CS 710: Complexity Theory 10/3/2017
Kernelization Lower Bounds

Instructor: Dieter van Melkebeek Scribes: Sam Lemley and Sam Vinitsky

1 Introduction

In the previous lecture, we discussed the notion of advice, and proved some results about how
helpful it could be in solving problems. In particular, we proved the Karp-Lipton Theorem, which
states that if NP C P/poly, then the polynomial hierarchy collapses to the second level, which is
unlikely. We stated the following theorem, which will be useful later in this lecture. The proof is
left as an exercise.

Theorem 1. coNP C NP/poly = PH = %%

We also introduced the notion of a selector for a language L, which is a function f(xzg,z1) that,
if either xg or x1 is in L, returns that element. This means the only way f returns an element not
in L is if both inputs are not in L. We noted that if SAT has a selector, then P = NP. We also
proved the following theorem:

Theorem 2. L has a selector = L € P /poly.

Recall that the proof idea was to find an element y that was not in L such that f(z,y) =y for
many values of z € L (we say that y dominates). We can then give the machine y as advice. In
fact, we can construct polynomially many v;’s in L such that every x € L is dominated by some y;,
and then give the whole set {y;} as advice. In order to test whether a given x is in L, we merely
need to compute f(x,v;) for each y;. If any of these functions return y;, then x € L, and otherwise
z € L.

In this lecture, we will use the ideas from the previous lecture in a more general manner in
order to prove lower bounds for the kernelization of vertex cover.

2 Compression

We begin our discussion of kernelization by formulating a generalization of selectors. We first need
two definitions:

Definition 1 (compression to length £). We say that a language L can be compressed to length
¢ if there exists some polynomial time mapping reduction f from L to some L' such that |f(x)] <
l(x) < |x|.

t
Definition 2 (OR(L)). Given some language L, then OR(L) = {(z1,...,x) | \V (z; € L)}.
i=1

In other words, OR(L) consists of all tuples (of any size) such that some member of the tuple
is in L. We will use s to denote the length of each tuple element x;, and we use n to denote the
length of the entire tuple. That is, s = |z;|, and n = [(x1, ..., z¢)|. Note that n is about st.

By applying compression to this language OR(L) obtained from L, we get a generalization of a
selector for L. This is formalized in the following claim.

Proposition 1. If L has a selector, then OR(L) can be compressed to length s.

Proof. Suppose L has a selector f. We can use f to compress some instance (1, ..., z,) of OR(L)
to length s. We first compute f(x1,22) = y2, and then iteratively compute y;11 = f(y;, x;) for
i €{2,...,t}. Finally, let 2* = y,;. If at least one x; is in L, then every y; with j >4 will be in L by
the definition of selectors. So if there is some x; € L, then * =y, € L. Conversely, if none of the
x; are in L, then none of the y; will be in L, and thus 2* =y, ¢ L. This means that z* € L if and
only if some z; is in L, which is the case if and only if (z1,...,2,) € OR(L).

Note that x* only takes polynomial time to compute, since we are doing a linear number of
comparisons f(z;,z;), and f is polynomial time computable. Thus we have a polynomial time
mapping reduction from OR(L) to L such that the reduced instance x* has size s. This means
OR(L) can be compressed to length s. n

We will now prove a theorem about compression that will be instrumental in our later proof of
the kernelization lower bound for vertex cover.

Theorem 3. If OR(L) can be compressed to length I(s,t) = O(t) fort > s¢ (for some constant c),
then L € NP /poly.

Note: Since we require that [(s,t) = O(t), this means the amortized length per instance x; is
constant.

Proof (of Theorem 3). The idea of this proof is similar to the proof of Theorem 2. By assumption,
we have a polynomial time mapping reduction f from OR(L) to some language L'. Note that if
a tuple (z1,...,,) gets mapped to y € L/, then every element in the tuple must be in L. We say
that such a y vouches for the non-membership of ; in L. We wish to find some y that vouches for
as many elements as possible, and give this as advice (as in the proof of Theorem 2). In order to
do so, let us define a set of all the elements for which y can vouch. Let V(y) denote the set of all
elements that are in some tuple that maps to y under f. This is,

V(y) ={x| 3j € t]) 31,xj_1,Tjp1, ..., x) st f({@1, ., Tjm1, 2,241, .,) = Y}

We can determine membership in V' (y) in nondeterministic polynomial time: guess some assign-
ment to 1, ...,Tj—1, Tj41, ..., &, and verify that f((z1,...,z;-1,2,241,...,2¢)) = y (f is polynomial
time computable by assumption).

