
CS 710: Complexity Theory 10/5/2017

Parallelism

Instructor: Dieter van Melkebeek Scribe: Joel Atkins and Zheming Wang

DRAFT

In the previous lecture we covered the notion of language compression, specifically the concept
of Kernelization. We went on to establish kernelization lower bounds for the algorithmic problem
Vertex Cover. In this lecture we will complete our coverage of Kernelization by proving the packing
lemma and then begin the notion of Parallelism.

1 Kernelization

Our previous discussion of kernelization of Vertex Cover had the intent of establishing a compression
algorithm for 3SAT. Specifically we showed that if VC has a kernelization with k2−ε vertices then
the order of 3SAT has such a compression. This means that 3SAT ∈ NP/poly which would mean
coNP ⊆ NP/poly which would collapse the polynomial time hierarchy to the third level.

In the last lecture we utilized a packing lemma in order to compress the size of our instance of
VC. We will now prove this lemma.

1.1 Packing Lemma Proof

Lemma 1 (Packing Lemma). ∀s, t ∈ Z+ ∃ a graph Ps,t on O(st1/2+o(1))vertices such that:

1. The graph Ps,t partitions into t cliques on s vertices each.

2. Ps,t contains no other cliques of size s.

Through the packing lemma we are trying to pack many cliques into a graph with relatively
few vertices, this is intended to give a tight result up to the lower bound of k2−ε. Item 1 is satisfied
because the t cliques use distinct edges and it is not necessary to use any more edges than those in
the cliques so the graph can actually be partitioned into these t cliques. We will call these cliques
K1
s ,K

2
s , ...,K

t
s with the subscript s denoting the size of the cliques into which the edges partition.

This construction satisfies item 2 because a clique of size s cannot be formed by combining the
edges of 2 or more cliques, only by picking exactly one of the Ki

s.
To construct this graph we will construct an s-partite graph, namely there will be s partitions of

the graph and none of the partitions will contain internal edges, edges will only go between distinct
partitions. This is done by creating columns 1, 2, ..., s. The rows of vertices will be numbered
1, 2, ..., p. Each of the s columns will contain p vertices. Edges do not connect vertices within a
column, only across distinct columns.

A possible construction of this graph is to pick p = t and use each row to embed a particular
clique, i.e. embed K1

s in row 1 and so forth. This corresponds to the disjoint union construction
mentioned in the previous lecture. In this construction the number of vertices = s · t and is larger
than stated in our Packing Lemma.

1

A better construction is necessary. When thinking about embedding a particular clique it means
that in each of these columns we will select exactly one vertex. We can think of this as a function
f which embeds the click by taking the column of the clique and map it to an element in 1, ..., p.

fi : {1, 2, ..., s} 7→ {1, 2, ..., p} or, more succinctly, fi : [s] 7→ [p]

For example, with our disjoint union construction fi(x) = i. In other words, for each column we
pick the same row for a given Ki

s. This will use p of the total p2 edges, specifically the ones that
travel straight within a row.

But there are p2 possible edges and this allows for room to improve. The goal is to construct the
graph with fewer vertices. This can be done by using more of the possible edges, ensuring it is done
in a consistent and coherent way. An example of how to do this is as follows. We will think about p
as a prime, this permits arithmetic within the range because Z/pZ is a field. We will use the range
1, ..., p for consistency but this can also be thought of as 0, ..., p− 1. If the number of cliques in our
problem is not a prime, p can be extended to a prime because for x < t < 2x there exists a prime
between and it will not affect the order of the function. Next, we will think about the construction
of the graph as a linear function over the field Z/pZ, namely the function fi(x) = aix + bi. For
every Ki

s we will associate a pair (ai, bi)|ai, bi ∈ {1, ..., p}. There are p2 different possible pairs.
If we select different pairs for every distinct clique then we realize item one of our lemma. This
is because if we choose vertices x and y we have now chosen 2 points defining a line and there is
exactly one particular choice for ai, bi which satisfies fi for that line. This can also be thought of as
solving a system of linear equations in 2 unknowns, this system is regular because we are looking
at different x’s.

