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Abstract. The Isolation Lemma of Valiant & Vazirani (1986) provides
an efficient procedure for isolating a satisfying assignment of a given
satisfiable circuit: Given a Boolean circuit C on n input variables, the
procedure outputs a new circuit C ′ on the same n input variables such
that (i) every satisfying assignment of C ′ also satisfies C, and (ii) if C
is satisfiable, then C ′ has exactly one satisfying assignment. In partic-
ular, if C is unsatisfiable, then (i) implies that C ′ is unsatisfiable. The
Valiant–Vazirani procedure is randomized, and when C is satisfiable it
produces a uniquely satisfiable circuit C ′ with probability Ω(1/n).
Is it possible to have an efficient deterministic witness-isolating proce-
dure? Or, at least, is it possible to improve the success probability of a
randomized procedure to a large constant? We prove that there exists
a non-uniform randomized polynomial-time witness-isolating procedure
with success probability bigger than 2/3 if and only if NP ⊆ P/poly. We
establish similar results for other variants of witness isolation, such as
reductions that remove all but an odd number of satisfying assignments
of a satisfiable circuit.
We also consider a blackbox setting of witness isolation that general-
izes the setting of the Valiant–Vazirani Isolation Lemma, and give an
upper bound of O(1/n) on the success probability for a natural class of
randomized witness-isolating procedures.
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1. Introduction

The Isolation Lemma of Valiant & Vazirani (1986) (as well as the
related Isolation Lemma of Mulmuley et al. (1987) and its refine-
ment by Chari et al. (1995)) is a basic tool with many important
applications in complexity theory; see, e.g., Toda (1991), Ben-
David et al. (1992), and Reinhardt & Allender (2000) for just a
few such applications. The lemma provides an efficient randomized
algorithm to “isolate” a single object from a collection of objects
satisfying a given efficiently decidable property. More precisely,
given a Boolean circuit C(x1, . . . , xn), the algorithm produces a
new Boolean circuit C ′(x1, . . . , xn) such that (i) every satisfying
assignment of C ′ also satisfies C with probability one (over the
internal randomness of the algorithm), and (ii) if C is satisfiable,
then, with probability Ω(1/n), C ′ has exactly one satisfying assign-
ment. Thus, in case C is satisfiable, the unique satisfying assign-
ment for C ′ is an “isolated” assignment from among the satisfying
assignments for C.

An obvious question is whether efficient deterministic isolation
is possible. That is, is there a deterministic polynomial-time algo-
rithm that maps an input circuit C(x1, . . . , xn) to an output circuit
C ′(x1, . . . , xn) such that (i) every satisfying assignment of C ′ also
satisfies C, and (ii) if C is satisfiable, then C ′ has exactly one satis-
fying assignment? Another natural question is whether the success
probability Ω(1/n) for randomized isolation can be improved to,
say, a large constant probability. The work of Hemaspaandra et al.
(1996) suggests a negative answer to the first question. We provide
stronger evidence that also applies to the second question: random-
ized isolation procedures with success probability larger than 2/3
are unlikely to exist.

1.1. Our results. If NP = P, then efficient deterministic isola-
tion is trivially possible: Given a circuit C, one can use the stan-
dard “search-to-decision” reduction to find in deterministic poly-
nomial time some satisfying assignment w for C, and then con-
struct a circuit C ′ so that C ′ accepts the single input w. Näıvely,
it seems impossible to produce, efficiently and deterministically,
a circuit C ′ with exactly one satisfying assignment that also sat-
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isfies C, without actually finding such an assignment efficiently
deterministically. In other words, näıvely it seems that efficient
deterministic isolation must be equivalent to NP = P.

We show that such an equivalence is actually true in the non-
uniform setting! We prove that if there is a non-uniform family of
polynomial-size circuits that achieve deterministic isolation (in the
sense defined above), then every language in NP can be decided by
a non-uniform family of polynomial-size circuits, i.e., NP ⊆ P/poly.
Since the standard “search-to-decision” reduction for NP can be
run also in the non-uniform setting, we immediately get the other
direction: if NP ⊆ P/poly, then non-uniform efficient deterministic
isolation is possible.