We are going to focus on strings x of a given length n. We want to find some y that vouches for
many of the elements x of length n. Let X denote all n-bit strings that are not in L. Let Vj(y)
denote the tuples of length n that map to y. Formally,

Xo=1{0,1}"NnL
Vo(y) ={0,1}" NV (y) = Xo N V(y)

We wish to find some yg such that the size of Vj(yg) is some constant fraction of the size of Xj.
Then repeated application of this method will produce a sequence of yg,y7, ..., y; such that every
element in X is vouched for by some y;. The following claim proves that such a y; exists: (Note
that X} denotes the set of tuples of length ¢ whose elements are in Xj).

Claim 1. There exists some y such that the number of tuples from X} that get mapped to yi under
fis> @ for some constant a

— 9Qat :
Proof. Let us compute the average number of tuples from X{ that map to a given y under f. This
is equal to the number of tuples in X{ divided by the number of possible y’s we can map to. The
length of the output y is bounded by [(s,t) by definition of our mapping. But i(s,t) = O(t) < at
for some constant a > 0. Thus |y| < at, and so the number of possible y is the number of binary
strings of length at, which is 2%, This means that the average number of tuples that map to a

Xt
given y is > ’2;2’. Clearly there must exist some gy such that the number of strings that map to
Yo is greater than or equal to the average. n

We have shown that some constant fraction of the tuples X get mapped to y, but we need to
show that some constant fraction of Xy is in some tuple that gets mapped to y;. We furnish a new
definition:

%(y) ={r e Xo|(3jelt) 3Bz, ..., xj—1,Tj41, ...zt € Xo) s.t. f((z1,..c,zj—1, T, Tjq1, ..., 2¢)) =y}

Note that Vo(y) C Vo(y), since we are just restricting the elements x; to be in Xo. Thus |[Vo(y)| <
Vo(y)] -

If we have a tuple from X! with some component x € Vy(yg), then every component of the
tuple must also be in Vj(y;). This means that:

X! ~
’2[3’ < the number of tuples from X that map to v < [Vo(yg)|*

X ~
And thus by taking the ' root, we get |20| <|Vo(y)] < |Vo(yg)|- This means that y§ vouches

a
for some constant fraction of Xy, as desired.

We can repeat this process with the remaining, unvouched for members of Xy. That is, let
X1 = Xo—Vo(y)- Then |X1| = |Xo| — [Vo(y5)| < (1 — 5) - [Xo|- We can then produce an element
y] that vouches for some constant fraction of X;. Repeating this k times gives us the inequality
| Xk < (1— 2%)’“ | Xo|, and a sequence of y7, ..., y; that together vouch for everything not in X¢—Xj.
We want to find some value of k£ such that the final iteration contains no elements, i.e. |Xj| < 1.
If X < (1= o)k - [Xo| < 1, we will cover all the elements of X in k repetitions. We can then

compute a suitable value of k that satistfies this inequality.

(1- 50" IXol <1 &
b 108(1 — 5.) + loa(|Xol) < 0 (2)
log(|Xo|)

<k (3)

“log(1 —1/29)

And so choosing k > % suffices. Note that k& = O(n), since | Xy| < 2™.

This means that if we take & = O(n) many repetitions, there are polynomially many y; that
together vouch for all of X3. We use this sequence of y;’s as advice for our nondeterministic machine.
In order to test whether x € L, just nondeterministically guess a tuple (x1, ..., Tj_1,%,Ljt1,..-Ty)
containing z, and then test whether f((z1,...,2zj_1,2,241,...2¢)) = y; for some yf (there are
only polynomially many of them). If we find some such y}, then we accept x. This is clearly a

nondeterministic polynomial machine that decides L with polynomial advice. Thus L € NP /poly.m

Note that Theorem 3 immediately implies the following corollary:

Corollary 1. If OR(3SAT) can be compressed to length l(s,t) = O(t) for t > s¢, then PH = X}

Proof. Suppose OR(3SAT) can be compressed to length I(s,t) = O(t) for t > s¢. Then by Theorem
3, 3SAT € NP /poly, and thus coNP C NP /poly. But then Theorem 1 tells us that PH = Zg. n

