
CS 880: Pseudorandomness and Derandomization 5/8/2013

Lecture 29: Space Generators from Communication Complexity

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Xi Wu

DRAFT

In previous lectures we saw two pseudorandom generators for bounded-space machines: Nisan’s
generator and the Impagliazzo–Nisan–Wigderson generator. Both generators are of the form Gk :
{0, 1}(k+1)s 7→ {0, 1}2k such that

Gk

(
x, y
)

= Gk−1

(
x
)
, Gk−1

(
Γk(x, y)

)
(1)

where x ∈ {0, 1}ks, y ∈ {0, 1}s, and Γk : {0, 1}ks × {0, 1}s → {0, 1}ks is some function that can
“recycle the randomness in x”. In the INW-generator, Γ is the neighbor function of a suitable
expander graph or it is a suitable extractor. Nisan’s generator can also be cast in the framework
of (1), but the definition is a bit subtle. Here the string x is of length (2k − 1) · s and of the form
x = σ, h1, . . . , hk−1 and y is of the form y = hk. The string σ is of length s and corresponds to
Nisan’s “inner seed” as discussed in Lecture 15. The “outer seed” consists of the k strings h1, . . . , hk
of length 2s each, and they determine k pair-wise uniform hash functions from {0, 1}s → {0, 1}s.
Then we obtain Nisan’s generator Gk when Γk is of the form

Γk(σ, h1, . . . , hk−1;hk) = hk(σ), h1, . . . , hk−1 .

One way to look at generators of type (1) is that they exploit the bounded amount of commu-
nication that is passed from one party to another: Two players Alice and Bob want to compute a
function f(X,Y) where Alice has an input X and Bob has an input Y that is independent from X.
In the communication model, we require Alice to do some computation on X and to then send a
message to Bob. Bob receives Alice’s message, continues the computation on Y , and outputs the
result.

Given such a communication protocol, we want to replace the uniform distributions X and Y
with distributions that require less randomness, while still approximating the overall behavior of
the protocol under uniform input distributions. If the communication between Alice and Bob is
limited, then intuitively we should be able to “recycle” the randomness that is used to create Alice’s
input and pass it on to Bob. In the case of read-once branching programs (ROBP) of small width,
Nisan’s generator and the INW-generator exploit the communication communication bottleneck in
the following way: The branching program is split into half. Alice looks at the input of the first
half of the program and computes the state in the middle layer of the program that is reached on
the given input. She communicates this state to Bob, who can use it as the start state of the second
half of the program and compute the final state of the program that is reached when reading the
second half of the input. Since the number of bits used in the communication is only logarithmic
in the width of the program, all but a logarithmic number of random bits from the first half can be
reused for Bob’s input, which leads to the framework (1). The program has a highly hierarchical
structure since each half of the program is again an oblivious read-once branching program, and
thus, the generator can be applied recursively.

1

Note that a similar intuition applies to the shrinkage-based pseudorandom generator that we
discussed in the last few lectures. In this situation, the branching programs can be non-oblivious
in that the order in which the input is read is not known to the generator and each variable can be
read multiple times. The intuition for the pseudorandom generator was as follows: We divide the
input into two parts: the first half is determined by a pseudorandom restriction X and the second
half Y consists of the variables not set by the random restriction. Alice computes the restricted
circuit C|X and simplifies it as much as possible; by the arguments in the last lecture, the circuit
size shrinks significantly compared to the original circuit. Alice then communicates the shrunk
circuit to Bob, who evaluates the received circuit on its input variables Y . Again, if we condition
on the communication between Alice and Bob, we can recycle most of the randomness from X to
generate Y .

1 Number-on-Forehead model of communication

In this lecture, we will see a pseudorandom generator for bounded-space machines that exploits
communication protocols such as the above, except that we allow for more than two players, i.e., we
consider multiparty communication. In particular, the pseudorandom generator will be based on
a function that requires a large amount of communication between the players in a certain model
of multiparty communication, namely one-way unicast communication. This is a more restrictive
model than the number-on-forehead model, which we will introduce first.

Definition 1 (Number-on-Forehead (NOF) Model). An NOF-protocol P that computes a
function f : {0, 1}np 7→ {0, 1} consists of the following parts:

1. Players: There are p players, denoted by 1, . . . , p.

2. Input: The overall input is z1, . . . , zp ∈ {0, 1}n. Each player j ∈ [p] gets access to all input
strings except for zj.

3. Communication channel: The players share a write-once blackboard to communicate and every
player can see what is written on the blackboard.

4. Goal: Compute f(z1, . . . , zp).

The input string zi can be thought of a being written on the forehead of player i. That is,
player i can see everyone else’s input but not their own. The number of bits written down on the
blackboard in an execution of the protocol is the amount of communication used in an execution.
The communication complexity of a function f in the NOF-model is the minimum amount of
communication that an NOF-protocol requires to compute f correctly on all inputs of length np. A
trivial upper bound on the communication complexity of any function is n: Player 1 can write the
string z2 on the blackboard so that player 2 knows all input strings and can compute f(z1, . . . , zp).

