
UW-Madison ACM ICPC Individual Contest

October 5, 2014

Setup

Before the contest begins, log in to your workstation and set up and launch
the PC2 contest software using the following instructions. You will use this pro-
gram to submit problem solutions, receive the judges answers, and communicate
clarification requests.

1. Download the custom PC2 package into a directory of your choosing from
www.cs.wisc.edu/∼dieter/ICPC/13-14/pc2.tar.gz

2. In a terminal window, cd to the directory where you downloaded the
package and type tar -xzvf pc2.tar.gz

3. Type cd pc2 followed by the command bin/pc2team – this brings up your
PC2 terminal that will be your interface to the judges during the contest.

4. Log in using the login ID and password given to you by the judges when
you arrive. They will be of the form teamX where X is an integer, and
the password will be your UVa online judge username. If you have not
yet sent your username to the judges, you will not be given a login and
password by default – please see the judges to get one.

The Contest

Begin the contest by solving the problem on the next page “count”. This is
a warmup problem designed to get you used to submitting problems via PC2.
Code your solution to the problem and submit it as follows:

1. Click on the submit run tab in your PC2 window.

2. In the dropdown menu labeled “Problem”, choose “count”. Choose the
programming language you used from the “language” dropdown menu.
Then select your source code file by clicking the “select” button in the
main file section.

1

3. Submit your code by clicking “Submit” (note: clicking “Test” doesn’t
really do anything unless you’ve created your own test files, so don’t expect
it to automatically test your program against the sample input).

4. Wait – you will receive a judgment from the judge shortly by way of a pop-
up window. If your answer comes back something other than “accepted”,
try again

The remaining problems are known to PC2 as “Anadromes”, “Back on
Track”, “Twin Head Dragon”, “Divide the Galaxy”, “Reconstructing
the Grid”, and “String Painter” , respective of their order in this packet.
You can ignore any requirements stated in the problem for source name file,
e.g., “equilateral.cpp”: name your source files as you please. All input comes
from standard in, all output should be sent to standard out. You may use any
online Java or C++ documentation, but not any other resource. You may use
the printer at any time. Collaboration with others or searching the web for
solutions to these problems is prohibited. Please turn off your cell phones. You
may submit problem clarifications via the PC2 program at any time, but please
read the problems thoroughly before doing so.

After the contest, please fill out the questionnaire on the next
page, then join us in room 1325 for pizza and soda.

2

Information Form

Name:

CS Login:

Student status (e.g. Junior, first year grad student):

Year of birth: Year starting college:

Which of C/C++/Java do you prefer? Please indicate your proficiency in
each language:

What classes have you taken (or are you taking) which are relevant to the
ICPC?

What do you feel are your strengths with respect to the ICPC?

Are you able to attend the world finals in Marrakech, Morocco, May 16-21,
2015 (and obtain a Visa and/or passport as necessary)?

Will you be in residence at UW-Madison in the Spring 2015 semester?

How many ICPC regionals have you participated in? How many ICPC
world finals?

If your team progresses to the world finals, how many hours per week could
you commit to practicing?

Is there anything else we should know about you?

3

Warmup Problem: Count

Can you count from one up to any number N? Write a program to prove it!

Input

The input begins with a single number that describes the number of test cases.
Each test case follows on its own line, and consists of a single positive integer
N ≤ 1, 000, 000 that describes how high you should count for that test case.

Output

The output for each test case should be on its own line, and consist of the
numbers 1 through N (inclusive), each separated by a space.

Sample Input

3
3
5
10

Sample Output

1 2 3
1 2 3
1 2 3 4 5
1 2 3 4 5 6 7 8 9 10

4

The following pages contain 6 lettered problems. Please let me know if you
do not see all 6.

5

A: Anadromes

A palindrome is a word that is spelt the same backwards or forwards. Examples
are “level” and “madam”. An anagram is a word made from another word just
by rearranging the characters, like “made” to “dame”. For this problem ana-
grams and palindromes may not be valid English words. For example “daamm”
is an anagram of “madam” and “amdma” is also palindrome although it is not
an English word. “daamm” is also called a anadrome because it is the anagram
of a palindrome. Any palindrome is also an anadrome but the vice versa is not
always true. Some other examples of anadromes are “aabbcc”, “aaaaa” etc.
Given a string you will have to print the string that needs to be appended with
it to make it an anadrome.

Input

The input file contains at most 6000 test cases. The description of each test
case is given below. Each case consists of a single string S of length L(1 ≤ L ≤
500). This string contains only lowercase English letters (‘a’ to ‘z’). Input is
terminated by a line containing a single hash (‘#’) character. This line need
not be processed.

Output

For each line of input produce one line of output. The line contains the string
that needs to be appended to the given string to make it an anadrome (Can be
an empty string as well). If there is more than one solution, output the shortest
one; if there is still a tie output the lexicographically smallest one.