3 Kernelization for Vertex Cover

In this section, we introduce methods to analyze the difficulty of NP-hard problems by making use
of paramterized complexity concepts. In parameterized complexity, we measure the complexity of
a problem not only as a function of the input size, but also as a function of one or more additional
parameters denoted as k. Our goal is to achieve a running time of O(h(k) - n¢). If we are able to
achieve this running time, we can describe our algorithm as fized-parameter tractable for L. We
formalize the definition of fixed-parameter tractibility below:

Definition 3 (fixed-parameter tractable). A parameterized problem is fized-parameter tractable
(FPT) if there exists some algorithm A whose running time is O(h(k)-n¢) for some constant ¢ and

some function h : N — N. A problem A is fized-parameter tractable (FPT) if there exists some k

such that A runs in time O(h(k) - n®) for some constant ¢ and some function h : N — N.

In practice these parameters k only take on small values, and thus the corresponding function,
denoted as h, is allowed to be quite large. Even if h(k) is a very large value, it only contributes a
multiplicative factor to our running time.

3.1 A Kernelization Algorithm for Vertex Cover

One method of constructing a fixed parameter tractible algorithm is through the use of the kernel-
ization. The idea is that we wish to map instances of some language L to “small enough” instances
of that same language. We take some instance z of a language L, and reduce it to another instance
f(z) of “small enough” size g(k). We can then solve the reduced instance f(z) in time h(k) (for
example, by brute force). We formalize the notation here:

Definition 4 (Kernelization). We say that f is a kernelization of a parameterized language L
if f is a polynomial time mapping reduction from L to itself such that |f(xz)| < g(k) for some
g:N—N.

Note that the size of the reduced instance is bounded by some function of the parameter k.
This formalizes our desired notion of a “small enough” instance.

Vertex Cover (VC) is a problem that naturally admits a fixed-parameter tractable algorithm.
Recall that VC is the problem of determining for a given graph G = (V, E') whether there exists a
set S C V of vertices such that each edge in F is adjacent to some member of S. We can trivially
determine if there exists a vertex cover of size k by examining every possible subset of size k. Since
k is not a constant in this algorithm, there are O(n*) such subsets. Thus the running time of this
trivial algorithm is not O(h(k) - n¢) revealing that the algorithm is not fixed-parameter tractible.
However, fixed-parameter tractable algorithms do exist for VC. We will now prove the intuition
that a kernelization implies an FPT algorithm.

Claim 2. If L has a kernelization f, then L also has a fized-parameter tractable algorithm A.
Proof. We explicitly describe the algorithm A:

1. On input x, compute the kernelization f(x).

2. Use any algorithm to determine whether f(x) € L. Output whatever this algorithm outputs.

Our algorithm declares that = is in L if and only if f(z) € L. But since f is a mapping
reduction, x € L <= f(x) € L, and thus our algorithm always correctly decides z. Step 1 takes
polynomial time, since f was a polynomial mapping reduction. Step 2 takes time h(|f(z)|), for
some function h : N — N. But |f(z)| < g(k) for some function g : N — N since f is a kernelization,
and so h(|f(x)|) < h(g(k)) = p(k), where p = h o g. So step 2 takes time less than p(k) for some
p : N = N. Thus the entire algorithm takes time O(p(k) + n°), which is clearly O(p(k) - n®).
Therefore this algorithm is fixed-parameter tractable. n

We have shown above that if a problem has a kernelization of size g(k), it also has a fixed-
parameter tractable algorithm. In order to prove the VC has a fixed-parameter algorithm, we will
explicitly describe a kernelization.

Theorem 4. VC has a kernelization with O(k?) edges.

Proof. We explicitly describe the kernelization. If any vertex v in G has more than k neighbors, it
must be in our vertex cover. (Otherwise we would need to pick all of its neighbors, of which there
are more than k, resulting in a vertex cover of size greater than k.) If there were more than k such
vertices, then there can be no vertex cover of size k. We can thus assume our graph had ¢ < k
vertices of degree more than k. We have removed all ¢ of these vertices (and their incident edges),
resulting in a graph G’ on k — £ vertices. What remains is the find a vertex cover of size k — ¢ in
this graph G.