We write NOFP (f) = C to denote that P computes f correctly on all inputs with communica-
tion cost at most C. More generally, we say that P computes f with advantage ε if

Pr
z1···zp∼Unp

[
P (z1, . . . , zp) = f(z1, . . . , zp)

]
>

1

2
+ ε

2

In this case, we write NOFεP (f) = C to denote the fact that P computes f with advantage ε
and cost at most C. Finally we define NOFε(f) = minP NOFεP (f) as the minimum worst-case
communication complexity over all NOF-protocols P that compute f with advantage ε.

Let us consider an example of a function that is hard in the NOF-model. We view each zi as
the characteristic vector of some set Si ⊆ [n]. That is, for every j ∈ [n], we have zi[j] = 1 if and
only if j ∈ Si. Define

f(z1, . . . , zp) =

{
1 if there is a j ∈ [n] such that j ∈

⋂p
k=1 Sk ,

0 otherwise.

This function is called the set intersection problem, and it requires Ω
(
n1/(p+1)/22p

)
bits of com-

munication in the p-player NOF-model []. The generalized inner product is related to the set
intersection, but it asks the players to compute the parity of the number of elements in their shared
intersection, that is,

f(z1, . . . , zp) =
∣∣∣ p⋂
j=1

Sj

∣∣∣ mod 2 .

The generalized inner product is one of the hardest problems known in the NOF-model, and it
requires Ω

(
n/22p

)
bits of communication []. On the other hand, there is also a corresponding

upper bound of O (pn/2p) []. It is open whether there is a problem that requires Ω (n/ poly(p)) bits
of communication; Raz [] gives a candidate for such a problem, and a proof implies circuit lower
bounds for ACC0 [].

2 Construction of the BNS-Generator

In this section, we will use a function f that p players want to compute using an NOF-protocol to
construct a pseudorandom generator. If the function f is hard in a suitable model of communication,
we will later show that the generator is pseudorandom for branching programs of bounded width.
We remark that set intersection or generalized inner product could be used as a hard function
here, but it would still give significantly worse seed length than Nisan’s generator and the INW-
generator. We will later introduce a function that is more suitable in our setting and gives the
same asymptotic seed length as the best known generators.

Construction 1. (Babai, Nisan, and Szegedy [BNS92])
Given a function f : {0, 1}np 7→ {0, 1} and an enumeration S1, . . . , S(t

p)
of all subsets of [t] that

have size p, the BNS-generator is the function G : {0, 1}nt 7→ {0, 1}(
t
p) with

G(x)
.
= f

(
x|S1

)
◦ f
(
x|S2

)
◦ · · · ◦ f

(
x|S(t

p)

)
.

Here, for x = (x1, . . . , xt) ∈ ({0, 1}n)t, we let x|S denote the string (xi)i∈S of length np.

To get a seed length of O(log2 r) for r =
(
t
p

)
, we will later choose p, t, n ∈ Θ(log r) with p� t� n.

Note that the construction above depends not only on the hard function f but also on the ordering
of all subsets of [t] that have size p. On a high level, we have two requirements on the ordering and
the function f :

3

(i) Since we want to use G to derandomize small-space machines, G itself should be computable
in space O(|x|) = O(nt).

(ii) The ordering should be such that we can use the hardness of f to prove that the output
of G looks pseudorandom to small-width branching programs. In particular, the following
property will suffice: if there is a small-width branching program that can distinguish the
output of G from the uniform distribution with non-trivial probability, then we can use it to
construct a low-cost NOF-protocol that computes f with non-trivial advantage.

Satisfying (i) is straightforward since the function f that we will choose is computable in spaceO(|x|)
and the order will be so that Si+1 can be computed in space O(|x|) from Si. It is (ii) that requires
a bit more insight. In the next section, we will sketch the idea of how to use a distinguisher for G
to obtain a low-cost protocol for f , and we will pick a suitable ordering along the way.

3 From Distinguisher to NOF-protocol

In the last section, we introduced a candidate generator G based on a hard function f . Now
we want to show how a small-space machine D that can distinguish the output of G from the
uniform distribution can be used to construct a fairly good NOF-protocol Π for f . If f is hard to
compute by NOF-protocols, this hardness transfers to the inability to distinguish G from uniform
by small-space machines.

Lemma 1 ([BNS92]). Let p, t, n ∈ N, f : {0, 1}np → {0, 1}, and G : {0, 1}nt → {0, 1}r be the
BNS-generator. If G(Unt) is not ε-pseudorandom for space S machines, then f has a p-player
NOF-protocol that computes it with advantage ε/r and with communication cost at most pS.

