
ACM Contest Problems Archive University of Valladolid (SPAIN)628 PasswordsHaving several accounts on several servers one has to remember many passwords. You can imagine asituation when someone forgets one of them. He/she remembers only that it consisted of words x, yand z as well as two digits: one at the very beginning and the other one at the end of the password.Your task is to write a program which will generate all possible password on the basis of givendictionary and set of rules. For the example given above the dictionary contains three words: x, y, z,and the rule is given as 0#0 what stands for <digit><word_from_the_dictionary><digit>.InputFirst line contains a number of words in the dictionary (n). The words themselves are given in nconsecutive lines. The next line contains number of rules (m). Similarly consecutive m lines containrules. Each rule consists of characters `#' and `0' given in arbitrary order. The character `#' stands forword from the dictionary whilst the character `0' stands for a digit.Input data may contain many sets of dictionaries with rules attached two them.OutputFor each set `dictionary + rules' you should output two hyphens followed by a linebreak and all matchingpasswords given in consecutive lines. Passwords should be sorted by rules what means that �rst allpasswords matching the �rst rule and all words must be given, followed by passwords matching thesecond rule and all words, etc. Within set of passwords matching a word and a rule an ascending digitorder must be preserved.Assumptions: A number of words in the dictionary is greater than 0 and smaller or equal to 100(0 < n � 100). Length of the word is greater than 0 and smaller than 256. A word may containcharacters `A'..`Z',`a'..`z',`0'..`9'.A number of rules is smaller that 1000, and a rule is shorter that 256characters. A character `0' may occur in the rule no more than 9 times, but it has to occur at leastonce. The character `#' is not mandatory meaning there can be so such characters in the rule.



ACM Contest Problems Archive University of Valladolid (SPAIN)Sample Input2root2super1#01admin1#0#Sample Output--root0root1root2root3root4root5root6root7root8root92super02super12super22super32super42super52super62super72super82super9--admin0adminadmin1adminadmin2adminadmin3adminadmin4adminadmin5adminadmin6adminadmin7adminadmin8adminadmin9admin



ACM Contest Problems Archive University of Valladolid (SPAIN)536 Tree RecoveryLittle Valentine liked playing with binary trees very much. Her favorite game was constructing randomlylooking binary trees with capital letters in the nodes.This is an example of one of her creations:D/ \/ \B E/ \ \/ \ \A C G//FTo record her trees for future generations, she wrote down two strings for each tree: a preordertraversal (root, left subtree, right subtree) and an inorder traversal (left subtree, root, right subtree).For the tree drawn above the preorder traversal is DBACEGF and the inorder traversal is ABCDEFG.She thought that such a pair of strings would give enough information to reconstruct the tree later(but she never tried it).Now, years later, looking again at the strings, she realized that reconstructing the trees was indeedpossible, but only because she never had used the same letter twice in the same tree.However, doing the reconstruction by hand, soon turned out to be tedious.So now she asks you to write a program that does the job for her!Input Speci�cationThe input �le will contain one or more test cases. Each test case consists of one line containing twostrings preord and inord, representing the preorder traversal and inorder traversal of a binary tree. Bothstrings consist of unique capital letters. (Thus they are not longer than 26 characters.)Input is terminated by end of �le.Output Speci�cationFor each test case, recover Valentine's binary tree and print one line containing the tree's postordertraversal (left subtree, right subtree, root).Sample InputDBACEGF ABCDEFGBCAD CBADSample OutputACBFGEDCDAB


