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DRAFT

Until now, our exploration of pseudorandomness for ROBP only exploits that “small width”
indicates small-entropy loss of the seed conditioned on the middle state. In this section we consider
exploiting more structural properties of ROBP. Towards this end, we will prove that INW generator
fools poly-logarithmic width regular branching programs using seed length O(log n log log n) (the
dependence on error ε will be elaborated later).

An ROBP is regular if every vertex (except the starting one) has exactly two incoming edges. In
the highest level, we will exploit regularity to improve the ordinary INW hybrid-argument analysis:
The key concept we shall exploit is the weight of a program.

To get some first intuitions about weight, let’s consider, for each vertex v, the quantity q(v)
which is the accepting probability of running the program starting at v over uniform input. An
important observation is that, if for a layer i and any two vertices u and v in that layer, we have
q(u) = q(v), then we could forget about all the layers before i. This is simply because the end goal
of pseudorandomness is to approximate the accepting probability, and no matter which vertex we
start, we will end with the same.

To capture this intuition, for each edge (u, v), we define the weight of the edge to be |q(u)−q(v)|.
Then, in the above case, every edge before layer i has weight zero. This leads us to a natural measure
of weight of a program, by summing up the weights of all edges:

Definition 1 (Weight of a Program). Given an ROBP P , its weight is defined to be the sum
of weights of all edges.

Intuitively, a program with small weight means that most part of the program has little impact
on the accepting probability, and thus could be “forgotten”. To analyze the effect of weight, we
introduce the concept of valuation function. Given a program P on m inputs, its valuation function
is a function valP : {0, 1}m 7→ R, so that on input x ∈ {0, 1}m, returns q(path(x)m+1), where path(x)
is the sequence of vertices induced by starting vertex of P and reading input x.

We will use INW generator of the following form

Gj : {0, 1}k+kj 7→ {0, 1}2j

where the extractor we use one with the following special property:

Fact 1. For any β > 0, there exists k = Θ(log 1
β ) and an explicit extractor Ej : {0, 1}kj×{0, 1}k 7→

{0, 1}kj such that the following holds: let z = (z0, z1, . . . , zj−1) ∼ {0, 1}kj, and zi ∼ {0, 1}k, then

for any event A that only depends on z and Prz[A] > β, ∆
(
Ej(z | A, zi), Ukj

)
6 β.
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Proof. Let X be the uniform distribution over {0, 1}kj , let’s consider the min-entropy of X condi-
tioned on A, which is defined to be

H∞(X|A) = log
1

maxx Pr
[
X = x|A

]
Note that

Pr
[
X = x|A

]
=

Pr
[
X = x,A

]
Pr
[
A
] 6

Pr
[
X = x

]
Pr
[
A
] 6

Pr
[
X = x

]
β

Thus H∞(X|A) > H∞(X)− log(1/β). It follows that the source has entropy at least n− log(1/β)
conditioned on A. Using spectral extractor, we have that by supplying a seed of length log(1/β) +
log(1/ε) the output of the extractor is ε-close to uniform, the fact follows by setting ε = β. �

For a program P reading 2j input bits, our end goal is to bound∣∣∣∣Ex∼Ukj ,y∼Uk

[
valP (Gj(x, y))

]
− Eu1,u2∼U2j−1

[
valP (u1, u2)

]∣∣∣∣ (1)

The bound will depend on “the weight” of P , so we write the bound as ej(P ). By definition, (1) is
nothing more than ∣∣∣∣Ex∼Ukj ,y∼Uk

[
valP

(
Gj−1(x), Gj−1(Ej(x, y))

)]
− Eu1,u2∼U2j−1

[
valP

(
u1, u2

)]∣∣∣∣
As the first step to derive the bound, we insert a hybrid valP

(
Gj−1(x), u2

)
. Thus it suffices to

bound∣∣∣∣Ex∼Ukj ,y∼Uk

[
valP

(
Gj−1(x), Gj−1(Ej(x, y))

)]
− Ex∼Ukj ,u2∼U2j−1

[
valP

(
Gj−1(x), u2

)]∣∣∣∣ (2)∣∣∣∣Ex∼Ukj ,u2∼U2j−1

[
valP

(
Gj−1(x), u2

)]
− Eu1,u2∼U2j−1

[
valP

(
u1, u2

)]∣∣∣∣ (3)

The following fact indicates that (3) can be bounded using ej−1.