There are p2 distinct choices for (ai, bi), as we need to embed t cliques we want p2 = t so
p = O(t1/2). There are s columns so the number of vertices is s · t1/2. Our claim was that the
number of vertices is s · t1/2+o(1), this implies that our current construction is incorrect. This is
because constraint 2 of our lemma has been violated. With our current construction we do not
have only t cliques but rather every possible clique in the s-partite graph exists. In order to correct
this we must analyze how additional cliques have been created. Namely, lets consider a clique, Ks,
which does not fall entirely into one of Ki

s, Ks 6= Ki
s (∀i ∈ [t]).

j+1

j j+2

a1x+ b1a0x+ b0

a2x+ b2

Figure 1: Nodes in Ks cols j, j1, j2

There must exist 3 consecutive columns {j, j + 1, j + 2} such that in each column we pick a
particular vertex belonging to Ks and each of the edges connecting those vertices belongs to one
of the cliques which we put into the graph, specifically a0x+ b0, a2x+ b1, a2x+ b2 denoted by the
function. Moreover, these pairs (a0, b0), (a1, b1), (a2, b2) are not all the same, if they were then there

2

would be some index by which the vertices could be shifted and be in a Ki
s and if we repeated this

then all edges of Ks would be in the corresponding clique which we put into the graph, but our
assumption is that it isn’t so that means there have to be 3 consecutive columns where this pattern
happens which means these 3 edges do not all belong to the same clique.

Traversing this subgraph from point to point there are 2 ways to go from column j to column
j + 2. The direct way and the indirect way through j + 1. How does the y value change? When
moving from j to j + 1 it changes by a0. When going from j + 1 to j + 2 it changes by a1. And
when going from j directly to j + 2 it changes by 2a2. From these we see ao + a1 = 2a2. This is
the same thing as saying (a0, a2, a1) form an arithmetic sequence of length 3 and, moreover, it is a
nontrivial arithmetic sequence because they’re not all the same. They’re not all the same because
if a0 = a1 = a2 we have stated we are no longer looking at our disjoint union construction of cliques
entirely on one line. Our goal at this point is to remove all instances of this, in order to do so we
will restrict ai to come from a subset A ⊆ Z/pZ such that A is AP3-free. An AP3-free set does
not contain any nontrivial arithmetic progressions of length 3, trivial progressions can never be
excluded. We will leave bi unrestricted.

Is this construction too constrictive? Do there remain enough integers to prevent making p too
large? A mathematical finding from 1946 [1] proves this is the case. Behrend’s Construction of sets
of integers shows that ∃A s.t.|A| = p1−o(1). This gives p1−o(1) possible values for ai and p values for

bi and therefore #(ai, bi) = p2−o(1) = t and p =
√
t
1+o(1)

which is an improvement over our previous
construction and results in a number of vertices = s · p1/2+o(1) �

1.2 Behrend’s Construction

An interesting construction gives us the required density in our AP3-free set. The full proof will not
be given, but rather a general overview. The required density is arrived at by geometric construction
in high dimensional space. We will look at all integer points (quotient points) in higher dimensions
where all coefficients are integers within some small range, specifically Zdq . The idea is that for each
of these points their distance from the origin can only take on a relatively small number of values,
{x|x = q2 · d} ⇒ x ∈ (0, q2 · d). This means that each of these points will fall onto shells of certain
radii. There will be at least one shell which contains a large number of these points and there are a
relatively small number of distinct shells. The unique feature of these points which applies is that
for any two points on a shell their midpoint will not fall on the shell. Thought of as vectors the
points on a given shell form a set which does not contain an arithmetic progression of length 3.
To then convert these vectors into the numbers required for our packing lemma one can consider
the components of the vectors as elements in the expansion of a number which will define a linear
mapping from these vectors to the integers up to a certain range and linear mappings preserve these
relations. The end result is a large subset of integers in Z/pZ which is AP3-free. It is necessary to
pick p, d, q optimally to make a large number of points, but an optimal choice will give the required
|A|.

1.3 Communication Game

In the last lecture we stated that if we have a language L such that OR(L) has this compression
then L ∈NP/poly. It is possible to generalize this result to the following exercise. We are going to
think of a communication game between 2 players, Alice and Bob, with and underlying language
L. It is an asymmetric game in which Alice is given the input x and Bob does not know anything

3

about the input. Alice is restricted to running in P and Bob is unrestricted. The goal is for them
to communicate and for Alice to know if x ∈ L. One trivial way to do this if for Alice to just send x
to Bob. Regardless of the complexity of the language L, Bob, because he is unrestricted, figures it
out and sends one bit back to Alice and then Alice knows. This is trivial, but the game is modified
so that the cost of the protocol is the number of bits that are sent from Alice to Bob. In the trivial
case x ∈ {0, 1}n the cost is |x|. For every language there exists a protocol of cost |x|.

