
UW-Madison's
2009 ACM-ICPC Individual Placement Test

October 9th, 1:00-6:00pm, CS1350
 

Overview:
This test consists of seven problems, which will be referred to by the following names (respective of order):
causal,  rsp, dollar, arctic, strings, forest,  flatland.
 
Input/Output:
Your programs should take input from standard in (i.e.,  the keyboard) and output to standard out (i.e.,  the
terminal). As is standard practice for the ICPC, you may assume that the input strictly follows the
description in the problems. It is your responsibility to ensure that your output precisely matches that
described in the problems, or else risk your program being rejected with a “Presentation Error”.
 
Problem Submission:
Problem submission will be handled via the PC^2 judging software, as at the actual competition.
 
Clarifications:
Clarification requests will also be handled via the PC^2 software. Accepted clarification requests will be
answered to all those taking the test. Experience of previous years learns that most clarification requests are
rejected, and receive a simple response such as “Read the problem description”.
 
Printing:
You may print to the printer at any time during the test.
 
Written Solutions:
We encourage you to spend the last half hour of the test to write down the main idea behind the solution to
any of the problems for which you have not had a program accepted. Please be concise, using at most a few
sentences within the space provided on the opposite side of this page. We will take these partial solutions into
account along with your official ranking when composing teams, although they will have less weight.
 
After the Test:
The proctor will announce when time is up. Please stop working at this time and take a moment to fill out the
form on the back of this sheet and turn it in to the poctor (you may keep the problems). You are invited to
join us for pizza and soda after the test in 1325 CS.
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Information:
 

Name: ______________
 
CS Login:____________
 
PC^2 Login/Pass: __________ / __________
 
Student Status (e.g Junior, 1st-year grad):____________
 
Year of birth:________, Year starting college:___________
 
How many ICPC regionals have you participated in?____ How many world finals?___
 
Which of C/C++/Java do you prefer:____ Please indicate your proficiency in each:
 
 
 
Which classes have you taken (or are taking) whichare relevent to the ICPC?
 
 
What do you feel your strengths are with respect to the ICPC?
Are you able to travel to the world finals in Sharm-el-Sheikh, Egypt, February 27 – March
4, 2011 (and obtain a visa / passport as necessary)?
 
 
If your team progresses to the world finals, how many hours per week could you commit to
practicing, starting mid-November? ____
 
Are there people you would prefer to be (or not be) on the same team as?
 
 
Is there anything else we should know about you?
 
 
 
 



 
 

Written solutions for unsolved problems:
causal:
 
 
 
 
rsp:
 
 
 
 
dollar:
 
 
 
 
arctic:
 
 
 
 
strings:
 
 
 
 
forest:
 
 
 
 
flatland:



Problem B: Advanced Causal Measurements
(ACM)

Causality is a very important concept in theoretical physics. The basic elements in
a discussion of causality are events. An event e is described by its time of
occurrence t, and its location, x, and we write e = (t,x). For our concerns, all
events happen in the one dimensional geometric space and thus locations are
given by a single real number x as a coordinate on x-axis. Usually, theoretical
physicists like to define the speed of light to be 1, so that time and space have
the same units (actual physical units frighten and confuse theorists).

One event e1 = (t1,x1) is a possible cause for a second event e2 = (t2,x2) if a

signal emitted at e1 could arrive at e2. Signals can't travel faster than the speed

of light, so this condition can be stated as:

e1 is a possible cause for e2 iff t2 >= t1+|x2-x1|

Thus an event at (-1,1) could cause events at (0,0), (1,2), and (1,3), for example,
but could not have caused events at (1,4) or (-2,1). Note that one event can
cause several others.

Recently, scientists have observed
several unusual events in the
geometrically one dimensional
universe, and using current
theories, they know how many
causes were responsible for
these observations, but they know
nothing about the time and space
coordinates of the causes. You
asked to write a program to
determine the latest time at which
the earliest cause could have
occurred (i.e. the time such that at
least one cause must have
occurred on or before this time). Somewhat surprisingly, all the observed events
have both space and time coordinates expressed by integer numbers in the
range -1000000 ≤ t, x ≤ 1000000.

The figure on the right illustrates the first case from input: the earliest single
event as a possible cause of all four events.

The first line of input is the number of cases which follow. Each case begins with



a line containing the number n of events and the number m of causes,
1 ≤ n, m ≤ 100000. Next follows n lines containing the t and x coordinates for
each event.

Output consists of a single line for each case in the format as in the sample
output, giving the latest time at which the earliest cause could have occurred, this
will be an integer as our time units are not divisible.

Sample Input

4
4 1
1 -1
1 3
1 4
2 6
4 2
1 -1
1 3
1 4
2 6
4 3
1 -1
1 3
1 4
2 6
4 4
1 -1
1 3
1 4
2 6

Output for Sample Input

Case 1: -2
Case 2: 0
Case 3: 0
Case 4: 1

Daniel Robbins



Rock, Scissors, Paper

Bart's sister Lisa has created a new civilization on a two-dimensional 

grid. At the outset each grid location may be occupied by one of three

life forms: Rocks, Scissors, or Papers. Each day, differing life forms

occupying horizontally or vertically adjacent grid locations wage war.