Every vertex in G’ has degree at most k, because otherwise it would have been removed from G
at the beginning. This means that any vertex in G’ can cover at most k edges. This means that any
vertex cover of size k — £ of G’ will cover at most k(k —) edges. If G’ has more than this number
of edges, we know that no vertex cover exists. Otherwise, G’ has no more than k(k — ¢) < k? edges
that we need to cover with k — £ vertices. This is a problem in VC with O(k?) edges. Thus this
entire algorithm is a kernelization that reduces a problem with n vertices to a problem on O(k?)
edges, and thus 2k? = O(k?) vertices. n

The best known kernelization algorithm for VC produces a kernel with O(k) vertices and O(k?)
edges. The natural question is whether this is the best we can do. That is, does there exists some
kernelization with fewer vertices or edges? In the next section, we will use all the tools at our
disposal to prove that no kernelization of VC can have k?>~¢ edges for some constant e unless the
polynomial time hierarchy collapses to the third level.

3.2 A Lower Bound for Kernelizations of VC

We will prove the following lower bound for the number of edges in the kernelization of VC:

Theorem 5. If VC has a kernel with k*~¢ edges (for some € > 0), then coNP C NP /poly.

This theorem taken with Theorem 1 immediately imply the following corollary:

Corollary 2. VC has no kernels with k>~ edges for any € > 0 unless PH = Eg.

This means that unless the polynomial hierarchy collapses (an unlikely assumption), VC has
no kernelization with < k%7€, and thus our kernelization in the proof of Theorem 4 is tight (in the
number of edges).

We will assume that VC has a kernel with k?~¢ edges, and use this fact to prove that OR(3SAT)
has a compression of short length. We can then use Theorem 3 to show that 3SAT € NP /poly,
which in turn proves that coNP C NP /poly, and thus that the polynomial time hierarchy collapses
to the third level (by Theorem 1).

Proof (of Theorem 5). Suppose that VC has a kernel with k2~¢ edges for some € > 0. We use this
kernel to establish a compression algorithm for 3SAT. Rather than dealing with VC directly, we
will instead consider the closely related problem of Clique. Recall that Clique consists of pairs
(G, k) such that the graph G has a clique of size k. A clique is a subset of vertices with all possible
edges present.

We make use of the following fact about the relationship between VC and Clique. Let us denote
by E the set of edges that are not in F.

Claim 3. If S is a set of edges in a graph G = (V, E), then S is a vertex cover for G if and only
if S is a clique in G' = (V, E).

The hypothesis that VC has a kernel of k?>~¢ edges implies that Clique has a compression of
size O(n* - logn), where n is the number of vertices. Suppose we have instance (G, k") of Clique.
We can transform this into an instance of (G',n — k") of VC. By assumption, this instance of VC
has a kernelization of size (n — k’)?2~¢ < n?~¢. This process exactly describes a compression of
Clique into an instance of VC of length n?~¢. This means Clique can be compressed to length
O(n?>~€logn) = O(n?=) for any € < €.

We will now exploit this compression of Clique to develop a compression for OR(3SAT). If
OR(3SAT) has a compression to length I(s,t) = O(t) for ¢ > s° then by Theorem 3, coNP C
NP /poly. We can represent an instance of OR(3SAT), as a tuple {1, p2, ..., @) of t 3CNF formulas.
Note that since |p;| = s, the number of variables in ¢; and the number of clauses in ¢; are both at
most s. W.lo.g. we assume that there are exactly s clauses (if not, just add duplicates).

Using the standard reduction from 3SAT to Clique (see Sipser p.284 [2]), we can transform each
3SAT instance ¢; into an equivalent Clique instance (G;, s). By applying this reduction to each
@i in the tuple (p1, P2, ..., o:), we can reduce this tuple to a new tuple ((Go, s), (G1, s),...(Gt, s))
that is an instance of OR(Clique). This gives us a polynomial time reduction from OR(3SAT) to
OR(Clique).

Now we would like to reduce this tuple of Clique instances to a single Clique instance (G, s)
with few vertices. If we can do so, then we know 3SAT also has a compression of a small length by
our reduction above. This will allow us to finish our proof by applying Theorem 3.

Method 1: Disjoint Union

A first attempt to produce a single instance (G, s) of Clique from the tuple of instances (G;, s) is by
taking the disjoint union of the vertices of all of the graphs G;. In establishing the disjoint union,
we note that each G; has 3s vertices and we note that there are ¢ graphs. Thus, the disjoint union
has 3st vertices. By applying our compression, we get a compression length of n?~¢ = O((st)?~¢).