For VC the trivial protocol involves sending the adjacency matrix. The size of the adjacency
matrix is O(n2) for a matrix with n edges and therefore the protocol cost is n2. With kernelization
we can improve on this cost by performing a mapping reduction from the problem onto itself,
thereby reducing the size of the problem. This kernelization gives a cost of at most n2−ε because
the problem has k2−ε edges which can be written using k2−εlogn bits. This is sent to Bob, Bob
calculates the answer and sends it back to Alice. This is not possible unless the Polynomial Time
Hierarchy collapses. In fact a protocol of cost O(n2−ε) is impossible unless coNP ⊆ NP/ poly.

Exercise 1. Prove that Vertex Cover does not have protocol of cost n2−ε (ε > 0, n = #vertices)
unless coNP ⊆ NP/ poly.

There are other ways in which protocols can be established. There can be more interaction
between Alice and Bob. It is possible that Alice takes the lead by taking x and does some com-
pression, asks a question of Bob and Bob responds. Our packing lemma proof generalizes to this.
The result of this exercise is that languages L, such that NP≤pm L, have to contain 2n

o(1)
strings of

length n unless coNP ⊆ NP/poly. This is a statement about the density of NP complete languages.
If we look at all strings of length n, there are 2n of them. This statement says that a fairly large
number of them have to be in NP complete, namely 2n

o(1)
. For a language that is NP complete

that has density less than this use this to construct a protocol for VC of cost less than n2−ε and
that would imply the collapse. To construct this protocol Bob will play an active role and try
to figure out enough information about the input x such that he can decide if x ∈ L. This is a
relatively recent result. What was known for a longer time is that if you restrict the density to
be polynomial, namely languages that only contain a polynomial number of strings of length n, or
very sparse languages, they cannot be NP complete unless P=NP. And then there would actually
be an equivalence as all but two of the languages are NP complete.

Exercise 2. Consider any language L of subexponential density, i.e., such that

(∀ε > 0) (∃N ∈ N) (∀n ≥ N) |L ∩ {0, 1}n| ≤ 2n
ε
.

Show that L cannot be NP-hard under ≤pm unless coNP ⊆ NP/ poly.

2 Parallelism

Parallelism means we can have multiple processors that work together to solve the same problem.
In practice, multiple processors refers to some constant number of processors. But in complexity
theory, if we only have a constant number of processors, the best speedup over a standard processor
is a constant one. Hence, parallelism hereafter indicates multiple processors working together whose
number is allowed to grow with input size. Although the divergence from reality may be criticized,
it still gives us several meaningful results.

4

Consider the standard model of computation, Turing Machines, it means that we look at a
growing number of Turing Machines instead of a fixed number, which induces two issues. The first
one is about uniformity. Uniformity is hard to define due to the additional program needed to gen-
erate the increasing number of Turing Machines. The other one is that the communication between
different Turing Machines is hard to model. Particularly, how Turing Machines interact with each
other is specific to the underlying architecture implemented, which contradicts our anticipation.

For these reasons, we discuss parallelism using circuits rather than Turing Machines. In circuits,
we consider gates as processors and layers as computation steps. Then we have a family of boolean
circuits, for each length n there exits circuits Cn modeling parallelism. The communication can
be specified as values conveyed between gates of different layers so the second issue is solved. As
to the issue of uniformity, we still need to confirm the complexity of the algorithm that the given
circuit is generated by input of length n. The standard uniformity is the logarithmic space one.

2.1 Concrete Model

With above factors, we usually focus on NC-Circuits to model parallel computation. The main
classes we are looking at is denoted as follows:

Definition 1 (NCk). For k ∈ N, NCk = {all languages decidable by families of circuits of size
poly(n) and O(logk(n)) depth}, where circuits have gates of conjunction, disjunction, or negation.
Uniform NCk is decidable by a family of uniform circuit where circuit for input of size n can be
computed in space O(log(n)).