Proof. If G is not ε-pseudorandom, then it has a distinguisher. Recall that a distinguisher D is a
space-S machine that takes as input a string of length r =

(
t
p

)
and outputs a single bit such that∣∣∣Pr

[
D(G(Unt)) = 1

]
− Pr

[
D(Ur)) = 1

]∣∣∣ > 1

2
+ ε .

In Lecture 23, we used a hybrid argument to convert any distinguisher to a predictor P with slightly
worse parameters. In particular, a predictor is a machine that takes a string of length ` < r as
input and outputs a single bit such that

Pr
ρ∼G(Unt)

[
P
(
ρ≤`
)

= ρ`+1

]
>

1

2
+ ε/r . (2)

Here, ρ≤` denotes the prefix of ρ of length `. It is this predictor that we are going to construct the
protocol Π from. For this, let us first realize that ρi

.
= (G(x))i = f (x|Si) holds for x ∈ {0, 1}nt. In

particular, the bit ρ`+1 depends only on the pn-length substring of x selected by S`+1. Therefore, we
can fix some setting for the rest of x in (2). More precisely, there is a setting for x|S`+1

∈ {0, 1}(t−p)n
such that

Pr
x|S`+1

∼Unp

[
P
(
ρ≤`
)

= ρ`+1

]
>

1

2
+ ε/r . (3)

4

Since ρ≤` = ρ≤`(z) is a function of z
.
= x|S`+1

and x|S`+1
is fixed to a constant, we can rewrite (3)

as

Pr
z∼Unp

[
P
(
ρ≤`(z)

)
= f(z)

]
>

1

2
+ ε/r . (4)

Note that, while ρ≤` = ρ≤`(z) is a function of z, it is not clear that it can be computed in space O(S)
since we do not in general require f to be computable in that space. However, ρi for i ≤ ` does
not depend on all zj for j ∈ [p]. This is because Si is different from S`+1 for all i 6= ` + 1. So,
while ρ≤`(z) may not be computable in small space, an NOF-protocol can simulate P on input ρ≤`
since the players themselves are computationally unbounded, and player j can compute all ρi that
do not depend on zj . The black-board communication then consists of the state in the branching
program P , and there is always some player who can continue the computation of P and produce
the next state. Formally, we get the following framework for a p-player NOF-protocol Π:

Input: Player j gets as input z1 . . . zj−1zj+1 . . . zp.

Last item written on the blackboard: A state (i, s) of the branching program P (initially the
start state of P).

Some player j who can compute ρi from its input (i.e., ρi = ρi(z) does not depend on zj)
goes next and simulates P : the branching program is started at (i, s) and fed the input ρi;
the player continues to feed subsequent ρi’s for as long as she can compute them without
knowing zj ; finally, player j writes the state that P ends up in on the blackboard.

The fact that Π computes f with advantage ε/r follows from (4).
To analyze the communication cost, note that Π only ever writes down a state of the branching

program if the players switch. In general, it could be that ` = r− 1 and the sequence S1, . . . , Sr is
such that the players end up switching ∼ r/p times, which is too large for our purposes. Therefore,
it is natural to choose the order of the subsets so that each player can simulate P for as long as
possible.

If we imagine for a moment that we knew the positions of z1 . . . zp inside of x in advance,
we could construct such an ordering greedily as follows: we let S1, . . . , Sr/2 be all sets that do not
contain z1, in an arbitrary order. Then player 1 can simulate P until the middle layer r/2 is reached.
Furthermore, it is natural to order the remaining r/2 sets so that the first half Sr/2+1, . . . , Sr/2+r/4
of the remaining sequence does not contain z2; then player 2 can simulate P until layer r/2 + r/4.
This continues in p iterations until all of the sequence has been constructed and the entire branching
program can be simulated by having the players take turns, and each player goes only once.

The problem with the greedy approach above is that the positions of z1 . . . zp correspond to the
set S`+1, which depends on the parameter ` that comes out of the hybrid argument, and we have
no control over it. However, there is a simple ordering of the subsets that looks like one of the
greedy ones above for all choices of S`+1: the lexicographical ordering. We simply order the sets
such that their corresponding indicator vectors χSi ∈ {0, 1}t are sorted in lexicographical order.
For clarity, we give the following inductive definition in terms of the sets directly.

Definition 2 (Lexicographical ordering). Let U ⊂ N be a non-empty set. The sequence of
distinct sets S1, . . . , Sr in

(
U
p

)
with r =

(|U |
p

)
and p ≤ |U | is the lexicographical ordering of

(
U
p

)
if

r = 1 or if, for u = minU , we have:

5

◦ u 6∈ S1, . . . , Sr/2 and u ∈ Sr/2+1, . . . , Sr, and

◦ the sequences S1, . . . , Sr/2 and Sr/2+1\u, . . . , Sr\u are both equal to the lexicographical ordering

of
(
U\u
p−1
)
.

