
CS 880: Pseudorandomness and Derandomization 4/29/2013

Lecture 26: PRGs from shrinkage

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Gautam Prakriya

DRAFT

In the last lecture we showed that with high probability, a pseudorandom restriction ρ picked
from an O(log n) - wise independent distribution shrinks branching programs of size s. Today, we
use this result as a black box to construct pseudorandom generators for branching programs. In
fact we present a generic construction which works for any non-uniform computational model for
which such a shrinkage result holds.

1 Recap

Throughout this lecture f will represent a branching program, n the number of variables in f and
s the size of f (The number of nodes in f . With a slight abuse of notation we let s(.) represent the
size function. We begin by restating the shrinkage result from the previous lecture.

Lemma 1. Let Rp be a p -regular log n - wise independent distribution over {1, ∗}n, then for every
branching program f of size s,

Pr
ρ∼Rp

[s(f |ρ) ≥ c log(1/ε) · p · s] ≤ ε].

We let s0 denote c log(1/ε) · p · s. The following corollary is an easy consequence of this lemma.

Corollary 2. With Pr ≥ 1− ε.

◦ f |ρ depends on at most s0 variables.

◦ f |ρ can be described with O(s0 log s0) bits.

2 PRG construction

We first present a construction that doesn’t quite work, but will help motivate the actual PRG
construction.

2.1 Attempt 1

1. Sample a random restriction ρ ∈ Rp. Corollary 2 tells us that w.h.p the restricted B.P. f |ρ
depends on at most s0 variables. This takes O(log3 s) bits. (We require O(log2 n) uniform
bits to generate a O(log n) - wise independent distribution over {1, ∗}n and to ensure that
this distribution is p - regular, we need O(log(1/p) · log2 n) bits.)

1

2. Set the active variables in ρ by sampling s0 uniform bits. There is a small technical issue
here - f |ρ could depend on more than s0 variables, in this case we fill the remaining unset
variables with 1’s.

Since s0 =
√
s, the seed length for this construction is

√
s+O(log3 s) = O(

√
s). Let us denote the

output distribution of this construction by W . To prove that this is a PRG for branching programs,
we need to show that |Pr[f(Un) = 1] − Pr[f(W) = 1]| = |Pr[f(Un) = 1] − Pr[f |ρ(Uc√s) = 1]| is
small. This doesn’t neccasarily hold. For instance consider a branching program f that computes
the Majority function. It is not difficult to see that that f(W) is biased towards 1. One could
argue that this counter-example works only because the restrictions are picked from {1, ∗}n. This
is true, and it may be possible to find a pseudorandom p-regular distribution over {0, 1}n for which
this construction does yield a PRG, but we would no longer be using the shrinkage result in a black
box fashion.

2.2 Attempt 2

To get around the issue in the above construction, we sample a number of restritions ρ1, . . . , ρt,
where t = log(n/ε)/p. t is chosen so that w.h.p. every variable is left active by one of the restrictions.
Let A(ρi) ⊆ [n] be the set of variables left active by ρi. Let W1, . . . ,Wt denote the independent
distributions obtained as in attempt 1 from ρ1, . . . , ρt respectively, and let W = W1 ⊕ · · · ⊕Wt.

Lemma 3. W is ε close to the uniform distribution Un.

Proof. Note that W is the uniform distribution ∪A(ρi) = [n]. So we only need to bound the
probability of the event (∃j : j /∈ ∪A(ρi)).

Pr[∃j : j /∈ ∪A(ρi)] ≤
∑
j

∏
i

Pr[j /∈ ∪A(ρi)] =
∑
j

(1− p)t ≤ n · e−pt = ε.

We showed that d(W, Un) ≤ ε. But generating W takes more than n random bits. So we need
a more conservative way of setting the active variables in the restrictions. The idea is to use an
extractor with a fixed source X and t different seeds, Y1, . . . Yt. Below we describe the PRG:

1. Sample ρ1, . . . , ρt independently from Rp. Sample a source X of the extractor. X will be a
uniformly random binary string of length O(s0 log s0).

2. Sample independent strings Y1, . . . , Yt and for each i, let Vi be the distribution obtained by
setting the active variables in ρi using the string E(X,Yi). As earlier if the length of the
output of the extractor is less than the number of active variables in ρi, set the remaining
variables to 1.

3. Output V = V1 ⊕ · · · ⊕ Vt.

Lemma 4. d(f(V), Un) ≤ 5 · ε · t.

Proof. The proof is by a hybrid argument. Define for 1 ≤ i ≤ t + 1, the hybrid distributions
Zi = W1 ⊕ · · · ⊕Wi−1 ⊕ Vi ⊕ . . . Vt. Note that Zt+1 = W and Z1 = V. Lemma 3 tells us that
d(f(Zt+1), f(U)) ≤ ε, it is therefore sufficient to show that d(f(Zi), f(Zi+1)) ≤ 5 · ε. For notational
convenience, let us define Z := W1⊕· · ·⊕Wi−1⊕Vi+1⊕ . . . Vt also Define fZ(x) := f(x⊕Z). Notice

2

that using this notation, Zi = Z⊕Vi and Zi+1 = Z⊕Wi. We need to prove that d(fZ(Vi), fZ(Wi)) ≤
5 ·ε. The intuition behind the argument is as follows, By Corollary 2, we know that w.h.p. fZ |ρi can
be described with O(s0 log s0) bits. Let us call this event G. We can then argue that conditioned
on G, X has min-entropy at least H∞(X)−O(s0 log s0). So if H∞(X) is sufficiently large, E(X,Yi)
is close to the uniform distribution.

To show that conditioned on G, X has min-entropy at least H∞(X) − O(s0 log s0), we use an
argument we saw in an earlier lecture. Let h denote the random function fZ |ρi . G denotes the
event (s(h) ≤ s0). Let F = {g : PrZ,ρi [h = g] ≥ ε/scs00 }. Using the fact that there are at most sO(s)

branching programs of size s, it is not difficut to see Pr[6 (G ∧ h ∈ F)] ≤ 2 · ε. Now let g ∈ F ,

H∞(X|h = g) ≥ H∞(X)− log(1/ε)− cs0 log s0.

Fact 5. There exists an explicit functions E : 0, 1N × 0, 1d0, 1m that is a (N/2, ε)-extractor with
m = N/4 and d = O(log(N/ε)).

Since we start with a truly random source, H∞(X) = N . If N ≥ 2 log(1/ε) + 2cs0 log s0, then
E(X,Yi) is ε - close to the uniform distribution. This implies that d(fZ(Vi), fZ(Wi)) ≤ 5 · ε. We
skip the details of this argument. �

We leave it as an exercise to show that the seed length of this construction is s1/2+o(s).

3

	Recap
	PRG construction
	Attempt 1
	Attempt 2

