P — ; — > | < by — . 9of
yeb |20 gm] Xi—p(A)| 2 5| <exp (by -2) :

where X; indicates whether the i-th vertex in the random walk encoded by y is in A, and b > 0 is
a universal constant.

This allows us to bound |Pr[E(Y,U;) € A] — Pr[U, € A]| by splitting the difference in prob-
abilities into two cases: one where the proportion of random walk vertices in A is close to u(A),
and another where the proportion of such vertices is not close to p(A). In particular, let B be the

event that 2% Zie[%] X — ,U(A)‘ > £, 50
|Pr[E(Y,Uy) € Al — Pr[U, € A]| < Pr [-B]- S pr [B] - 1.
y<Y 2

The first probability Pr,.y[—~B] is at most 1, and the second probability Pr,.y[B] is at most
2"~ Hoo(Y) Pr, 17 [B] because 2" Pry. p, [B] is the number of y € {0,1}" for which B holds, and
27 Hoe(Y) ig the maximum probability that any particular y € {0,1}" can be selected from the
distribution Y.

Putting these together and setting Hoo(Y) = 175, we get that

2
| Pr[E(Y,Uy) € Al — Pr[U, € A]| < % ot exp <—b’y . ez : 2@) .
Since ¢ € O(logn), we can write the second term in the sum as 27" . 25" for some constant
B >0, and it becomes immediately apparent that for a sufficiently small choice of §, this quantity
will be less than § and dsat(E(Y, Up),Uy) < ¢, as desired. O

Note that the last step in this lemma only works if € is a constant. If we require that e < n="

6 —4T
for any 7 > 0, then the second term in the sum would be 21+3" . 2-An" " for some constant 8> 0.
If B < n?7, it wouldn’t be possible to choose § so that this quantity is less than %

Construction of the condenser We begin with the formal definition of a condenser.

Definition 1 (Condenser). A function C : {0,1}" x {0,1}¢ — {0,1}™ is a (k,¢)-condenser if
for all k-sources X, there exists a (k + d)-source Y such that dstat(C(X,Uy),Y) < e.

In particular, note that if m = k + d, then the condenser is actually an extractor because
any (k + d)-source on {0, 1}¥%9 is uniform. In this way, we can view condensers as “incomplete”
extractors that take a weakly random source and “condense” the randomness to a smaller number
of bits.

To prove our original theorem, it then suffices to show that these exists a (k, €)-condenser with
m < (140)k+0(d), so that the distribution on its output satisfies the source condition on the mild
extractor. It is an open question whether we can find a similar condenser with m < k +d+ O(1)
with logarithmic d, though we can do it with polylogarithmic d.

In order to facilitate the construction of our condenser C, we will envision it as a bipartite
graph G¢o = (V4,Va, E), where Vi = {0,1}™, Vo = {0,1}™, and there is an edge between = € V}
and y € Vs for every s € {0,1}¢ such that C(x,s) = y. The graph G¢ then has constant degree
2¢. The following lemma clarifies the relationship between C' and its corresponding graph G¢, and
provides us with a graph-based route to constructing C.

Lemma 3. The following are equivalent, where I'(S) denotes the set of vertices neighboring S in

Gc.
(a) C is a (k,e€)-condenser.

(b) For all S C V; such that |S| = 2%, |T'(S)| > A - |S| where A = (1 — €)2%. In other words, G¢
is a (2F, A)- verter expander.

(c) For all T C Vy such that |T| < A-2%, |{z € V1 | T'\(z) C T}| < 2*.

In particular, statement (b) can be considered as a weaker analogue of vertex expansion for
bipartite graphs, where we only require |T'(S)| to be large for sets S of size exactly 2%, rather than
sets of size at most 2%.

Proof. (a) = (b). Let S C Vi such that |S| = 2¥, and let X5 be a random variable that is
uniformly distributed on S, i.e., Xg is a flat k-source on S. Then, I'(S) = Support(C(Xs, Uq)).
Since C' is a condenser and Xg is a k-source, its output must be e-close to a (k4 d)-source Y, which

by definition must satisfy
| Support(Y)| > 2f=(Y) > gktd

This gives us that
D) = (1 -)25t = A- 5],

since only a 1 — € fraction of the probability mass of ¥ can be located in a (1 — €)2*+?-subset of

its support. If |T'(S)| was any smaller, the statistical distance between C(Xg, Uy) and Y would be
greater than e.

(b) = (c). Let T C V, such that |T| < A-2% and let S = {z € v | T'(z) C T}. Trivially,
I'(S) C T'so |T'(S)| < A-2F. If |S| = 2%, then by (b) we must have that |T'(S)| > A-2*, contradicting
our assumption that |T| < A-2*. If |S| > 2* then we obtain the same contradiction by noting
that S must contain a subset of size k. Thus, |S| < 2¥, as desired.

(c) = (a). Let Xg be a flat k-source on a subset S C V; of size 2¥. From last lecture, it suffices
to show that C'(Xg, Uy) is e-close to a (k + d)-source, since any k-source can be written as a convex
combination of flat k-sources. Since |S| = 2¥, by (c) we must have that [['(S)| > A-2F = (1—¢)2k+d
since S is trivially contained in {z € V1 | I'(x) C I'(S)}.

Now, note that since the degree of any vertex in G¢ is exactly 2¢, there are exactly 28+ edges
between S and T'(S), so if we fix an ordering of the vertices in S, at most a e fraction of these
edges will lead to a vertex that is in the neighborhood of a previous element of S. Thus, any
uniform distribution Y on 2¥+¢ vertices that includes I'(S) will be a (k 4 d)-source that is e-close
to C(Xg,Uy), as desired. O

Thus, to construct our condenser, it suffices to construct a bipartite graph that satisfies property
(c). While our final goal is to construct C : {0,1}" x {0,1}¢ — {0,1}™, we will first construct
C :F2 x Fg — F* instead.

Each element of Fy can be viewed as specifying the coefficients of a polynomial f € Fy[y] of
degree at most a — 1. Then, consider C' defined as

C(fv 5) = (Saf0(8)7f1(s)7' : '7fb—1(8))

where f;(y) = (f(y))hz mod p(y), h € N, and p(y) is some irreducible polynomial of degree a.
Though we do not have the time to complete the construction in this lecture, we will prove the

following claim in the next.

Claim. Gc is a (k, A)-vertex expander where k = h® and A = q — ahb.

	Preliminaries
	Construction of the Extractor