Fact 2. Eu∼Ur [valP (x, u)] = valP (x).

Let’s be very careful, we have made it clear that the bound ej shall depend on the structure of a
program. In this case, ej−1 depends on the first half of P . Thus we decompose P into two halves
Q and R, so (3) is bounded by ej−1(Q).

To bound (2), we write it according to x,∣∣∣∣Ex[Ey[valP

(
Gj−1(x), Gj−1(Ej(x, y))

)]
− Eu2

[
valP

(
Gj−1(x), u2

)]]∣∣∣∣
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We rewrite this expression according to the state we reach after reading Gj−1(x). Formally, for
b ∈ [w], let Ab be the event that we reach vertex b in layer 2j−1 + 1 after reading Gj−1(x), and Rb
be the program starting at b, thus the above can be written as∣∣∣∣∑

b

Pr
x

[Ab]

(
Ey
[
valRb

(
Gj−1(Ej(x|Ab, y))

)]
− Eu2

[
valRb

(
u2

)])∣∣∣∣
6
∑
b

Pr
x

[Ab]

∣∣∣∣Ey[valRb

(
Gj−1(Ej(x|Ab, y))

)]
− Eu2

[
valRb

(
u2

)]∣∣∣∣ (4)

We need the following simple fact:

Fact 3. For any two distributions X,Y∣∣∣∣E[valP (X)]− E[valP (Y )]

∣∣∣∣ 6 weight(P ) ·∆(X,Y )

There are two cases

(I). Prx[Ab] < β, ∣∣∣∣Ey[valRb

(
Gj−1(Ej(x|Eb, y))

)]
− Eu2

[
valRb

(
u2

)]∣∣∣∣ 6 1

This is because both expectations are convex combinations of values in [0, 1].

(II). Prx[Ab] > β, then Fact 1 tells that Gj−1(Ej(x | Ab, y)) is β-close to Gj−1(Ukj), thus∣∣∣∣Ey[valRb

(
Gj−1(Ej(x|Ab, y))

)]
− Eu2

[
valRb

(
u2

)]∣∣∣∣
6

∣∣∣∣Ey[valRb

(
Gj−1(Ej(x|Ab, y))

)]
− E

[
valRb

(
Gj−1(Ukj

)]∣∣∣∣+

∣∣∣∣Ey[valRb

(
Gj−1(Ukj)

)]
− Eu2

[
valRb

(
u2

)]∣∣∣∣
6 weight(Rb) · β + ej−1(Rb)

Let B = {b : Pr[Ab] < β}, and put ej(P ) := ajweight(P ), thus (4) is bounded as follows:∑
b

Pr
x

[Ab]

∣∣∣∣Ey[valRb

(
Gj−1(Ej(x|Ab, y))

)]
− Eu2

[
valRb

(
u2

)]∣∣∣∣
=
∑
b∈B

Pr
x

[Ab] · 1 +
∑
b/∈B

Pr
x

[Ab] ·
(

weight(Rb) · β + ej−1(Rb)
)

6
∑
b∈B

Pr
x

[Ab] · 1 +
∑
b/∈B

Pr
x

[Ab] ·
(

weight(R) · β + ej−1(R)
)

6
∑
b∈B

β +
∑
b/∈B

Pr
x

[Ab] ·
(

weight(R) · β + ej−1(R)
)

6 wβ +
(

weight(R) · β + ej−1(R)
)

=
(
w + weight(R)

)
· β + ej−1(R)
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Thus the total error is

ej(P ) 6 ej−1(Q) +
(
w + weight(R)

)
· β + ej−1(R)

Let’s determine aj now, expanding and use the fact that weight(R) 6 weight(P ), we have

aj 6 aj−1 +
(
w + weight(P )

)
· β

Given a0 = 0, thus it suffices to set aj = j ·
(
w + weight(P )

)
· β. This gives our main theorem:

Theorem 4. Gj fools an ROBP P on 2j inputs with error j ·
(
w + weight(P )

)
· β.

