CS 880: Pseudorandomness and Derandomization 4/10/2013
Lecture 21: Randomness and Space

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Adam Everspaugh

DRAFT

In this lecture we construct a family of psuedorandom generators that operate in logarithmic
space and can e-fool branching programs of constant width.

1 Branching Programs and Generators

Recall that a branching program B of length n and width w is a set of functions (B, Bs,...B;)
such that each B; : {0,1} — [w]. A branching program can also be viewed as a layered, acyclic
graph in which every layer has the same number of vertices (representing states of the program),
and every vertex (except the ones in the last layer) have exactly 2 outgoing edges labelled 0 or 1.
These edges indicate moving to a new state based on an input of 0 or 1.

Also recall the INW-generator: Gi(zy) = Gi—1(x)G;—1(E(x,y)) where E is an extractor Ej; :
{0,1}* x {0,1}* — {0,1}*. The INW generator is e-psuedorandom for the following types of
constant-width branching programs and seed lengths:

BP ‘ seed length
all | =~ (logr)(log ")
regular | ~ (logr)(log %)

permutation | ~ (logr)(poly(w) + log 1)

A regular branching program is one where every pair of consecutive layers forms a bipartite,
regular graph. A permutation branching program is one where the mapping between any two
consecutive layers is a permutation (a bijection).

Note that our seed length for permutation branching programs is not necessarily better than the
seed length for regular branching programs because it contains a poly(w) term. However, if we fix
the width w to a constant value, then we can fully derandomize permutation branching programs
in logarithmic space.

2 Logspace Generator

We'll define a new generator that stretches a seed of length ~ logw to a length of r (the length of
our branching program). We’ll do this in logarithmic space under the condition that r < poly(logw)
(r is much smaller than it could be).

Use the following (%, 3)-extractor:

E:{0,1}" x {0,1}* = {0,1} %, where d < O(log%),

n=logw, t;=8(logw)”, with constant v,0 < v < 1.

Note: The value v simply allows us to control the error.

Definition 1 (Logspace Generator G;). Define our logspace generator
Gi : {0, 1}70d 5 10 132" and it’s helper function
Gh {0,117 x {0,134 x ... x {0,1} = {0,1}%7 recursively as:

G;(.’L‘ n 3/2---3/ti)iE($ay1)E(9Cay2) E(x7ytz)
Gi=G,0G_10...0G4oG]

We can visualize an application of G; as a series of applications of the helper function G} where
the output of G} is fed into G4 and so on. Each application of the helper function G expands the
input to a larger output by rearranging the inputs that go into the extractor £. This gives GG; an
output length that is exponentially longer than it’s input.

TY1 - Yty G TYL - Ytg - - - Yo G . G output

7

Let’s analyze how much Gj stretches it’s input. Our input is of length n + t1d:
n

n+t1d§n—|—5n’ylog5

1
If log= <n'™7 =
B
n+ 5n710g% < O(n) =logw

And our output is of length ¢; 7 = 2n'+ . So, as long as 3 is “not too small”, our generator G;
stretches O(logw) bits to — poly(log w) bits.

2.1 Space Requirements

A quick analysis of G; shows that it can be computed in logarithmic space:
o E(z,y) can be computed in space = O(n) = O(logw).
o Each G} runs E iteratively, so G} can be computed is space = O(log w).

o G; can be comnputed in space =i - logw < O(logw)

2.2 Psuedorandomness for Branching Programs

We’ll prove inductively that the logspace generator G; is e-psuedorandom for branching programs
of constant width and some bounded length.

Theorem 1 (G; e-fools branching programs). G; is e-psuedorandom for branching programs
of constant width and length t;% where € = t;(3 + %)

For our proof, we’ll start with the following lemma.

Lemma 2 (Basis for G1). G is e-psuedorandom for branching programs of constant width and
length t1% where € = €1 = t1(f + %)

Note:) |
ogw
e=t1(B+—) < g

w

+ Blogw.

So, we require that g = to ensure our generator can be computed in space = logw.

1
poly(w)
Consider the sequence of bits output from Gi(x 1 ...y). Each bit takes us to a new layer in

a branching program B, but we’ll ignore intervening layers and only examine the layers that we

arrive at after applying the % bits from each extractor call E(z,y;). Call this sequence of layers:

L17 L27 s Ll—17 Ll'
Let P, be the distribution on layer L; after the psuedorandom walk with input Gi(zy1 ... v,).
Let T; be distribution of the same definition with uniformly random input. Notice that:

P/*(v) = Pr[psuedorandom walk starting at u ends at v]

T;*(v) = Pr[uniformly random walk starting at u ends at v]

where v € L;,v € L;, for some layer L; in branching program B.
Claim. dstar(Ty, P) <1 (% + B)
Proof (Claim).
dstat(T1, P1)

= dstat(EuELl,lTl—l . T’lu7 EuELl,lf)l—l . f)[u)
By the triangle inequality d(A,C) < d(A, B) +d(B,C):

S dstat(ZuTl—l(u) : T‘lua Z]u]Dl—l(u) : T[u) + dstat(zuf)l—l(u) : Tlu7 EuPl—l(u) . F)lu)
Terms d(A, B) only differ by their distributions, and terms d(B, C') can be factored:
< dstat(Ti-1, Pi-1) + Zu(Pr-1(u) - dstat (17", F}"))

We can split our sum based on the “hard to reach” vertices and the remaining vertices. Let set
of “hard to reach” vertices be H = {ulu € L;_1, P_1(u) < -3 }. And let the remaining “casier to
reach” vertices be the set F = {ulu € L;_1, P,_1(u) > ﬁ}

<U=1)(; +6)+ Duen(

w2 1) + Zuep(P-1(w)) - dstat(TT, P)

Our sum of “easier to reach” vertices in E is the sum over a probability distribution, so it has a
value of at most 1 and our statistical distance is at most 8 by the guarantee of our extractor, so:

S(l—l)(%+6)+%+6

1
SZ(E‘FB) 0

Lemma 3 (Inductive Step). If G; is e-psuedorandom for a branching program B of constant
width w and bounded length, then G;11 is also e-psuedorandom for B.

Proof. First, observe that:
Gi=(G,oG_10...GY)
Git1 =G 10(GioGi_10...GY)
Git1 =Gy 0(Gy)
Let B’ = (B o ;) and observe that B’ is also a branching program of constant width and

space = O(w). By our claim, G}, is e-psuedorandom for B’ and this implies that G}, o G; is
e-psuedorandom for B. Since G = G;_H o (G;, then we have:

G; e-psuedorandom for B = G;41 e-psuedorandom for B O

	Branching Programs and Generators
	Logspace Generator
	Space Requirements
	Psuedorandomness for Branching Programs