This is not quite good enough. To apply Theorem 3, the compression length must be O(t) for
a sufficiently large ¢ (polynomial in s). Even if we set ¢ = 1 in O((st)?>7¢) we will not be able to
reduce this to O(t) as s will always be a polynomial fraction. Since we cannot use disjoint union
to reduce the compression length to O(t), we will need to identify a different way to pack these ¢
Clique instances G; into one Clique instance.

Method 2: Packing Construction

The general idea behind this more effective method of reducing a tuple of clique instances to a
single clique instance is that we can view each graph G; as being embedded in an independent set
of size 3 tensor with some clique of size s.

Gi C Iz KW

We can think of these independent sets (each of size 3) as super-vertices, with our goal being to
combine the cliques into a graph with fewer vertices. The edges of each clique K s(i) we can think
of as super-edges, where one edge within a clique represents all nine possible edges between two
independent sets I3. This allows us to embed ¢ cliques of size s into a graph with significantly fewer
than st vertices.

We introduce the following lemma which is key to our construction. We will prove this lemma
in the next lecture.

Lemma 1 (Packing Lemma). There exists a graph Ps; with s -ﬁHO(l) vertices such that:

1. The edges of Ps; partition into t cliques Ks(i) of size s.

2. Py, does not contain any cliques of size s other than the ones than the ones we already have
(i.e. the KS(Z)).

By meeting the first condition of the packing lemma, we ensure the completeness of our com-

)

G, our packing construction also contains a clique K §i) of size s.
The second condition ensures the soundess of our construction. Namely, if our construction
has a clique of size s, then one of the given graphs also has a clique of size s. We can imply this

pression. This implies that if there exists a clique K S of size s (a "yes” instance) in our graphs

because if we have a clique of size s, it has to come from one the established cliques in K gi) . If we
let these cliques share vertices outside of the cliques in K s(i), then we would no longer be performing
a mapping reduction from OR(Clique) to clique.

Our prior disjoint union construction satisfies both conditions of the packing lemma. However,
as noted above, the problem with the disjoint union construction is that it uses too many vertices.
To avoid this issue in our packing construction, we make our clique graphs share vertices. Note
that our graphs will not share edges - the edges must remain disjoint. Then we will embed the

instance that we have into this graph. This ensures that if at least one of the graphs G; has a
clique of at least size s, then there will be a clique of size at least s in our packing construction. If
we look at the edges of graph P;;, they partition into ¢ cliques, and there are no cliques other than
those in the graph.

Since we can provide Py, as advice, we can use Ps; as a compressed OR(Clique) instance.

This compressed instance Ps; has n = s - \/ZHO(U vertices, resulting in a compression length
n?=¢ = O(s?=¢ . t1=(¢/2+o(1)) Note that this running time is dominated by ¢ if it is a large enough
polynomial in s. That is, there exists some constant ¢ such that if ¢ > s¢ then s2—¢. ¢1—(¢/2)+o(1) =
O(t). If we set t = s, then:

(s .\/zuoa))?_g — 2. gell=(e/2)+0(1))
— gc(1=(e/2)+((2—€)/e)+o(1)
= 0(s°)

for 1 —(e/2)+((2—¢€)/c) < 1.

Since our compression of OR(Clique) has size is linear in ¢, we also have a compression of
OR(3SAT) whose size is linear in . This means we can apply Theorem 3 to show that 3SAT €
NP /poly, and thus coNP is in NP /poly. This completes our proof. n

4 Next Time

In the next lecture, we will complete the proof of our kernelization lower bound for vertex cover
by proving the packing lemma. In order to do so, we will use the well-known fact that there exist
high density subsets of Z with no arithmetic progression of length 3. This is complemented to
Szemerédi’s theorem, which states that for every positive integer k and there exists a real § € [0, 1),
there exists a positive integer n such that every subset of {1,2,...,n} of size greater then dn contains
an arithmetic progression of length k.

References

[1] J. Flum and M. Grohe. Parameterized Complezity Theory, 2006.

[2] M. Sipser. Introduction to the Theory of Computation (2nd ed.) 2006.

	Introduction
	Compression
	Kernelization for Vertex Cover
	A Kernelization Algorithm for Vertex Cover
	A Lower Bound for Kernelizations of VC

	Next Time