1 Weight of Regular Programs

For regular programs, indeed we can show that the weight is small.

Theorem 5. Consider regular programs with only one accept state, then the weight of a regular
program is bounded by 2(w − 1).

Given width w, we use (i, j) ∈ [n]× [w] to denote the j-th vertex at layer i. Let q((n, j)) = 1 if
it’s an accept state and 0 otherwise, then Theorem 5 is a corollary of the following lemma.

Lemma 6. The weight of a regular program is bounded by 2
∑

i 6=j∈[w] |q((n, i))− q((n, j))|.

Because in Theorem 5 we have only one accept state, it follows that this quantity is 2(w − 1),
as desired. Note in general we could have multiple accept states for a regular branching programs,
and the maximum bound achieves when half of the states are accept states, the weight is roughly
2 · (w/2)2 = w2/2.

Proof. The lemma is proved by considering following game. We have 2w pebbles on real line
q1, q2, . . . , q2w−1, q2w. We can do the following move, for two numbers qi, qj of distance at least 2δ,
one can move them towards each other by a distance of δ, and the gain is 2δ. The goal of this game
is to maximize the gain.

What is the connection of this game to the weight? Consider two vertices j, k ∈ [w] at layer
i, and ` at layer i − 1 has two outgoing edges to j, k. Suppose we have two numbers q((i, j)) and
q((i, k)) in the game. Then moving them to the middle position,

(
q(i, j) + q(i, k)

)
/2, gives gain

|q((i, j)) − q((i, k))|. This is exactly the sum of the weights of edges ` → j and ` → k. Note that,
once q(i, j) and q(i, k) are moved to their median, we have two pebbles of value q(i− 1, `).

Let’s start with

q1 = q((n, 1)), q2 = q((n, 1)), . . . , q2w−1 = q((n,w)), q2w = q((n,w))

The crucial thing is that if we play the game according to the transition function at the current
layer (starting with n), we will get into the same game with these numbers set as probability mass
at layer i−1: This is because the program is regular, it follows that each vertex contributes exactly
twice to construct the probability mass in the previous layer. That is, if we play the game according
to the transitions at layer i, not only we get exactly two pebbles for each vertex in layer i− 1, but
also it suffices we put two pebble for each vertex at layer i.
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It follows that if we move backward layer by layer, the weight of the program is bounded by
the maximum gain of the game, which we claim to be∑

i 6=j∈[2w]

|qi − qj | = 2
∑

i 6=j∈[w]

|q((n, i))− q((n, j))|

Two facts establishes the claim: First, we only need to consider moving neighboring pebbles (i.e. no
pebble between them), second, if we start with L =

∑
i 6=j∈[2w] |qi − qj |, and move two neighboring

numbers a, b close to each other by a distance of 2δ, then for any other pebble c, the sum of distance
between c and a, and between c and b remains unchanged, and so L only decreases by 2δ. Because L
has to be non-negative, it follows that the gain is upper bound by that. Note we can be arbitrarily
close to L, so the bound is tight. �

As a result, we have that Gj fools a width-w regular program P on 2j-inputs with error O
(
j ·

w · β
)

, using seed length (k + 1)j where k = Θ(log 1
β ). Put j = log n, with total error ε, we have

β = O( ε
w logn), and so the seed length is

O(jk) = O

(
log n ·

(
logw + log log n+ log

1

ε

))
For w = poly-log(n) and ε = 1/ poly-log(n), the seed length is O

(
log n log log n

)
.
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