
CS 880: Pseudorandomness and Derandomization 5/1/2013

Lecture 27: Pseudorandomness for Half-spaces

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Alexi Brooks

DRAFT

A half-space is defined as a function Hv,θ : {−1, 1}n → {−1, 1} for some vector v ∈ Rn and
some constant threshold value θ ∈ R. For any vector x ∈ Rn, we define Hv,θ(x) = sign(〈v, x〉 − θ).
In other words, we report 1 if the projection of x onto v is greater than θ, and we report −1 if the
projection is less than θ. This construction does not define the behavior of H(x) in a border case
where 〈v, x〉 = θ, but we will not require any particular behavior in this situation.

Because we are only interested in the sign, we may freely alter the magnitude of v (and scale θ
to match). The following arguments will assume that ‖v‖2 = 1.

1 The Sandwiching Technique

We are interested in finding a pseudorandom generator for half-spaces. One natural possibility is
the INW generator.1 As we learned previously, for branching programs of width w and length n,
we can use the INW generator to achieve an error of within ε using a seed length of log n log nw

ε .
In order to use this generator, however, we will need to find a way to translate half-spaces into
branching programs.

1.1 Step 1: Partial Sums

Recall the structure of branching programs, where each node resides in a layer and has out-degree 2.
Each of those outgoing edges forms a transition to the next layer of the program and correlates with
setting a particular variable. An unrestricted branching program may refer to the same variable
multiple times on a particular path, although the variable may only be set once. All variable
determination in half-spaces is independent, due to the nature of the inner product of vectors, so
we may use a restricted form of branching program in which each variable only appears once on
any given path in the program. We may also set an ordering of the variables on each path, leading
to a one-to-one/onto relation between the n positions in the half-space vector v and the n layers
in the branching program. At each layer of the branching program, we define the following partial
sum:

i∑
j=1

xjvj

If, at i = n, this sum is greater than θ, we are in an accepting state. (Note that we have chosen
to break ties in the direction of not accepting.) Unfortunately, the width w grows exponentially
in n. This means we will need a seed length of at least n in order to generate a half-space with n
dimensions.

1See lecture 20.

1

1.2 Step 2: Rounding

In the previous step, we were stymied by the width of the branching program. Here we will attempt
to decrease the width without substantially affecting the function of the program. We will do so
by rounding, combining nodes whose expectations are similar.

Due to the nature of branching programs, we can exactly calculate the probability of acceptance
at every node in the program. At a given layer i, we arrange the nodes according to their probability
of acceptance. The basic plan will be to subdivide the layer into intervals of fixed size, and to keep
at most one vertex in each interval. We will choose an interval size of ε/n.

If we call our original branching program B, we will be interested in two derivative branching
programs: Bup keeps the node with the highest probability of acceptance in each interval. Bdown

keeps the node with the lowest probability of acceptance. In each case, the outgoing edges from
an interval are defined by the outgoing edges of the node we keep. So if a particular interval X
contains a node x with outgoing edges to nodes in intervals Y and Z (and we keep x), then the
new branching program will have edges X → Y and X → Z. Because we round at every layer, the
width is bounded by n/ε. We can thus use the INW generator for Bup or Bdown with a seed length
of roughly log2 n.

1.3 Step 3: The Sandwich

It should be clear that for any v, θ, x it is true that Bup ≥ B and Bdown ≤ B. This follows directly
from the way Bup and Bdown are defined. We make the following further claim:

Pr[Bup(U) = 1]− Pr[Bdown(U) = 1] ≤ 2ε

We use “= 1” as a stand-in for “accepts’.

Proof. We address the case of Bup. Bdown is a symmetric case; the same arguments will suffice
there. Transforming a particular execution of B into one of Bup, we see that at any given layer
transition, we alter the partial sum by at most the width of the interval, ε/n. That is, if we would
have chosen a node with a probability of acceptance a, and we instead choose the node in the
interval with the maximum acceptance probability b. The difference b− a ≤ ε/n. The overall error
generated throughout the execution is then bounded thus:

Pr[Bup(U) = 1]− Pr[B(U) = 1] ≤ n ∗ ε/n = ε

Combined, we get the desired result of

Pr[Bup(U) = 1]− Pr[Bdown(U) = 1] ≤ 2ε �

We are not quite done here. We must still prove that any PRG which works for Bup and Bdown

will also work for B. In particular, we want to prove this fact for the INW generator.

