
CS 880: Pseudorandomness and Derandomization 4/10/2013

Lecture 21: Randomness and Space

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Adam Everspaugh

DRAFT

In this lecture we construct a family of psuedorandom generators that operate in logarithmic
space and can ε-fool branching programs of constant width.

1 Branching Programs and Generators

Recall that a branching program B of length n and width w is a set of functions (B1, B2, . . . Br)
such that each Bi : {0, 1} → [w]. A branching program can also be viewed as a layered, acyclic
graph in which every layer has the same number of vertices (representing states of the program),
and every vertex (except the ones in the last layer) have exactly 2 outgoing edges labelled 0 or 1.
These edges indicate moving to a new state based on an input of 0 or 1.

Also recall the INW-generator: Gi(xy) = Gi−1(x)Gi−1(E(x, y)) where E is an extractor Ei :
{0, 1}is × {0, 1}s → {0, 1}2i . The INW generator is ε-psuedorandom for the following types of
constant-width branching programs and seed lengths:

BP seed length

all ≈ (log r)(log rw
ε)

regular ≈ (log r)(log w log r
ε)

permutation ≈ (log r)(poly(w) + log 1
ε)

A regular branching program is one where every pair of consecutive layers forms a bipartite,
regular graph. A permutation branching program is one where the mapping between any two
consecutive layers is a permutation (a bijection).

Note that our seed length for permutation branching programs is not necessarily better than the
seed length for regular branching programs because it contains a poly(w) term. However, if we fix
the width w to a constant value, then we can fully derandomize permutation branching programs
in logarithmic space.

2 Logspace Generator

We’ll define a new generator that stretches a seed of length ≈ logw to a length of r (the length of
our branching program). We’ll do this in logarithmic space under the condition that r ≤ poly(logw)
(r is much smaller than it could be).

Use the following (n2 , β)-extractor:

E : {0, 1}n × {0, 1}d → {0, 1}
n
4 , where d ≤ O(log

n

β
),

n=̇ logw, ti=̇8(logw)γ , with constant γ, 0 < γ < 1.

Note: The value γ simply allows us to control the error.

1

Definition 1 (Logspace Generator Gi). Define our logspace generator
Gi : {0, 1}n+t1d → {0, 1}2n1+iγ

and it’s helper function
G′i : {0, 1}n × {0, 1}d × . . .× {0, 1}d → {0, 1}ti

n
4 recursively as:

G′i(x y1 y2 . . . yti)=̇E(x, y1)E(x, y2) . . . E(x, yti)

Gi=̇G
′
i ◦G′i−1 ◦ . . . ◦G′2 ◦G′1

We can visualize an application of Gi as a series of applications of the helper function G′i where
the output of G′1 is fed into G′2 and so on. Each application of the helper function G′i expands the
input to a larger output by rearranging the inputs that go into the extractor E. This gives Gi an
output length that is exponentially longer than it’s input.

xy1 . . . yt1 G′1 xy1 . . . yt1 . . . yt2 G′2 . . . G′i output

Let’s analyze how much Gi stretches it’s input. Our input is of length n+ t1d:

n+ t1d ≤ n+ δnγ log
n

β

If log
1

β
≤ n1−γ ⇒

n+ δnγ log
n

β
≤ O(n) = logw

And our output is of length ti
n
4 = 2n1+iγ . So, as long as β is “not too small”, our generator Gi

stretches O(logw) bits to → poly(logw) bits.

2.1 Space Requirements

A quick analysis of Gi shows that it can be computed in logarithmic space:

◦ E(x, y) can be computed in space = O(n) = O(logw).

◦ Each G′i runs E iteratively, so G′i can be computed is space = O(logw).

◦ Gi can be comnputed in space = i · logw ≤ O(logw)

2.2 Psuedorandomness for Branching Programs

We’ll prove inductively that the logspace generator Gi is ε-psuedorandom for branching programs
of constant width and some bounded length.

Theorem 1 (Gi ε-fools branching programs). Gi is ε-psuedorandom for branching programs
of constant width and length ti

n
4 where ε = ti(β + 1

w).

For our proof, we’ll start with the following lemma.

Lemma 2 (Basis for G1). G1 is ε-psuedorandom for branching programs of constant width and
length t1

n
4 where ε = ε1 = t1(β + 1

w).

2

Note:

ε = t1(β +
1

w
) ≤ logw

w
+ β logw.

So, we require that β = 1
poly(w) to ensure our generator can be computed in space = logw.

Consider the sequence of bits output from G1(x y1 . . . yt1). Each bit takes us to a new layer in
a branching program B, but we’ll ignore intervening layers and only examine the layers that we
arrive at after applying the n

4 bits from each extractor call E(x, yi). Call this sequence of layers:
L1, L2, . . . Ll−1, Ll.

Let Pl be the distribution on layer Ll after the psuedorandom walk with input G1(xy1 . . . yt1).
Let Tl be distribution of the same definition with uniformly random input. Notice that:

P ul (v) = Pr[psuedorandom walk starting at u ends at v]

T ul (v) = Pr[uniformly random walk starting at u ends at v]

where u ∈ Li, v ∈ Ll, for some layer Li in branching program B.

Claim. dstat(Tl, Pl) ≤ l · (1
w + β)

Proof (Claim).

dstat(Tl, Pl)

= dstat(Σu∈Ll−1
Tl−1 · T ul ,Σu∈Ll−1

Pl−1 · P ul)

By the triangle inequality d(A,C) ≤ d(A,B) + d(B,C):

≤ dstat(ΣuTl−1(u) · T ul ,ΣuPl−1(u) · T ul) + dstat(ΣuPl−1(u) · T ul ,ΣuPl−1(u) · P ul)

Terms d(A,B) only differ by their distributions, and terms d(B,C) can be factored:

≤ dstat(Tl−1, Pl−1) + Σu(Pl−1(u) · dstat(T ul , P ul))

We can split our sum based on the “hard to reach” vertices and the remaining vertices. Let set
of “hard to reach” vertices be H = {u|u ∈ Ll−1, Pl−1(u) < 1

w2 }. And let the remaining “easier to
reach” vertices be the set E = {u|u ∈ Ll−1, Pl−1(u) ≥ 1

w2 }.

≤ (l − 1)(
1

w
+ β) + Σu∈H(

1

w2
· 1) + Σu∈E(Pl−1(w)) · dstat(T uL , P ul)

Our sum of “easier to reach” vertices in E is the sum over a probability distribution, so it has a
value of at most 1 and our statistical distance is at most β by the guarantee of our extractor, so:

≤ (l − 1)(
1

w
+ β) +

1

w
+ β

≤ l(1

w
+ β) �

Lemma 3 (Inductive Step). If Gi is ε-psuedorandom for a branching program B of constant
width w and bounded length, then Gi+1 is also ε-psuedorandom for B.

3

Proof. First, observe that:

Gi = (G′i ◦G′i−1 ◦ . . . G′1)
Gi+1 = G′i+1 ◦ (G′i ◦G′i−1 ◦ . . . G′1)
Gi+1 = G′i+1 ◦ (Gi)

Let B′ = (B ◦ Gi) and observe that B′ is also a branching program of constant width and
space = O(w). By our claim, G′i+1 is ε-psuedorandom for B′ and this implies that G′i+1 ◦ Gi is
ε-psuedorandom for B. Since Gi+1 = G′i+1 ◦Gi, then we have:

Gi ε-psuedorandom for B =⇒ Gi+1 ε-psuedorandom for B �

4

	Branching Programs and Generators
	Logspace Generator
	Space Requirements
	Psuedorandomness for Branching Programs