In each war, Rocks always defeat Scissors, Scissors always defeat 

Papers, and Papers always defeat Rocks. At the end of the day, the

victor expands its territory to include the loser's grid position. The loser

vacates the position.

Your job is to determine the territory occupied by each life form after n

days. The first line of input contains t, the number of test cases. Each

test case begins with three integers not greater than 100: r and c, the 

number of rows and columns in the grid, and n. The grid is represented

by the r lines that follow, each with c characters. Each character in the

grid is R, S, or P, indicating that it is occupied by Rocks, Scissors, or

Papers respectively.

For each test case, print the grid as it appears at the end of the nth day. Leave an empty line between the

output for successive test cases.

Sample Input

2

3 3 1

RRR

RSR

RRR

3 4 2

RSPR

SPRS

PRSP

Output for Sample Input

RRR

RRR

RRR

RRRS

RRSP

RSPR



November 13, 2004 ACM North Central North America Regional Programming Contest Problem 1 

Problem 1: Breaking a Dollar 
Using only the U. S. coins worth 1, 5, 10, 25, 50, and 100 cents, there are exactly 293 ways in which 
one U. S. dollar can be represented. Canada has no coin with a value of 50 cents, so there are only 
243 ways in which one Canadian dollar can be represented. Suppose you are given a new set of 
denominations for the coins (each of which we will assume represents some integral number of 
cents less than or equal to 100, but greater than 0). In how many ways could 100 cents be 
represented? 

Input 
The input will contain multiple cases. The input for each case will begin with an integer N (at least 1, 
but no more than 10) that indicates the number of unique coin denominations. By unique it is meant 
that there will not be two (or more) different coins with the same value. The value of N will be 
followed by N integers giving the denominations of the coins. 

Input for the last case will be followed by a single integer –1. 

Output 
For each case, display the case number (they start with 1 and increase sequentially) and the number 
of different combinations of those coins that total 100 cents. Separate the output for consecutive 
cases with a blank line. 

Sample Input Output for the Sample Input 
6 1 5 10 25 50 100 
5 1 5 10 25 100 
-1 

Case 1: 293 combinations of coins 
 
Case 2: 243 combinations of coins 

 

November 13, 2004 ACM North Central North America Regional Programming Contest Problem 1 



Problem C: Arctic
Network

The Department of National
Defence (DND) wishes to connect
several northern outposts by a
wireless network. Two different
communication technologies are to
be used in establishing the network:
every outpost will have a radio
transceiver and some outposts will
in addition have a satellite channel.

Any two outposts with a satellite
channel can communicate via the
satellite, regardless of their location.
Otherwise, two outposts can
communicate by radio only if the
distance between them does not
exceed D, which depends of the
power of the transceivers. Higher
power yields higher D but costs
more. Due to purchasing and
maintenance considerations, the
transceivers at the outposts must be identical; that is, the value of D is the same
for every pair of outposts.

Your job is to determine the minimum D required for the transceivers. There
must be at least one communication path (direct or indirect) between every pair
of outposts.

The first line of input contains N, the number of test cases. The first line of each
test case contains 1 <= S <= 100, the number of satellite channels, and S < P
<= 500, the number of outposts. P lines follow, giving the (x,y) coordinates of
each outpost in km (coordinates are integers between 0 and 10,000). For each
case, output should consist of a single line giving the minimum D required to
connect the network. Output should be specified to 2 decimal points.

Sample Input

1
2 4
0 100



0 300
0 600
150 750

Sample Output

212.13



November 9, 2002 ACM North Central North America Regional Programming Contest Problem 8 

November 9, 2002 ACM North Central North America Regional Programming Contest Problem 8 

Problem 8: Acceptable Strings 
A deterministic finite automaton has a finite set of states, with directed edges leading from one state to 
another.  Each edge is labeled with a symbol.  In this problem, we are only concerned about automata (the 
plural of automaton) that use the binary digits 0 and 1 as symbols.  Each edge is thus labeled with 0 or 1.  
One state is identified as the start state, and one or more states are identified as final states. 

A finite automaton is usually represented by a graph.  For example, consider the finite automaton 
represented by the graph shown below; the states are shown as circles, and are named 1 and 2 for ease of 
identification.  In this automaton, state 1 is the start state, and state 2 is the final state. 

Each automaton in this problem accepts or rejects a string as follows.  
Beginning in the start state, for each symbol (0 or 1) in the input string 
(working from left to right in sequence), the automaton follows the one 
edge labeled with the input symbol from the current state to the next 
state.  After making the transition associated with the last symbol in the 
input string, if the automaton is in a final state, then the input is accepted.  
Otherwise (that is, if the automaton is not in a final state), the input is 

rejected. 