Given that deterministic isolation is unlikely, what can we say
about the existence of a better randomized isolation algorithm? A
natural question is whether one can obtain randomized isolation
with success probability better than Ω(1/n) achieved by Valiant
& Vazirani (1986). For example, can one obtain (large) constant
success probability?

We show that the answer is likely negative. In fact, we extend
the result for deterministic isolation and prove that if there is a
(non-uniform) randomized isolation algorithm with success prob-
ability greater than 2/3, then NP ⊆ P/poly (and, consequently,
the polynomial-time hierarchy collapses). We also consider more
restricted and more relaxed notions of witness isolation, such as
reductions that remove all but an odd number of satisfying assign-
ments of a satisfiable circuit. For each of these notions, we prove
that their existence implies some collapse of NP, namely NP = P,
NP ⊆ P/poly, NP = coNP, or NP ⊆ coNP/poly, and in most cases
the collapse is actually equivalent to the existence.

Finally, we consider a natural blackbox setting for isolation: A
blackbox isolation with success probability p is a randomized pro-
cedure that produces a predicate D on n variables x1, . . . , xn such
that, for any satisfiable circuit C on the variables x1, . . . , xn, the
probability that C(x1, . . . , xn) ∧D(x1, . . . , xn) has a unique satis-
fying assignment is at least p. Valiant & Vazirani (1986) construct
a blackbox isolation by letting the predicate D(x) be the intersec-
tion of a random number of random hyperplanes in GF(2)n, which
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gives success probability at least Ω(1/n). We give an asymptoti-
cally tight upper bound by proving that every blackbox isolation
has a success probability of at most O(1/n).

1.2. Our techniques. We now sketch the proof of one of our
main results – that efficient randomized isolation with success prob-
ability above 2/3 implies NP ⊆ P/poly. The proof consists of two
steps. Assuming the existence of such a witness-isolating proce-
dure, we show how to

[Step 1] efficiently reduce satisfiability to prUSAT, the promise
version of satisfiability on instances with at most one satis-
fying assignment, and

[Step 2] efficiently solve prUSAT.

Both steps run in P/poly, which results in a P/poly-algorithm for
satisfiability and thus for all languages in NP.

Deterministic setting. For reasons of exposition, we first con-
sider the simpler deterministic setting. Suppose there is a deter-
ministic P/poly-algorithm A that achieves isolation. That is, given
a circuit C(x1, . . . , xn), A outputs a circuit C ′(x1, . . . , xn) on the
same number of variables such that (i) every satisfying assignment
of C ′ also satisfies C, and (ii) if C is satisfiable, then C ′ has exactly
one satisfying assignment.

In this setting, Step 1 is trivial as A represents an efficient
mapping reduction from satisfiability to prUSAT. For Step 2, we
mimic an argument due to Ko (1983) and devise a P/poly-algorithm
for prUSAT. The two steps combined put satisfiability in P/poly.

Ko (1983) proved that if satisfiability has a “selector function”
computable in P/poly, then satisfiability is in P/poly. A selec-
tor for satisfiability is a function that takes two input circuits C1

and C2, and selects the one that is “more likely” to be satisfiable.
More precisely, the function always outputs one of its two inputs,
and if exactly one of the two inputs is satisfiable, then it outputs
that input. Such a function induces a binary relation R on the
set of all inputs, where R(C1, C2) holds if and only if the selector
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outputs C2 on input (C1, C2). The relation R has the following
“Ko”-properties:

(K1) If C1 is satisfiable and R(C1, C2), then C2 is satisfiable.

(K2) If C1 and C2 are satisfiable instances of the same length,
then R(C1, C2) or R(C2, C1).

(K3′) R can be decided in polynomial time with oracle access to
the selector.