If G is constructed with the above order of the subsets, it is clear that every player in the
protocol Π only has to go once. Furthermore, the layer i of the communicated state (i, s) becomes
redundant because each player can easily deduce it from the number of states communicated thus
far. So the only information that the players have to write down is s, the position in the layer,
which requires S bits since that is the space required to run P . The total communication on the
blackboard is p · S. �

Lemma 1 says that communication hardness of f in the NOF-model transfers to pseudoran-
domness of G for branching programs. Let us formulate this contrapositive explicitly below.

Corollary 2. Let f : {0, 1}np → {0, 1} be a function that does not have a p-player NOF-protocol
that computes it with advantage ≥ ε and communication at most C. Then the BNS-generator
G : {0, 1}nt → {0, 1}r constructed from f is εr-pseudorandom for space-C/p machines.

The problem with Corollary 2 is that we do not not of any function f that is sufficiently hard in the
NOF-model. The hardest functions we know in this model only give a seed length that is not even
poly-logarithmic in r. We therefore need a more restrictive model of communication if we want to
use the general framework of Lemma 1.

4 Conservative One-way Unicast Model

We will now inspect the proof of Lemma 1 more closely; it constructs an NOF-protocol Π that
has a very special structure, and we will formalize what this structure is to define a model of
communication that is more restrictive than the NOF-model. Later we will construct a function
that we can prove is very hard in the new model.

The protocol in the proof of Lemma 1 has the following properties:

(1) Each player acts only once and they go in a fixed order, so the protocol is one-way.

(2) Each player sends a message only to the next player in the fixed order (and not to all players),
so the protocol is unicast (as opposed to multicast).

The third and last property is more subtle and used to reduce the dependencies between the
players: The player j ∈ [p] does not need to know the input z1, . . . , zj−1, zj+1, . . . , zp in its entirety.
To understand what exactly we mean by this, consider what player j is doing: She picks up the
simulation of the branching program P in some state (i, s) and will end the simulation in some
state (i′, s′). For this, she clearly needs to know the branching program P and receive the state s
from player j−1; as we already discussed she can deduce the layer i from her position j in the order
of players. Recall that the players simulate P on input ρ≤`. She therefore also needs access to the
string ρi . . . ρi′ used as the input to P when started at state (i, s); she does not need access to the
string ρ1 . . . ρi−1 or the string ρi′+1 . . . ρ`. Since ρk = f(x|Sk

) and all coordinates of x are constant
except for the ones that correspond to z = x|S`+1

, this means that ρ′j
.
= ρi . . . ρi′ is a function

6

of z. So player j needs access to the positions A
.
= (Si ∪ · · · ∪ S`) ∩ S`+1 of x, which correspond to

positions of z. The choice of the sequence Sk guarantees that zj does not occur in A and player j
does not need access to this part of the input. Thus ρ′j = ρ′j(z1, . . . , zj−1, zj+1, . . . , zp) is a function
of z but independent from zj . Unfortunately, we have that z1, . . . , zj−1, zj+1, . . . , zp ∈ A may hold
in general, so player j needs information from the entire input to determine ρ′j . However, the way
this information is accessed is very special: We actually have that z1, . . . , zj−1 ∈ Sk holds for all
k ∈ [i, i′], whereas the appearance of the zj+1, . . . , zp varies in the sets Sk for k ∈ [i, i′]. That is,
for k ∈ [i, i′], we have f(x|Sk

) = f(z̃1, . . . , z̃p) where z̃1 = z1 up to z̃j−1 = zj−1 holds because of
the lexicographical ordering of the Sk, and furthermore, the z̃j′ for j′ ≥ j are either some constant
part of x, or they are contained in the set {zj+1, . . . , zp}. Therefore, the protocol constructed in
Lemma 1 satisfies the following additional restriction of the NOF-model.

(3) Each player j’s access to z can be divided into the following two components:

(a) Player j has direct access to the string zj+1 . . . zp

(b) Player j has oracle access to the function fj : ({0, 1}n)p−j+1 → {0, 1} with

fj

(
z̃j , . . . , z̃p

)
.
= f

(
z1, . . . , zj−1, z̃j , z̃j+1, . . . , z̃p

)
.

A communication protocol with this type of access is called conservative.

The reason why the latter restriction on the communication model makes it less difficult to prove
the hardness of a function f in the restricted model is that the oracle fj will in general not leak
too much information about the string z1 . . . zj−1.

Any NOF-protocol for a function f that also satisfies the conditions (1)–(3) is called a con-
servative one-way unicast (COWU) communication protocol. When talking about the COWU
communication model, we make a small adjustment to how we measure the amount of commu-
nication used by a COWU-protocol: We say that a protocol uses C bits of communication if the
longest message that was sent from one player to the next has length C. Then the following lemma
connects the pseudorandomness of the BNS-generator G with the communication complexity of f
in the COWU-model. As discussed, the proof is essentially the same as the one of Lemma 1.