Sample Input

ddc
aaab
#

Sample Output

a

6

B: Back on Track

The road system of a country connects all N cities so that it is possible to
travel between any pair of cities using existing roads. Each road connects two
different cities, is two-way and one has exactly one toll booth (a toll is paid for
both directions of traffic). Roads intersect only in a city and no pair of cities is
interconnected by two or more roads.

Dias Tranport offers a one-day parcel delivery service between cities. Each
parcel must be transported from a city A to another city B. The management
of Dias Transport defines, for each parcel, a service route, consisting of C cities
and C − 1 roads: the first city on the service route is the origin of the parcel,
the final city is the destination of the parcel. The service route never passes
twice through the same city, and the vehicle chosen to deliver a parcel can only
travel by the service route defined.

One day, however, a vehicle broke down and was taken for repairs in a city
that was not among the cities in its service route. The management of Dias
Transport wants to know which is the lowest total cost, in terms of tolls, for
delivering the parcel (that is, to take the vehicle from the city it was repaired
to the destination city), but with an additional constraint: if at some point the
vehicle reaches one of the cities that make up its service route, it should go back
to following its service route.

Input

The input contains several test cases. The first line of a test case contais four
integers N , M , C, and K (4 ≤ N ≤ 250, 3 ≤ M ≤ N · (N − 1)/2, 2 ≤ C ≤
N − 1, C ≤ K ≤ N − 1), representing, respectively, the number of cities, the
number of roads, the number of cities in the service route and the city where
the vehicle was taken for repair. The cities are identified by integers from 0 to
N − 1. The service route is 0, 1, . . . , C − 1, that is, the origin is 0, from 0 goes
to 1, from 1 to 2 and so on, until the destination C − 1. The next M lines
describe the road system. Each of those lines describes one road and contains
three integers U , V and P (0 ≤ U, V ≤ N − 1, U 6= V, 0 ≤ P ≤ 250), indicating
that there exists a road connecting cities U and V with a toll of cost P .

The last test case is followed by a line containing four zeros separated by
blank spaces.

Output

For each test case, your program should print a single line, containing a single
integer, the minimum total toll cost for the vehicle to reach the destination city.

Sample Input

4 6 3 3

0 1 10

7

1 2 10

0 2 1

3 0 1

3 1 10

3 2 10

6 7 2 5

5 2 1

2 1 10

1 0 1

3 0 2

3 4 2

3 5 3

5 4 2

5 5 2 4

0 1 1

1 2 2

2 3 3

3 4 4

4 0 5

0 0 0 0

Sample Output

10

6

6

8

C: The Twin Head Dragon

The Scourge are marching South-West with the biggest army ever seen, and
they’re marching fast. All the Sentinel towers are in ruins. There’s chaos all
over their base. Whatever they have to do, they have to do it by tonight or
they will be terminated from the face of the earth tomorrow. A secret meeting
is being conducted by Zeus, the lord of Olympus and the father of gods. “The
end is near.” dreads Sven. “Careful child. Sentinel will not be doomed before
my eyes.” says Zeus. “Send Riki to explore the enemy camps. Then we can
come up with a plan.”

Riki comes with the information that there are N enemy camps and M bi-
directional roads, each road connecting two camps. The lengths of the roads are
different. Riki also found that there exists a path between any pair of camps.
“That’s enough information!” says Zeus with excitement, “We have to burn
down all the roads, so the enemies will be isolated from each other. Then we
will strike. Summon Jakiro, he’ll know what to do.” Jakiro, the Twin Head
Dragon is summoned. He will use his ultimate spell, Macropyre to burn all the
roads down. To do this he will follow these steps:

1. Select 2 different camps such that the shortest path between them doesn’t
include any burned road.

2. Prepare the spell with required mana. The mana cost for this spell is
equal to the sum of the lengths of roads in the path.

3. Burn all roads in the selected path.

He will keep burning this way until all shortest paths include roads are
burning. It is important that he uses minimum total mana for this task, as he
needs mana for the battle afterwards. Now write a program to calculate the
least mana required by Jakiro to burn all the roads down. Remember, you don’t
need to minimize the number times the spell is used.

Input

The input will contain multiple test cases and number of test cases ≤ 50. Each
case starts with an integer N(2 ≤ N ≤ 15) denoting the number of enemy camps
and an integer M(N − 1 ≤ M ≤ N · (N − 1)/2) denoting the number of roads
connecting camps. The camps are numbered from 0 to N − 1. Each of the next
M lines contain three integers A,B,C : (0 ≤ A,B < N,A 6= B, 1 ≤ C ≤ 10000)
denoting that camp A and B are connected by a road whose length is C units.
You may assume that all pairs of A and B are unique.

The input terminates with values of 0 for N and M .

Output

For each case, print on a line the least total mana required by Jakiro.

