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DRAFT

1 Condenser construction

In the previous lecture, we began to present how to construct a condenser. In principle, a condenser
is a function which takes as input an element from a weakly random source distribution and presents
as output an element of another distribution with the same min entropy but much shorter length.

Consider a bipartite graph Gc consisting of two independent vertex sets V1 and V2. The vertices
in V1 are members of Fa

q , vectors of length a over Fq. We will interpret them as polynomials, so
that we can describe the condenser as a function C : Fq[y]→ F . The variables y correspond to the
edges from V1 to V2, and F is a function on y. The vertices in V2 are then defined as

c(F, y) = (y, F0(y), . . . , Fb−1(y))

where Fi(y) = F (y)h
i

mod E(y). E(y) is an arbitrary irreducible polynomial with degree a. This
graph is used to generate a condenser with parameters a, b, h, and q.

Gc is a (K,A)-vertex expander with K = hb and A = q − ahb. �

Every set in V1 with at most K elements has at least AK neighbors in V2. We will look at this
from the V2 side:

Proof. Let T ⊆ V2 with |V2| < AK, and let S = {F ∈ V1|Γ(F ) ⊆ T}. We need to show |S| < K. If
we can do that, we will know that Gc is a vertex expander and therefore a condenser. We construct
a polynomial of degree at most K where every element in S is a root.

Let Q(y, Z0, Z1, . . . , Zb−1 be a polynomial over Fq with Q(t) = 0∀t ∈ T , and assume Q is not
identically zero. If the degree of Q is large enough, some polynomial meeting these characteristics
must exist. All t ∈ T are roots of this polynomial. We satisfy the following two linear constraints.

◦ degy(Q) ≤ A− 1

◦ degz(Q) ≤ h− 1

The solution has at least Ahb monomials, implying AK > |T |.
Recall that we want Q to vanish on all S. Let F ∈ S. We know that ∀y ∈ Fq, c(F, y) ∈ T .

Because of how we constructed Q, this implies that ∀y ∈ Fq, Q(c(F, y)) = 0. If we vary the
parameter y (calling this variable Y ), then we have Q(c(F, Y )) ≡ 0. We achieve this by setting the
condenser parameter A such that the q possible choices for a value of Y , are more than the degree
of Q. q > deg(Q) = A− 1 + (h− 1)ba.
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We now have the equation Q(y, F h0
(y), . . . , F hb−1(y) ≡ 0, but the degree of this polynomial is

too high. We can reduce it by taking the mod of a polynomial E(y). As noted before, the only
characteristic of this polynomial that concerns us is the fact that it is irreducible in y.

We then select a polynomial Q′(z) which vanishes on S, is univariate, and whose coefficients
are polynomial in y. We define this polynomial as

Q′(z) = Q(y, zh
0
, zh

1
, . . . , zh

b−1
) mod E(y)

Note that Q′(z) ∈ (Fq[y]/E(y))[z]. In other words, Q′ is a polynomial ring. ∀F ∈ S, we have
Q′(F (y)) = 0, but Q′(z) 6≡ 0.

Consider the degree of Q′:

degz(Q
′) ≤ h− 1 + h(h− 1) + h2(h− 1) + . . .+ hb−1(h− 1) = hb − 1 = K − 1

Each term hi(h − 1) comes from the zi term in Q′. We get hb − 1 from algebra, and K − 1 from
our choice of K when we originally made the claim. Since Q′ is not identically zero, yet ∀F ∈ S,
Q′(F (y)) = 0, we know that |S| ≤ deg(Q′). Thus, |S| < K. �

2 Extractor-based PRGs

In this second part of the lecture, we consider the INW generator in its extractor form. Let

Gi : {0, 1}is ∗ {0, 1}s → {0, 1}2i

and recall that we previously used this generator to prove that Undirected Connectivity is in
logspace. The formula above presents the structure of this extractor with its input length is, seed
length s, and output length 2i. For variable x and some y such that |y| << |x|, we define Gi(x):

◦ G0(x) = x1

◦ Gi(x, y) = Gi−1(x)Gi−1(Extr(x, y))

Extr is a family of extractors which are derived separately and which are known to function well
as extractors for certain sources that are already mostly clean (containing a large number of bits
of randomness compared to their length).

This function forms a recurrence relation matching the probability of acceptance for a branching
program. More precisely, Gi is ε-pseudorandom for branching programs B : V ∗ {0, 1} → V if
|Pr[B(s, U) ∈ Acc]− Pr[B(s,Gi(x, y))]| ≤ ε, where is+ s ≈ i2 = (log n)2.

Starting from the final ”layer”, note that

Pr[Acc, v] =

{
1 if v is in the accepting set
0 otherwise

In general, a node v in a binary branching program has probability of acceptance a(v) = a(v0)+a(v1)
2 ,

where v0 and v1 are its child nodes depending on which branch we choose from this program state.
We define the value function v(x = {0, 1}r) as the probability of acceptance assuming we have

walked according to x from the start vertex. The following two statements are equivalent to this
definition: v(x) = a(B(s, x)). E[vb(x, U)] = vB(x).

We will be interested in finding a bound on the difference |v(x) − v(y)| for x, y nodes in the
branching program.
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If x, y are distributions on {0, 1}r, then |E[v(x)]− E[v(y)]| ≤ dSTAT(x, y) ∗ weight(B). The weight
of a branching program is difference in value that can be obtained over a single branching step.
weight(B) =

∑
x∈{0,1}r,b∈{0,1} |v(x)− v(xb)|. �

Proof. Consider x of length |x| = r. Define vmax and vmin as the maximum and minimum values
for v(x) with x of this length. There must be some path x leading from the start state to a vertex
with v(x) =vmax. Similarly, there must be some x leading from the start state to a vertex with
v(x) =vmin. Then we have |vmax− vmin| ≤ weight(B). Let pa = Pr[X = a] and qa = Pr[Y = a],
and we write:

|E[v(x)]− E[v(y)]| =
∑

a∈{0,1}r pav(a)− qav(a)

≤
∑

a,pa>qa
(pa − qa)vmax +

∑
a,pa≤qa(pa − qa)vmin

= (vmax− vmin)dSTAT(x, y)
≤ weight(B)dSTAT(x, y) �

The next step to this extractor construction is to use this lemma to place a bound on the
required seed length. We will need a tighter bound on the weight of a branching program, which
we will cover in the next lecture.
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