Corollary 3. Let f : {0, 1}np → {0, 1} be a function that does not have a p-player COWU-protocol
that computes it with advantage ≥ ε and communication at most C per player. Then the BNS-
generator G : {0, 1}nt → {0, 1}r constructed from f is εr-pseudorandom for space-C machines.

5 Parameters in the Logspace Setting

By Corollary 3, we know that a hard function in the COWU-model gives rise to a pseudorandom
generator for space-bounded computation. Let us consider the case of logspace-machines, i.e.,
machines whose space bound C = O(log r) is at most logarithmic its input length r. Then we need
to choose ε ≤ O(1/r) in Corollary 3 in order to get a non-trivial result. The construction of the
BNS-generator furthermore requires that

(
t
p

)
≥ r, which can be achieved by setting p ≥ log r and

t ≥ 2p. This is because
(
t
p

)
≥ (t/p)p ≥ 2p ≥ r. If furthermore p ≤ O(log r), then the condition on ε

can be rewritten as ε ≤ O(2−p) and the condition on C as C ≤ O(p). The function f can only be
hard if n > C and, as we will see in the rest of this document, is possible to achieve with n ≤ O(p).
Overall, we get nt ∼ np ∼ log2 r as the seed length of the BNS-generator.

7

6 Construction of the Hard Function

We construct a function f : {0, 1}np → {0, 1} that requires a lot of communication in the COWU
model to compute or to approximate. The construction is based on an extractor Ext : {0, 1}n ×
{0, 1}k → {0, 1}k that is applied iteratively p times. The extractor is going to be a strong extractor
that is able to extract 2k random bits when given access to a source of average min-entropy at least
k and a uniform seed of length k. The precise extractor property that we will need is as follows:

Definition 3. Ext : {0, 1}n × {0, 1}k → {0, 1}k is a (k, ε)-extractor if, for all random variables X
on {0, 1}n, Y = Uk, and Z on {0, 1}∗ with H∞(X|Z) ≥ k, we have

dstat

(
Z Y Ext(X,Y) , Z Y Uk

)
≤ ε . (5)

Here H∞(X|Z) denotes the conditional average min-entropy, the definition of which we leave at an
intuitive level until later.

We define the functions Ej : {0, 1}k × {0, 1}nj → {0, 1}k for j ∈ [p] as follows:

E1(y;x1)
.
= Ext(x1, y)

E2(y;x1, x2)
.
= Ext(x2, E

1(y;x1))

...

Ej(y;x1, . . . , xj)
.
= Ext

(
xj , E

j−1(y;x1, . . . , xj−1)
)
.

That is, E1 takes a seed y and x1 to produce a new seed y′ = Ext(x1, y). Then E2 takes the seed
y′ and x2 to produce a new seed y′′ = Ext(x2, y

′) and so on. Finally, we let f be the first bit of the
output of Ep. Note that there is a small mismatch in the input length because of the global seed y.

We extend the COWU model so that there can be an additional input y that no player has
direct access to, and that is only revealed indirectly by oracle access to the function fj(z̃j , . . . , z̃p) =
f(y;x1, . . . , xj−1, z̃j , . . . , z̃p) for player j. The following theorem then captures the hardness result
for f .

Theorem 4 (Ganor and Raz [GR13]). Let Ep : {0, 1}k+np → {0, 1}k be the function above,
constructed from a (k, ε)-extractor Ext : {0, 1}n × {0, 1}k → {0, 1}k in the sense of Definition 3,
and let f = (Ep)1 be the first bit of this function. Then every COWU-protocol Π for f that uses at
most n− k bits of communication per player satisfies

Pr
yx∼Uk+np

[
Π(y, x) = f(y, x)

]
≤ 1

2
+ 2pε (6)

6.1 Slight modification of the BNS-generator

For the above hard function with a hidden input y to lead to a pseudorandom generator, we need to

add this seed to the BNS-generator G as well. That is, we redefine G : {0, 1}k×{0, 1}nt → {0, 1}(
t
p)

as

G(y;x)
.
= f

(
y;x|S1

)
◦ f
(
y;x|S2

)
◦ · · · ◦ f

(
y;x|S(t

p)

)
.

As long as k ≤ O(nt), this has no adverse effect on the seed length of the generator, and the proof
of Corollary 3 goes through as before.

