
CS 880: Pseudorandomness and Derandomization 4/17/2013

Lecture 23: Pseudorandomness from Worst-Case Hardness

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Kevin Kowalski

DRAFT

In the previous lecture, we discussed how to construct pseudorandom generators for any par-
ticular class given the existence of a function f with high average-case hardness for that class,
and gave an explicit construction for the class Cr. In this lecture, we will finish the proof of its
correctness, and also show that we can relax the hardness assumption we need from average-case
to worst-case hardness, so that the function f only needs to be difficult to compute at one point,
as opposed to many points.

1 Preliminaries

First, recall that average-case circuit compexity Hf (m) for a function f : {0, 1}m → {0, 1} is defined
as the smallest s such that for some circuit C of size ≤ s,

Pr
x←Um

[C(x) = f(x)] ≥ 1

2
+

1

s
.

In general, we would need two parameters to describe average-case circuit complexity fully–one for
the maximum size of the circuit, and one for the probability of agreement–but this single parameter
definition suffices for our purposes.

Average-case circuit complexity can be contrasted with the worst-case circuit complexity Cf (m),
which is defined as the smallest s such that for some circuit C of size ≤ s,

∀x ∈ {0, 1}m [C(x) = f(x)].

In other words, a function with average-case complexity s requires a circuit of size s to agree on
most of the possible inputs, while a function with worst-case complexity s requires a circuit of the
same size to agree on all possible inputs. Thus, for any particular s, Hf (m) = s is a much stronger
statement than Cf (m) = s.

Also recall that the class of algorithms we are working with is

Cr =̇ {C | C is a Boolean circuit of size ≤ r on ≤ r inputs},

which is important because the existence of a pseudorandom generator with seed length O(log r)
for this class would automatically imply the existence of pseudorandom generators for BPP–any
polynomial-time computation on a particular input and r random bits can be represented as a
circuit in Cr. Whether or not we can achieve this seed length depends on the hardness of the
underlying function f , though as we will see, the existence of weaker f would still imply nontrivial
results regarding the power of BPP.

1

2 Construction of the Generator

Our construction Gfr : {0, 1}` → {0, 1}r from the previous lecture was based on a function f :
{0, 1}m → {0, 1} combined with a (m, log r)-design S1, S2, . . . , Sr ⊆ [`] where for all 1 ≤ i < j ≤ r,

◦ |Si| = m, and

◦ |Sj ∩ Sj | ≤ log r.

In particular, the i-th bit of the output of Gfr is produced by applying f to the m bit positions of
the input indicated by Si.

Proof of pseudorandomness. The intuition behind this construction is that if f has high
average-case hardness, then it is difficult for any circuit in Cr to predict its output on any given
input. In fact, we could concatenate the seed with the output to produce a longer output, but the
advantage gained by doing this is small because the required seed turns out to be much smaller
than the output. The näıve idea of drawing the Si from disjoint parts of the seed doesn’t produce
a sufficiently long output, but allowing them to overlap to a limited extent allows us to generate
many Si while preserving the unpredictability argument, as we will see in the proof of the following
theorem.

Theorem 1. If Hf (m) > r2, then Gfr is 1
r -pseudorandom for Cr.

Proof. Suppose for the sake of contradiction that Gfr is not 1
r -pseudorandom for Cr, i.e., there exists

a distinguisher D ∈ Cr such that

| Pr
ρ←Um

[D(ρ) = 1]− Pr
ρ←U`

[D(Gfr (σ)) = 1]| > ε =̇
1

r
.

Recall from last lecture that this implies that there exists a predictor P ∈ Cr and some i such that

Pr
σ←U`

[P (Gfr (σ))[1, . . . , i− 1] = Gfr (σ)[i]] >
1

2
+
ε

r
=

1

2
+

1

r2
.

By our construction, Gfr (σ)[i] = f(σ|Si) and the other indices of Gfr (σ) are defined similarly, so
we have that

Pr
σ←U`

[P (f(σ|S1), . . . , f(σ|Si−1)) = f(σ|Si)] >
1

2
+

1

r2
,

which implies that for some setting of the bits of σ|Si
,

Pr
y←Um

[P (f(σ|S1), . . . , f(σ|Si−1)) = f(y)] >
1

2
+

1

r2
.

Now, since g(σ|S1) and each other input to P can depend on at most log r bits of y, we can
view each of these as a Boolean function on ≤ log r bits. Since any Boolean function on ≤ log r
bits can be represented as a circuit of size ≤ r, P ◦Gfr [1, . . . , i− 1] can be represented as a circuit
C of size at most

(r − 1)︸ ︷︷ ︸
max # inputs

· r︸︷︷︸
max input size

+ r︸︷︷︸
max size of P

= r2.

This circuit C of size ≤ r2 agrees with f on a fraction > 1
2 + 1

r2 of points in {0, 1}m, contradicting

our assumption that Hf (m) > r2. Thus, Gfr is 1
r -pseudorandom for Cr, as desired. �

2

Time complexity and seed length. All that remains is to show that Gfr is efficiently com-
putable and to characterize the best seed length we can achieve. In order to compute the i-th bit
of the output, we need to construct Si (which from te previous lecture takes polynomial time),
and apply f to the indicated bits (which takes time 2O(m)). At first glance, the time it takes to

compute f might seem to prevent us from being able to compute Gfr efficiently, but if f is hard,
the condition Hf (m) > r2 still allows us to choose r to be much larger than m.