Property (K2) actually holds in a stronger form, but the weaker
form is all we need in Ko’s argument to deduce that the directed
graph induced by R on the set of satisfiable instances of length `
has a dominating set D` of size polynomial in `. Combined with
property (K1), this gives us the following criterion for satisfiability
on inputs of length `:

(1.1) C ∈ SAT ⇔ (∃C∗ ∈ D`)R(C∗, C) .

By property (K3′), criterion (1.1) yields a polynomial-time algo-
rithm for satisfiability when given oracle access to the selector and
advice D`. Thus, we obtain a P/poly-algorithm for satisfiability if
satisfiability has a selector computable in P or in P/poly.

Now consider the setting where we have a deterministic iso-
lation algorithm A for circuits. If at least one of C1 or C2 is
satisfiable and the sets of satisfying assignments are disjoint, the
action of A on C

.
= C1 ∨ C2 or on C

.
= C2 ∨ C1 can be viewed

as that of a selector: It selects the unique Ci that has a sat-
isfying assignment in common with A(C). As a selector ought
to act on the unordered pair {C1, C2}, we actually apply A to
C

.
= min(C1, C2) ∨ max(C1, C2), where min(C1, C2) denotes the

lexicographically smaller of the two circuits C1 and C2, and sim-
ilarly max(C1, C2) denotes the lexicographically larger of the two
circuits.

In general, we can define a binary relation R with similar prop-
erties as above: R(C1, C2) holds if and only if

(a) C1 and C2 have a common satisfying assignment, or
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(b′) C1 and A(C) have no common satisfying assignment, where
C

.
= min(C1, C2) ∨max(C1, C2).

This relation R satisfies the properties (K1) and (K2). Since these
properties were all that was needed to arrive at criterion (1.1), the
criterion still holds. Property (K3′) may no longer hold, but we
can guarantee the following instead:

(K3) Whether R(C1, C2) holds can be decided in polynomial
time with oracle access to A if the set of satisfying assign-
ments of C1 is given as advice.

Thus, criterion (1.1) yields a polynomial-time algorithm for sat-
isfiability when given oracle access to A as well as the following
advice at input length `: for every C∗ ∈ D`, the circuit C∗ as well
as all its satisfying assignments. In general, the advice may be of
superpolynomial length because the circuits C∗ may have a super-
polynomial number of satisfying assignments. Since Step 1 allows
us to reduce the number of satisfying assignments to at most one,
we can restrict our attention to the set of all inputs with at most
one satisfying assignment. This way, the length of the advice be-
comes polynomially bounded, and we obtain a P/poly-algorithm
for prUSAT whenever A is computable in P or in P/poly.

Randomized setting. Suppose there is an efficient randomized
isolation algorithm A with success probability at least p. That is,
on input a circuit C(x1, . . . , xn), A outputs a circuit C ′(x1, . . . , xn)
such that (i) every satisfying assignment of C ′ also satisfies C, and
(ii) if C is satisfiable, then, with probability at least p, the cir-
cuit C ′ is a successful isolation of C, i.e., C ′ has a unique satisfying
assignment.

For Step 2, i.e., for efficiently solving prUSAT, we mimic the de-
terministic case but whenever we would run A once, we now run it
independently a polynomial number t times in order to get concen-
tration – except with exponentially small probability, the isolation
is successful a number of times that is close to the expected value,
which is at least p·t. Since the probability of deviating more is that
small, we can fix a single random string that produces at least p′ · t
successful runs of A, where p′ is somewhat smaller than p. This
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transformation is a special case of Adleman’s argument for de-
randomizing randomized computation by using polynomial advice:
We transform the randomized P/poly-algorithm A into a determin-
istic P/poly-algorithm B that takes a circuit C and outputs a list
of circuits C ′ such that (i) every satisfying assignment of C ′ also
satisfies C, and (ii) if C is satisfiable, then at least a fraction p′ of
the circuits C ′ in the list are successful isolations of C.1

We adapt the relation R from the deterministic setting by re-
placing the condition (b′) with the following:

(b) fewer than a fraction p′ of circuits C ′ on the list B(C) are
such that C ′ and C1 have a common satisfying assignment,
where C

.
= min(C1, C2) ∨max(C1, C2).