8

7 Proof of Theorem 4

The intuition for why the function f is hard is as follows: Player 1 does not have direct access to y or
x1, but only to the function table of f1. This function table does not reveal any information about
x1 and little about y, for which reason it will be very difficult for player 1 to compute y′ = E1(y;x1)
with any significant advantage. That is, y′ is close to uniform and player 1 can send only very little
information about y′ to player 2. Furthermore, if the communication is bounded, player 1 can also
not send a lot of information about x2 to player 2. That is, even conditioned on the information
that player 2 receives about x2 from player 1, the min-entropy of x2 will still be pretty large. Large
enough in fact so that the almost uniform seed y′ can make the output of E2(y;x2) look almost
uniform again, and player 2 has little chance of computing that value. This idea for the analysis
goes through till player p and we get that the first bit of Ep cannot be predicted with any significant
advantage. Theorem 4 follows immediately from the following lemma.

Lemma 5. Let Ej : {0, 1}k+nj → {0, 1}k be the sequence of functions above, constructed from a
(k, ε)-extractor Ext : {0, 1}n × {0, 1}k → {0, 1}k in the sense of Definition 3. Let Π be a COWU-
protocol for f that uses at most n− k bits of communication per player. Furthermore, let Y = Uk
and Xj = Un for j ∈ [p] be independent distributions, and let Mj = Mj(Y,X) be the distribution of
messages sent by player j on input Y,X. Then

dstat

(
Mj X≥j+1 Ej(Y,X≤j) , Mj X≥j+1 Uk

)
≤ (2j − 1)ε . (7)

In particular, for j = p, we have

dstat

(
Mp Ep(Y,X) , Mp Uk

)
≤ (2p − 1)ε ,

which means that Mp (and hence the output of the protocol Π) is fairly uncorrelated with Ep (and
hence f). In particular, it implies (6).

Proof (of Lemma 5). We prove the claim by induction on j. For convenience, we define the case
j = 0 as E0 : {0, 1}k → {0, 1}k with E0(y) = y and we define M0 as the empty string. Then the
two distributions in (7) are identical, and we have for j = 0:

dstat

(
M0 X E0(Y) , M0 X Uk

)
= 0 .

Now let j ≥ 1. We want to rewrite (7) so that we can apply the induction hypothesis. For this,
we express Mj in terms of Mj−1 as follows: By definition, Mj is the message that player j passes
to player j + 1 when

◦ receiving message Mj−1 from player j − 1,

◦ reading the string X≥j+1 it has access to, and

◦ inspecting the truth table of fj(Y ;X≤j−1, z̃j , . . . , z̃p) that it has access to.

In particular, since each player in the protocol is internally deterministic, Mj is a deterministic
function Mj = g(Mj−1, X≥j+1, fj) depending on the three items above. A crucial observation

9

is now that, because of the recursive structure of Ep, the function table of fj can be fully re-
constructed from f and the string Ej−1 = Ej−1(X≤j−1, Y). Therefore, Mj can be written as
Mj = g(Mj−1, X≥j+1,E

j−1). Thus, we can rewrite the statistical distance in (7) as

dstat

(
g(Mj−1, X≥j+1,E

j−1) X≥j+1 Ej(Y,X≤j) ,

g(Mj−1, X≥j+1,E
j−1) X≥j+1 Uk

)
≤ dstat

(
Mj−1 X≥j+1 Ej−1 Ej(Y,X≤j) ,

Mj−1 X≥j+1 Ej−1 Uk

)
.

= dstat

(
Mj−1 X≥j+1 Ej−1 Ext(Xj ,E

j−1) ,

Mj−1 X≥j+1 Ej−1 Uk

)
≤ dstat

(
Mj−1 X≥j+1 Ej−1 Ext(Xj ,E

j−1) , Mj−1 X≥j+1 U
′
k Ext(Xj , U

′
k)
)

+dstat

(
Mj−1 X≥j+1 U

′
k Ext(Xj , U

′
k) , Mj−1 X≥j+1 U

′
k Uk

)
+dstat

(
Mj−1 X≥j+1 U

′
k Uk , Mj−1 X≥j+1 E

j−1 Uk

)
=: δ1 + δ2 + δ3 .

The first inequality follows because of the general fact that applying the same deterministic function
to two random variables can only decrease their statistical distance (we remark that this also works
if the function g is a randomized mapping and the players have access to private randomness). The
equality follows by definition of Ej . And the second inequality is the triangle inequality.

Now we can bound δ1 ≤ dstat
(
Mj−1 X≥j Ej−1 , Mj−1 X≥j U

′
k

)
≤ (2j−1−1)ε and δ3 ≤ (2j−1−1)ε

by induction hypothesis. Furthemore, δ2 ≤ ε follows because Ext is a (k, ε)-extractor in the sense of
Definition 3, which we apply with X = Xj , Y = U ′k, and Z = Mj−1 X≥j+1. This is possible since
even conditioned on Mj−1, which is a random variable with support at most 2n−k, the random
source Xj has enough average min-entropy left, that is, H∞(X|Z) = H∞(Xj |Mj−1 X≥j+1) ≥
H∞(Xj |X≥j+1)− (n− k) = n− (n− k) = k and the extractor works for the given average k-source
and produces a distribution that is ε-close to the uniform distribution in the sense above.