The polynomial-time construction of the (m, log r)-design fom the previous lecture produces a
seed length of ` = O(m2) (or ` = m if m ≤ log r), so f takes time 2O(`) to compute. In the context
of full derandomization, this time complexity is perfectly acceptable because we will be cycling
through all 2` seeds anyways–as long as the number of seeds is polynomial, each pseudorandom
string only takes polynomial time to compute.

Implications for complexity theory. Assuming the existence of a hard f , we can use Gfr
to derandomize any probabilistic polynomial time computation. The seed length of Gfr , however,
depends on the hardness of f so Theorem 1 actually spawns a family of results that relate Hf (m) to
`(r), and by extension to the time complexity of the derandomized procedure. Given the existence of
harder functions f , we can construct generators with shorter relative seed length, so we can iterate
through all possible seeds in a shorter amount of time. Some of the most significant implications
of this nature are given in the theorem below.

Theorem 2. Each of the following statements holds.

◦ If there exists f ∈ E such that Hf (m) ≥ mω(1), then there exists a pseudorandom generator

for Cr with seed length `(r) = ro(1), and BPP ⊆ DTIME(2n
o(1)

).

◦ If there exists f ∈ E such that Hf (m) ≥ 2m
Ω(1)

, then there exists a pseudorandom generator
for Cr with seed length `(r) = (log r)O(1), and BPP ⊆ QP.

◦ If there exists f ∈ E such that Hf (m) ≥ 2Ω(m), then there exists a pseudorandom generator
for Cr with seed length `(r) = O(log r), and BPP ⊆ P.

An important observation to make here is that all of the above statements are conditional–
the pseudorandom generators only exist if some function with the necessary hardness exists. At
present, no function in E is known to satisfy any of the above hardness conditions. Though our
current construction does not give us any unconditional results about pseudorandom generators
for Cr, a similar approach will give us the unconditional existence of a pseudorandom generator for
bounded-depth circuits in the next lecture.

3 Average-Case to Worst-Case Complexity

As it turns out, we can obtain a strengthening of Theorem 2 by relaxing each of the average-case
complexity requirements on f to a worst-case complexity requirement. We will demonstrate this by
constructing a transformation of g : {0, 1}n → {0, 1} with high worst-case complexity Cg(n) into a
function f : {0, 1}m → {0, 1} with high average-case complexity Hf (m) that satisfies the following
properties:

(1) g ∈ E⇒ f ∈ E.

3

(2) Hf (m) ≤ s⇒ Cg(n) ≤ poly(n, s).

(3) m = O(n).

The last condition is particularly important because the hardness of a function can be strongly
dependent on the length of its input–we can trivially make a function require a larger circuit to
compute by increasing its input length, but if the f we construct has a much higher input length
than g, then we would need a much harder g to achieve a nontrivial complexity result with Theorem
2.

To construct this transformation, we will turn to error-correcting codes. The main idea is as
follows: let N =̇ 2n, and define the length N sequence χg =̇ (g(i))i∈{0,1}n , i.e., χg is the output of
g on every possible input. We will apply an error-correcting code to χg to obtain the similarly
defined sequence χf of length M = 2m. We would like to choose a code so that if there exists a
small circuit C (which computes the function h) that agrees with f on most possible inputs, then
the decoding of χh has a correponding small circuit that agrees with g on all inputs.

Now, note that conditions (1) and (3) are automatically met if the encoding function Enc of
the code is computable in polynomial time. If g is computable in linear exponential time, then χf
can be constructed in time poly(2O(n)) = 2O(n), so f is also computable in linear exponential time.
Similarly, since χf contains 2O(n) elements, we must have that m = O(n).

Thus, all we need is a polynomial-time computable code that satisfies condition (2). Intuitively,
this condition will be satisfied if the code is locally decodable and can correct up to almost a
fraction 1

2 of errors. Local decodability allows us to estimate an element of χg from a small number
of elements of χh, which limits the blowup in required circuit size to compute the decoding of h
relative to h itself, and the ability to correct a large number of errors is necessary to ensure that
χh is decoded to exactly χg. However, this isn’t possible for an error- correcting code–the relative
distance of a binary code is at most 1

2 , so it can correct errors in at most a fraction 1
4 of all bit

positions.
Instead, we can use list decoding to obtain all possible χg that encode to a sequence close to

χh, and then there must exist some small circuit that chooses the correct one. Formally, this is
captured in the following theorem:

Theorem 3. There exists a function Encn,s : {0, 1}N → {0, 1}M(n,s) such that

(A) Encn,s is computable in time poly(N, s).

(B) For any n, s, there exists a list of circuits D1, D2, . . . each of size poly(n, s) with oracle access
to χh such that for every h : {0, 1}m → {0, 1} and every g : {0, 1}n → {0, 1} such that the
relative Hamming distance between Encn,s(χg) and χh is at least 1

2 + 1
s , there exists an i such

that Df
i computes g.

Condition (A) here guarantees that Encn,s satisfies conditions (1) and (3) from the beginning of
the section, and condition (B) guarantees that Encn,s satisfies condition (2).

4

	Preliminaries
	Construction of the Generator
	Average-Case to Worst-Case Complexity