Thus we let R(C1, C2) hold if and only if (a) or (b) holds. This
modified relation R still has property (K1). The main reason is
that if C1 is satisfiable and (b) holds, then B(C) contains at least
one successful isolation C ′ that is not satisfied by any satisfying
assignment of C1 but is satisfiable, and therefore has to be satisfied
by a satisfying assignment of C2.

As for property (K2), suppose that C1 and C2 are satisfiable
but that neither R(C1, C2) nor R(C2, C1) holds. By (a), this means
that the sets of satisfying assignments of C1 and C2 are disjoint.
By (b) and inclusion-exclusion, at least a fraction 2p′ − 1 of the
circuits C ′ in B(C) is satisfied by a satisfying assignment of C1

as well as by a satisfying assignment of C2. Therefore, at least
a fraction 2p′ − 1 of the circuits C ′ have at least two satisfying
assignments. This contradicts the success rate p′ of B as long as
2p′−1 > 1−p′. Thus, (K2) is guaranteed to hold provided p′ > 2/3.

Property (K3) also holds for the new R. Since all three prop-
erties (K1), (K2), and (K3) hold whenever p′ > 2/3, and since we
can set p′ > 2/3 when p is a constant exceeding 2/3, Ko’s argument
gives us a P/poly-algorithm for prUSAT whenever p is a constant
larger than 2/3. This completes Step 2.

Step 1 is no longer trivial in the randomized setting but we can
appeal to an unconditional P/poly reduction that takes a circuit C

1It is not crucial to apply Adleman’s transformation at this stage of the
argument. We could alternately keep the randomness for now and only apply
Adleman’s argument at the very end.
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and outputs a list of circuits C ′ such that (i) if C is unsatisfiable
then every C ′ is also unsatisfiable, and (ii) if C is satisfiable then at
least one C ′ has a unique satisfying assignment. Such a reduction
follows by applying Adleman’s argument to the Valiant–Vazirani
isolation procedure. On input C, we cycle over all circuits C ′

on the list and apply the prUSAT-algorithm from Step 2 to each
C ′. We accept iff our prUSAT-algorithm accepts on at least one
circuit C ′. Note that for an unsatisfiable C, all circuits C ′ are also
unsatisfiable, and will be rejected by the prUSAT-algorithm. For a
satisfiable C, at least one of the circuits C ′ is uniquely satisfiable,
and hence will be accepted by the prUSAT-algorithm. Thus we
get a P/poly-algorithm for satisfiability.

1.3. Related work. Chari et al. (1995) consider the problem of
minimizing the number of random bits that are used in the isolation
lemma. They design an isolation lemma that improves upon the
procedure of Mulmuley et al. (1987), and they show that, in the
blackbox setting, their improved isolation lemma uses the least
possible number of random bits while still achieving non-negligible
success probability. Our blackbox result shows that it is impossible
to increase the success probability beyond O(1/n).

The problem of efficient deterministic isolation is related to
the problem of multi-valued vs. single-valued NP-computable func-
tions (Selman 1994), which received considerable attention in the
1990’s. In fact, it follows from the work of Hemaspaandra et al.
(1996) that efficient deterministic isolation yields a collapse of the
polynomial-time hierarchy. More precisely, their work implies that
the existence of a single-valued NP-machine that outputs a suc-
cessful isolation on all satisfiable inputs leads to the conclusion
that NP ⊆ (NP ∩ coNP)/poly, which in turn is known to imply
the collapse of the polynomial-time hierarchy to the second level.
In contrast, we prove that the existence of a P-computable iso-
lation procedure implies NP ⊆ P/poly. Both our hypothesis and
our conclusion are stronger, and, as observed above, our conclu-
sion is actually equivalent to the existence of efficient non-uniform
deterministic isolation.