Overall, we get δ1 + δ2 + δ3 ≤ (2j − 2)ε+ ε = (2j − 1)ε. �

References

[BNS92] László Babai, Noam Nisan, and Mario Szegedy. Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs. Journal of Computer and System
Sciences, 45(2):204–232, 1992.

[GR13] Anat Ganor and Ran Raz. Space pseudorandom generators by communication complexity
lower bounds. Electronic Colloquium on Computational Complexity, 2013. TR13-064.

A Some Basics of Min-Entropy

Our construction of hard function in COWU model requires the use of strong extractors. In
this section we list some important basic knowledge about min-entropy, which is central to the

10

understanding of extractors. As usual, given a random variable X, its min-entropy is defined to
be H∞(X) = − log maxx Pr[X = x]. It satisfies the following properties, as we would expect for a
quantity that measures randomness.

Fact 6. 1. (Joint distribution always has more randomness) H∞(X,Y) > H∞(X) for any ran-
dom variables X,Y .

2. (Randomness is additive if independent) if X,Y are independent then H∞(X,Y) = H∞(X)+
H∞(Y).

Similarly to conditional Shannon entropy we define conditional min-entropy: Given two random
variables X,Y

H∞(X|Y) = − log Ey∼Y

[
max
x

Pr[X = x|Y = y]

]
= − log Ey∼Y

[
2−H∞(X|Y=y)

]
Compare this to the definition of conditional Shannon entropy H(X|Y) = Ey∼Y [H(X|Y = y)]. For
conditional Shannon entropy we have the nice equality H(X|Y) = H(X,Y)−H(Y), which is known
as the chain rule for Shannon entropy. If X,Y are independent, then for both notions we have

Fact 7. If X,Y are independent, H∞(X|Y) = H∞(X), and H(X|Y) = H(X).

Either of these two equalities can be verified directly from corresponding definition. But for Shannon
entropy, it also follows from chain rule and that H(X,Y) = H(X) + H(Y) for independent X,Y .
Note that in this case, we still have for min-entropy H∞(X|Y) = H∞(X,Y)−H∞(Y).

However, when X,Y are not independent, the relationship between H∞(X|Y) and H∞(X,Y)
become more subtle. One could construct a joint distribution X,Y such that H∞(X,Y) > n,
H∞(Y) = O(1), but H∞(X|Y) = O(1). One such construction is via the following characterization
of conditional entropy,

Proposition 8. Given a joint distribution X,Y over X ×Y, average min-entropy H∞(X|Y) mea-
sures the predictability of X from Y :

H∞(X|Y) = − log max
P :Y7→X

Pr
(x,y)∼(X,Y)

[
P (y) = x

]
Fortunately, it turns out that if the support of Y is small, then we could still have something

meaningful.

Fact 9. If |supp(Y)| 6 2`, then H∞(X|Y) > H∞(X,Y)− `.

A direct averaging argument gives the following,

Fact 10. If H∞(X|Y) > k, then with probability at least 1− ε over y ∼ Y ,

H∞(X|Y = y) > k − log
1

ε

Combining these two facts we can deduce the chain rule for min-entropy.

11

Fact 11. Suppose that |Y| 6 2`. Then with probability at least 1− ε over y ∼ Y ,

H∞(X|Y = y) > H∞(X,Y)− `− log
1

ε
> H∞(X)− `− log

1

ε

Note that in this chain-rule, we condition on specific y ∼ Y , and an additional log(1/ε) min-entropy
is lost. Finally, we will also work with multiple conditioning.

Proposition 12. Suppose that |supp(Z)| 6 2`. H∞(X|Y,Z) > H∞(X,Z|Y)− ` > H∞(X|Y)− `.

This follows from that double expectation is a double summation

Ey,z

[
max
x

Pr[X = x|Y = y, Z = z]

]
= Ey

[
Ez

[
max
x

Pr
[
(X = x|Z = z)

∣∣∣Y = y
]]]

= Ey

[
2−H∞

(
(X|Z)

∣∣Y=y
)]

6 Ey

[
2
−

(
H∞

(
(X,Z)

∣∣∣Y=y

)
−`

)]
= 2`Ey

[
2
−H∞

(
(X,Z)

∣∣∣Y=y

)]
Now take − log on both sides (note 6 becomes >) and we are done.

B Hardness in the COWU Model

We are left to analyze the communication complexity of Ep we constructed in the last section. For
this we need strong average min-entropy extractor, defined as follows,

Definition 4. A (k, ε)-average min-entropy extractor is a function Ext : {0, 1}n × {0, 1}d 7→
{0, 1}m such that for any joint random variable (X,Y) with H(X|Y) > k, we have that (Ext(X,Ud), Y)
is ε-close to (Um, Y). Similar to usual extractor, an average min-entropy extractor is strong if
(Ud,Ext(X,Ud), Y) is ε-close to (Ud, Um, Y).