9

Sample Input

4 5

0 2 1

1 2 2

2 3 3

3 1 4

0 1 5

6 5

0 1 10000

0 2 10000

0 3 1

0 4 1

0 5 10000

0 0

Sample Output

10

30002

10

D: Divide the Galaxy

The Galactic Confederation is planning an administrative reform, to better man-
age its resources. For that, the Confederation divided the whole space into
regions. To define the regions, initially a set of planes was specified, and the
regions were defined by the cuts these planes made in the space. Notice that
some regions are unlimited, but there may be limited regions. The set of planes
was chosen so that no plane intercepts the orbit of a planet, and therefore each
planet moves within only one region during its orbit (that is, a planet inside a
region will never cross a plane to another region). Your task is to determine,
given the equations of the planes and the positions of the planets, how many
planets exist within the region with the largest number of planets (in other
words, what is the maximum number of planets inside any region).

Input

The input contains several test cases. The first line of a test case contains two
integers M(1 ≤ M ≤ 500) and N(1 ≤ N ≤ 10000), indicating respectively
the number of planes and the number of planets. Each of the M following
lines contains four integers A,B,C and D(−10000 ≤ A,B,C,D ≤ 10000), the
coefficients and the free term of the equation Ax + By + Cz = D which defines
each plane. Each of the following N lines contains three integers X,Y and
Z(−10000 ≤ X,Y, Z ≤ 10000), representing the position (X,Y, Z) of a planet.

Output

For each test case in the input your program must produce a single line con-
taining a single integer, the number of planets in the region which contains the
largest number of planets.

Sample Input

2 5

1 0 0 1

2 0 0 8

0 1 0

2 2 2

3 3 3

5 5 5

2 18 4

4 8

0 0 1 1

1 0 1 2

-1 1 1 3

-1 -1 1 3

0 0 5

11

0 0 4

0 0 -2

1 0 5

40 19 104

13 26 84

89 -45 18

3 1 0

Sample Output

3

5

12

E: Reconstructing the Grid

Fox Shial loves to collect grids of numbers. One of his favorite grids had been
stolen recently. It had R rows and C columns and the grid had every integers
in the range 1 to R ∗ C exactly once in some arbitrary order. For each integer
n in the range 1 to R ∗ C (inclusive), Fox Shial remembers the numbers that
were adjacent to n in the stolen grid. A cell (x; y) is adjacent to at most four
other cells (x− 1; y), (x + 1; y), (x; y − 1), (x; y + 1). Your task is to reconstruct
the grid for Shial. If there are multiple possible grids, find the one that is
lexicographically smallest. A grid G1 is lexicographically smaller than some
other grid G2 if the following condition holds true: If we traverse both of the
grids in the row major order and if (x; y) is the first cell where the G1[x][y] 6=
G2[x][y], then G1[x][y] < G2[x][y]. (Here, (x; y) denotes the cell at row x and
column y). Note: Any cell (x1; y1) comes before (x2; y2) in a row major order,
if and only if either (x1 < x2) or (x1 == x2 and y1 < y2) holds true.

Input

The first line contains an integer T denoting the number of test cases. Each test
case begins with a line containing 2 integers R and C where R is the number
of rows and C is the number of columns in the stolen grid. Each of the next
R ∗ C lines contains a list of numbers. The ith line starts with an integer ki
and then ki distinct space-separated integers follow. All these integers will be
in the range 1 to R ∗ C (inclusive). Here ki is the number of integers adjacent
to the number i in the stolen grid. The numbers following ki are all of those
adjacent integers in an arbitrary order. It is guaranteed that, if some integer u
is adjacent to some other integer v , then v is also adjacent to u. No integer is
adjacent to itself.

Constraints:
1 ≤ T ≤ 40
1 ≤ R,C ≤ 100
0 ≤ ki ≤ 4

Output

For the output of each input case, print the serial of the input on a single line
and then print the grid in the following format. Each row should be printed
on a different line. Every number of a row should be printed with exactly 1
space between the numbers. There should be no space at the end of a row. (See
the sample input output). If the given input is invalid (i.e. there is no grid
that satises the given adjacency information) print ‘NO SUCH GRID’ (without
quote).

Sample Input

2

13

2 2

2 3 4

2 3 4

2 1 2

2 1 2

1 3

2 2 3

2 1 3

2 1 2

Sample Output

Case 1:

1 3

4 2

Case 2:

NO SUCH GRID

14

F: String Painter

There are two strings A and B with equal length. Both strings are made up
of lower case letters. Now you have a powerful string painter. With the help
of the painter, you can change a segment of characters of a string to any other
character you want. That is, after using the painter, the segment is made up
of only one kind of character. Now your task is to change A to B using string
painter. What’s the minimum number of operations?

Input

Input contains multiple cases. Each case consists of two lines:

• The first line contains string A.

• The second line contains string B.

The length of both strings will not be greater than 100.

Output

A single line contains one integer representing the answer.

Sample Input

zzzzzfzzzzz

abcdefedcba

abababababab

cdcdcdcdcdcd

Sample Output

6

7

15