1.4 Step 4: Proving the Generator

We want a proof which shows that any PRG which is ε-pseudorandom for Bup and Bdown will
also be ε-pseudorandom for B. We will show a constant approximation, where any PRG which is
ε-pseudorandom for Bup and Bdown will be 3ε-pseudorandom for B.

2

Proof. Let D = G(Un) be the distribution of size n produced by our candidate pseudorandom
generator. Note that n here is not the seed length; the seed length is whatever seed length the
generator G requires in order to produce an output length of n.

We wish to show a bound on the quantity

|Pr[B(D) = 1]− Pr[B(U) = 1]|

We will consider the symmetric bounds separately to avoid dealing with the absolute value signs.
The argument is the same in each case, so we will only show the positive case here. By the
definitions of Bup and Bdown, we have the following inequality:

Pr[B(D) = 1]− Pr[B(U) = 1] ≤ Pr[Bup(D) = 1]− Pr[Bdown(U) = 1]

Because the distribution is ε-pseudorandom for the rounded programs, we can substitute the fol-
lowing:

Pr[B(D) = 1]− Pr[B(U) = 1] ≤ Pr[Bup(U) = 1] + ε− Pr[Bdown(U) = 1]

Finally, we can draw the argument in Step 3 to simplify the right-hand side:

Pr[B(D) = 1]− Pr[B(U) = 1] ≤ 3ε �

1.5 Result

The INW generator will work for half-spaces, with a required seed length of O(log n log n
ε).

2 The Invariance Principle

The core idea in this part of the lecture is that, when a distribution accumulates random variables,
it usually approaches a Gaussian distribution.

2.1 Central Limit Theorem

Let X1, X2, . . . be identical random variables with a mean of 0 and a variance of (σ2) for some
finite σ. Let Sn = x1+...+xn

n . As n→∞, Sn → N(0, σ2), where N is the Normal distribution with
a mean of 0 and a variance of σ2.

If you think back to the previous section on half-spaces, you can see an immediate application.
As the length of the v, x vectors grows, we expect 〈v, x〉 → N(0, σ2). Unfortunately, the Central
Limit Theorem tells us nothing about the convergence rate.

2.2 Barry-Esseen Theorem

Let Y1, . . . , Yn be independent (not necessarily identical) random variables with the following prop-
erties:

1. E[Yi] = 0∀i

2.
∑

E[Y 2
i] = σ2∀i. (Equivalently,

∑
Var(Yi) = σ2.)

3

3.
∑

E[Y 4
i] ≤ γ

Let Sn = Y1+...+Yn
σ . (Note that the denominator in this case is not n, but σ.) Then the “infinity”

distance

d∞(Sn, N(0, 1)) ≤
√
γ

σ2

The infinity distance is defined as the supremum over t ∈ R of the difference in probabilities.
It allows for the possibility that the maximum value might not properly exist, instead rising to
unbounded height at either a limiting approach to a point or simply as t grows large. It is otherwise
identical to statistical distance.

Given this bound, we may say that for some “nice” half-spaces, projections onto v will be close
to a Normal distribution.

2.3 Corollary of the Barry-Esseen Theorem

Take v ∈ Rn with ‖v‖2 ≤ 1 and ‖v‖∞ ≤ ε. (The latter inequality is to the “infinity norm”, defined
as ‖x‖∞ = maxi |xi|.) Then d∞(〈v, U〉, N(0, 1)) ≤ ε.

Proof. Draw xi uniformly at random from {−1, 1} and let Yi = vixi. Then 〈v, Un〉 =
∑n

i=1 Yi. If
the Barry-Esseen Theorem holds for this case, then we may simply apply it and have our desired
result. We may check each required property of the theorem, and find that each holds:

1. E[Yi] = viE[Xi] = 0

2.
∑

E[Y 2
i] =

∑
w2
i = ‖w‖22 = 1

3.
∑

E[Y 4
i] =

∑
w4
i =

∑
w2
iw

2
i ≤

∑
w2
i ε

2 = ε2

As described above, we apply the Barry-Esseen Theorem with σ2 = 1 and γ = ε2, giving us

d∞(〈v, U〉, N(0, 1)) ≤ ε �

4

	The Sandwiching Technique
	Step 1: Partial Sums
	Step 2: Rounding
	Step 3: The Sandwich
	Step 4: Proving the Generator
	Result

	The Invariance Principle
	Central Limit Theorem
	Barry-Esseen Theorem
	Corollary of the Barry-Esseen Theorem