Proposition 13. A (k, ε)-extractor is a (k, 4
√
ε)-average min-entropy extractor.

Proof. In the high level, the proof involves two steps.

1. We show that for any k 6 n − 1, and any t > 0, a (k, ε)-extractor is also a (k − t, 2t+2ε)-
extractor.

2. We choose a proper t so that (k, ε)-extractor gives a (k, 4
√
ε)-average min-entropy extractor.

Assume step 1 for a while, we show how to do step 2. Suppose that H∞(X|Y) > k. Then with
probability at least (1−δ) over y ∼ Y , H∞(X|Y = y) > k−log(1/δ). Now step 1 says that applying
a (k, ε)-extractor gives error 2log(1/δ)+2ε. Therefore the total error is

δ +
4ε

δ

12

Set δ = 2
√
ε gives the required bound.

It is left to complete step 1. We first make an observation about extractor. By definition, Ext
is a (k, ε)-extractor means

max
X:k-source

max
T⊆{0,1}m

∣∣∣Pr[Ext(X,Ud) ∈ T]− µ(T)
∣∣∣ 6 ε

Therefore we can swap the order the quantifier, which is

max
T⊆{0,1}m

max
X:k-source

∣∣∣Pr[Ext(X,Ud) ∈ T]− µ(T)
∣∣∣ 6 ε

Assume for contradiction that Ext is not a (k− t, 2t+2ε)-extractor. Therefore for some T ⊆ {0, 1}m
and (k − t)-source Y , ∣∣∣Pr[Ext(Y,Ud) ∈ T]− µ(T)

∣∣∣ > 2t+2ε

Without loss of generality, suppose that

Pr[Ext(Y,Ud) ∈ T]− µ(T) > 2t+2ε

Our plan now has two steps:

1. Construct a k-source X, such that X = λY + (1− λ)Z, where Z is also a k-source.

2. Show that Pr[Ext(X,Ud) ∈ T]− µ(T) > ε.

Let pX , pY , pZ be the probability mass functions of X,Y and Z. In order to do step 1, we need
that for every x ∈ {0, 1}n,

pX(x) = λpY (x) + (1− λ)pZ(x) 6 2−k

Because Y is a (k − t)-source, so it suffices that

λ2−(k−t) + (1− λ)pZ(x) 6 2−k

⇔ (1− λ)pZ(x) 6 (1− 2tλ)2−k

⇐ pZ(x) 6 (1− 2tλ)2−k

Therefore it suffices to set 2tλ < 1, and so Z exists.
To do step 2, we have

Pr[Ext(X,Ud) ∈ T]− µ(T)

= Pr[Ext(λY + (1− λ)Z,Ud) ∈ T]− µ(T)

=λPr[Ext(Y, Ud) ∈ T] + (1− λ) Pr[Ext(Z,Ud) ∈ T]− µ(T)

>λ
(
µ(T) + 2t+2ε

)
+ (1− λ)

(
µ(T)± ε

)
− µ(T)

=λ2t+2ε± (1− λ)ε

Therefore it suffices to set that λ2t+2ε−(1−λ)ε > ε, which is that λ > 2/(2t+2+1). Set λ = 1/2t+1,
note that 2tλ < 1 is satisfied. Now pZ(x) 6 (1−2tλ)2−k = (1/2)2−k = 2−(k+1). Because k 6 n−1,
k + 1 6 n, so D exists. The proof is complete. �

13

How to show 3ε? This is problem 6.8 in Vadhan’s monograph.
As we will see the constant 3 is not that important in our analysis, so I will drop it, and

pretend that we have a (k, ε)-average min-entropy extractor. Note that the reduction used in this
proposition preserves strongness of extractors. Therefore

Corollary 14. A (k, ε)-strong extractor is a (k, 3ε)-strong average min-entropy extractor.

Proposition 15. Let X be a random variable over U and Y, Z be random variables over V. If
(X,Y) and (X,Z) has statistical distance at most ε, then for any deterministic function P : U 7→ V:∣∣∣∣ Pr

(u,v)∼(X,Y)

[
P (u) = v

]
− Pr

(u,v)∼(X,Z)

[
P (u) = v

]∣∣∣∣ 6 ε
Proof. Let T be the event of all pairs (u, v) such that P (u) = v. �

14

	Number-on-Forehead model of communication
	Construction of the BNS-Generator
	From Distinguisher to NOF-protocol
	Conservative One-way Unicast Model
	Parameters in the Logspace Setting
	Construction of the Hard Function
	Slight modification of the BNS-generator

	Proof of Theorem 4
	Some Basics of Min-Entropy
	Hardness in the COWU Model

