CS 880: Pseudorandomness and Derandomization 4/29/2013
Lecture 26: PRGs from shrinkage

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Gautam Prakriya

DRAFT

In the last lecture we showed that with high probability, a pseudorandom restriction p picked
from an O(logn) - wise independent distribution shrinks branching programs of size s. Today, we
use this result as a black box to construct pseudorandom generators for branching programs. In
fact we present a generic construction which works for any non-uniform computational model for
which such a shrinkage result holds.

1 Recap

Throughout this lecture f will represent a branching program, n the number of variables in f and
s the size of f (The number of nodes in f. With a slight abuse of notation we let s(.) represent the
size function. We begin by restating the shrinkage result from the previous lecture.

Lemma 1. Let R, be a p -regular logn - wise independent distribution over {1,*}", then for every
branching program f of size s,

Pr [s(f1,) = clog(1/0)-p- 5] < .

We let s¢ denote clog(1/€)-p-s. The following corollary is an easy consequence of this lemma.
Corollary 2. With Pr > 1 —e.
o fl|, depends on at most sy variables.

o fl, can be described with O(sglog sg) bits.

2 PRG construction

We first present a construction that doesn’t quite work, but will help motivate the actual PRG
construction.

2.1 Attempt 1

1. Sample a random restriction p € R,. Corollary 2 tells us that w.h.p the restricted B.P. f|,
depends on at most sy variables. This takes O(log®s) bits. (We require O(log®n) uniform
bits to generate a O(logn) - wise independent distribution over {1,%}" and to ensure that
this distribution is p - regular, we need O(log(1/p) - log®n) bits.)

2. Set the active variables in p by sampling sg uniform bits. There is a small technical issue
here - f|, could depend on more than s variables, in this case we fill the remaining unset
variables with 1’s.

Since so = /s, the seed length for this construction is v/s + O(log® s) = O(y/s). Let us denote the
output distribution of this construction by W. To prove that this is a PRG for branching programs,
we need to show that |Pr[f(U,) = 1] — Pr[f(W) = 1]| = [Pr[f(U,) = 1] — Pr[f],(U,5) = 1]| is
small. This doesn’t neccasarily hold. For instance consider a branching program f that computes
the Majority function. It is not difficult to see that that f(W) is biased towards 1. One could
argue that this counter-example works only because the restrictions are picked from {1, %}"™. This
is true, and it may be possible to find a pseudorandom p-regular distribution over {0, 1}" for which
this construction does yield a PRG, but we would no longer be using the shrinkage result in a black
box fashion.

2.2 Attempt 2

To get around the issue in the above construction, we sample a number of restritions pi, ..., pt,
where t = log(n/e€)/p. tis chosen so that w.h.p. every variable is left active by one of the restrictions.
Let A(p;) C [n] be the set of variables left active by p;. Let Wi,..., W; denote the independent
distributions obtained as in attempt 1 from p1, ..., p; respectively, and let W =W, & --- d W,.

Lemma 3. W is € close to the uniform distribution U,.

Proof. Note that W is the uniform distribution UA(p;) = [n]. So we only need to bound the
probability of the event (35 : j ¢ UA(p;)).

Pr(3) +j ¢ UA(p)) < 30 [[Prli ¢ UA(p)]l = (1= p)' < moe =

J

We showed that d(W,U,) < e. But generating W takes more than n random bits. So we need
a more conservative way of setting the active variables in the restrictions. The idea is to use an
extractor with a fixed source X and t different seeds, Y7,...Y;. Below we describe the PRG:

1. Sample p1, ..., p; independently from R,. Sample a source X of the extractor. X will be a
uniformly random binary string of length O(sglog sg).

2. Sample independent strings Y71, ...,Y; and for each ¢, let V; be the distribution obtained by
setting the active variables in p; using the string E(X,Y;). As earlier if the length of the
output of the extractor is less than the number of active variables in p;, set the remaining
variables to 1.

3. Output V=Vi@---d V.
Lemma 4. d(f(V),U,) <5-¢-t.

Proof. The proof is by a hybrid argument. Define for 1 < ¢ < ¢t 4+ 1, the hybrid distributions
Zi =W ®--- oW1 0V; & ... V;. Note that Z;11 = W and Z; = V. Lemma 3 tells us that
d(f(Zi+1), f(U)) < e, it is therefore sufficient to show that d(f(Z;), f(Zi+1)) < 5- €. For notational
convenience, let us define Z := W1 @+ - - @W;_1® V11 ®...V; also Define fz(z) := f(x® Z). Notice

that using this notation, Z; = Z&V; and Z;11 = Z®W,;. We need to prove that d(fz(V;), fz(W;)) <
5-€. The intuition behind the argument is as follows, By Corollary 2, we know that w.h.p. fz|,, can
be described with O(sologsp) bits. Let us call this event G. We can then argue that conditioned
on G, X has min-entropy at least Hoo (X) — O(solog sp). So if Hyo(X) is sufficiently large, F(X,Y;)
is close to the uniform distribution.

To show that conditioned on G, X has min-entropy at least Ho(X) — O(sglog sg), we use an
argument we saw in an earlier lecture. Let h denote the random function fz|,,. G denotes the
event (s(h) < sp). Let F = {g: Prz,,[h = g] > ¢/s5°}. Using the fact that there are at most s°*)
branching programs of size s, it is not difficut to see Pr[{G A h € F)] <2-¢. Now let g € F,

Hoo(X|h = g) > Hoo(X) —log(1/€) — esg log so.

Fact 5. There exists an explicit functions E : 0,1 x 0,190,1™ that is a (N/2, €)-extractor with
m = N/4 and d = O(log(N/e)).

Since we start with a truly random source, Hoo(X) = N. If N > 2log(1/e) + 2¢splog so, then
E(X,Y;) is € - close to the uniform distribution. This implies that d(fz(Vi), fz(W;)) < 5-e. We
skip the details of this argument. 0

We leave it as an exercise to show that the seed length of this construction is s*/2+o(s),

	Recap
	PRG construction
	Attempt 1
	Attempt 2