For the string 0101 and the automaton shown above, we start in state 1 (the start state).  Since the first 
input symbol is 0, the edge labeled 0 from state 1 back to state 1 is followed, leaving us in state 1.  The 
next input symbol, 1, causes a transition to state 2.  The next symbol, 0, moves us back to state 1.  The last 
input symbol, 1, causes the last transition, from state 1 to state 2.  Since state 2 is a final state, the 
automaton accepts the string 0101.  Note that the string 010 would have been rejected, since the 
automaton would have been in state 1 (which is not a final state) at the end of the input.  This automaton 
happens to accept all binary strings that end with 1. 

In this problem you will be given one or more automata and an integer N.  For each of these, you are to find 
the number of binary strings having each length less than or equal to N that are accepted by the 
automaton.  For example, for N = 3 with the automaton above, the output would specify 0 strings of length 
0 (since state 1 is not a final state), 1 string of length 1 (1), 2 strings of length 2 (01 and 11), and 4 strings 
of length 3 (001, 011, 101, and 111). 

Input 

There will be multiple input cases.  For each case the input begins with three integers N, S, and F.  N (no 
larger than 10) specifies the maximum length of the strings that are sought.  S (no larger than 100) 
specifies the number of states in the automaton.  F (no larger than 10) specifies the number of final states.  
Following these three integers are S pairs of integers.  Each pair specifies the labels on the edges from 
the states, in order, starting with state 1.  The first integer in each pair specifies the state to which the 
edge labeled 0 connects; the second integer specifies the state to which the edge labeled 1 connects.  
Finally, the last F integers identify the final states.  State 1 will always be the start state.  The input for 
the last case is followed by three zeroes. 

Output 

For each case, display the case number (they are numbered sequentially, and start with 1).  Then display the 
number of strings of each length (from 0 to N) accepted by the automaton, using a separate line for each 
length.  The output must be identical in format to that shown in the examples below.

0 
1 2

1 
0 1 



November 9, 2002 ACM North Central North America Regional Programming Contest Problem 8 

November 9, 2002 ACM North Central North America Regional Programming Contest Problem 8 

 

Sample Input 
3 2 1 
1 1 
1 1 
2 
 
3 2 1 
1 2 
1 2 
2 
 
10 7 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
7 7 
6 
 
0 0 0 

Expected Output 
Case 1: 
    Length = 0, 0 strings accepted. 
    Length = 1, 0 strings accepted. 
    Length = 2, 0 strings accepted. 
    Length = 3, 0 strings accepted. 
Case 2: 
    Length = 0, 0 strings accepted. 
    Length = 1, 1 string accepted. 
    Length = 2, 2 strings accepted. 
    Length = 3, 4 strings accepted. 
Case 3: 
    Length = 0, 0 strings accepted. 
    Length = 1, 0 strings accepted. 
    Length = 2, 0 strings accepted. 
    Length = 3, 0 strings accepted. 
    Length = 4, 0 strings accepted. 
    Length = 5, 32 strings accepted. 
    Length = 6, 0 strings accepted. 
    Length = 7, 0 strings accepted. 
    Length = 8, 0 strings accepted. 
    Length = 9, 0 strings accepted. 
    Length = 10, 0 strings accepted. 
 



Problem C: A
Walk Through the
Forest

Jimmy experiences a lot of
stress at work these days,
especially since his accident
made working difficult. To
relax after a hard day, he likes
to walk home. To make things
even nicer, his office is on one
side of a forest, and his house
is on the other. A nice walk
through the forest, seeing the
birds and chipmunks is quite enjoyable.

The forest is beautiful, and Jimmy wants to take a different route everyday. He
also wants to get home before dark, so he always takes a path to make progress
towards his house. He considers taking a path from A to B to be progress if
there exists a route from B to his home that is shorter than any possible route
from A. Calculate how many different routes through the forest Jimmy might take.

Input

Input contains several test cases followed by a line containing 0. Jimmy has
numbered each intersection or joining of paths starting with 1. His office is
numbered 1, and his house is numbered 2. The first line of each test case gives
the number of intersections N, 1 < N ≤ 1000, and the number of paths M. The
following M lines each contain a pair of intersections a b and an integer distance
1 ≤ d ≤ 1000000 indicating a path of length d between intersection a and a
different intersection b. Jimmy may walk a path any direction he chooses. There is
at most one path between any pair of intersections.

Output

For each test case, output a single integer indicating the number of different
routes through the forest. You may assume that this number does not exceed
2147483647.

Sample Input



5 6
1 3 2
1 4 2
3 4 3
1 5 12
4 2 34
5 2 24
7 8
1 3 1
1 4 1
3 7 1
7 4 1
7 5 1
6 7 1
5 2 1
6 2 1
0

Output for Sample Input

2
4

(apologies to) Richard Krueger