2.2 Languages in Various NCk

To get a closer look at various NCk and get a feel for the NC hierarchy, we focus on several NCk

and see how efficiently some basic tasks can be accomplished in parallel.
The class NC0 contains, by definition, only those languages decidable by circuits with constant

depth and constant fan-in gates. This is equivalent to saying that these problems must be decidable
by checking only a constant number of bits of the input. So the high asymptotic level performance
of NC0 is quite restrictive. Even the problem of parity is not in NC0.

The class NC1 instead, can solve some nontrivial problems. Circuits deciding this kind of
language have logarithmic depth. We can easily prove that addition of binary number is in this
class. Iterated addition, which means addition of several numbers, is also in NC1. It can be
proved by using an operation realized within constant-depth circuits which outputs two numbers
with the same sum as three binary numbers input. By repeating this operation, we can reduce
the number of remaining numbers to add by 1/3 each several constant layers. Within logarithmic
number of layers, this problem can be reduced to binary addition which is in NC1. Obviously,
binary multiplication is also in NC1. Iterated multiplication is also known to be NC1 computable,
though the proof is more complex.

The class NC2 is decidable by circuits with O(log2(n)) depth and polynomial size. Polynomial
size is not emphasized in NC0 and NC1 as they are automatically in it with corresponding depth
limitation. NC2 is not since 2O(log2(n)) is O(nlog(n)), so we add a polynomial restriction on size.
Many linear algebra problems can be done with NC2. Matrix multiplication, solving systems of
linear systems are examples of them.

The class NC equals ∪k≥0NC
k. It refers to problem sets that are efficient to be computable

on parallel computer. Then a big open question is whether P ⊆ NC? The conjecture is no with

5

completeness for P under logarithmic space reduction and the closely related circuit evaluating
problem.

2.3 Complexity of NC

There is a close connection between parallel computing and space bounded computing.

Theorem 1. Uniform NC1 ⊆ L ⊆ Uniform NC2.

P roof. First, we show that Uniform NC1 ⊆ L. Suppose that a uniform family F of NC1-circuits
decides language A. Then, given an input x, we can simulate F in logarithmic space as follows:

1. Compute the circuit C appropriate for |x|. More precisely, compute each bit of the description
of C as it is needed. We do not have enough space to store the entire description of the circuit,
but we can compute each part as we need it in logarithmic space because F is uniform. We
only have to keep track of the path from the root to where we are, which is logarithmic
because F has logarithmic depth and bounded fan-in gates.

2. From the output node of C, compute the values of each gate in C recursively. Since the depth
of C is in O(log |x|), we can do this computation in logarithmic space.

3. If the output of C is 1, accept. Else, reject.

The proof of L ⊆ Uniform NC2 is similar to that of NSPACE(s) ⊆ DSPACE(s2).

1. We can look at the computation tableau and recursively guess the intermediate configuration
from a polynomially many number of possibilities. As accepting the language is equivalent
to existence of accepting configurations, we could write a formula like that there exists an
intermediate configuration, for each of the two blocks there exists next level of intermediate
configurations, so on so forth. The corresponding circuit can be generated in logarithmic
space.

2. As each level of the recursion reduces the number of configurations to 1/2, there exists
O(log |x|) quantifiers in the formula. When this formula is converted into a uniform circuit,
each quantifier generates another O(log |x|) depth circuit with binary input gates. Hence, the
language can be decided by a uniform circuit with polynomial size and O(log2 |x|) depth.

This theorem gives us a fairly tight connection between space bounded computation and log
depth circuits.

3 Next Time

Next lecture we will continue our coverage of parallelism by discussing different ways of thinking
about NC1 and strengthening the connection with space bounded computation. Specifically we will
characterize NC1 in terms of branching programs of polynomial size where the branching programs
have constant width. In this characterization we will show that the width of the branching program
can be brought down to 5 and this depends upon the fact that the symmetric group on 5 elements,
S5, is not solvable.

6

References

[1] Felix A. Behrend. On the sets of integers which contain no three in arithmetic progression. Proc.
Nat. Acad. Sci., 23:331–332, 1946.

7

	Kernelization
	Packing Lemma Proof
	Behrend's Construction
	Communication Game

	Parallelism
	Concrete Model
	Languages in Various NCk
	Complexity of NC

	Next Time