The problem of efficient deterministic isolation as defined above
is different from the problem of derandomizing the Valiant–Vazi-
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rani Isolation Lemma as studied, e.g., by Klivans & van Melke-
beek (2002). In their setting, randomized isolation is defined via
the existence of an efficient randomized algorithm that maps an
input circuit C to a list of circuits C ′1, . . . , C

′
t such that (i) ev-

ery satisfying assignment of the C ′i also satisfies C, and (ii) if C
is satisfiable, then, with high probability, at least one of the C ′i
is uniquely satisfiable. This kind of randomized isolation follows
from the Valiant–Vazirani Isolation Lemma.

Derandomizing such isolation means designing an efficient de-
terministic algorithm that produces the list C ′1, . . . , C

′
t. One of the

results of Klivans & van Melkebeek (2002) is that this kind of de-
randomization is likely to exist since it follows from some plausible
circuit complexity assumptions. However, if we want to get a single
circuit C ′ that is uniquely satisfiable if C is satisfiable, no better
way is known other than to pick one of the circuits on the list at
random. But then we end up with a randomized isolation pro-
cedure with inverse-polynomial success probability. Thus, while it
may be possible to design an efficient deterministic algorithm map-
ping a given input circuit C to a list of circuits C ′1, . . . , C

′
t achieving

isolation in the sense of Klivans & van Melkebeek (2002), it is un-
likely that there is an efficient deterministic isolation mapping C
to a single circuit C ′. Also, by our results, it is unlikely that there
is a randomized “list-isolation” algorithm that maps a satisfiable
circuit C to a list of circuits where more than 2/3 of the circuits
on the list are uniquely satisfiable.

The question whether efficient deterministic isolation exists is
also related to the question whether NP = UP, that is, whether ev-
ery language in NP can be decided by an unambiguous polynomial-
time machine, which is an NP-machine that has at most one ac-
cepting computation path for every input. Clearly, if deterministic
polynomial-time isolation is possible, then NP = UP. However,
the converse is not known to be true; the assumption NP = UP is
only known to be equivalent to the existence of disambiguations,
that is, polynomial-time transformations that map circuits C to
circuits C ′ on a possibly different set of variable such that (i) if C
is unsatisfiable, then C ′ is unsatisfiable, and (ii) if C is satisfiable,
then C ′ has exactly one satisfying assignment. It remains an open
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question whether the existence of such a disambiguation yields any
unexpected consequences, e.g., whether it implies any collapse of
the polynomial-time hierarchy.

For some applications of the isolation lemma, such as Toda’s
theorem (Toda 1991), it suffices to efficiently reduce NP to ⊕P, i.e.,
to map circuits C to circuits C ′ such that C is satisfiable if and
only if C ′ has an odd number of satisfying assignments. A single
application of Valiant–Varizani’s isolation lemma gives a random-
ized reduction of this sort with success probability Ω(1/n); but
in this setting better results are known: Naik et al. (1995) achieve
success probability arbitrarily close to 1/2, and Gupta (1998) actu-
ally reaches 1/2. All of these reductions have the pruning property,
that is, all satisfying assignments of C ′ also satisfy C. For such re-
ductions, our results imply that the success probability cannot be
improved beyond 2/3 unless NP ⊆ P/poly.

In general, this pruning property need not hold, and the cir-
cuit C ′ can have more inputs than C. As observed in, e.g., (Naik
et al. 1995, first paragraph of section 3), this freedom allows us
to achieve success probability 1 − 1/ exp in the setting of ⊕P.
The key is the following operation, which efficiently transforms
a list C ′1, . . . , C

′
t of circuits into a single circuit C ′ such that C ′ has

an odd number of satisfying assignments if and only if some C ′i
has an odd number of satisfying assignments: (i) modify each cir-
cuit C ′i into a circuit C ′′i by adding a single new satisfying as-
signment; (ii) construct a circuit C ′′ whose number of satisfying
assignments is the product of those of the circuits C ′′i by defining
C ′′(x1, . . . , xt)

.
= ∧ti=1C

′′
i (xi), where each xi is of the input size for

C ′′i ; (iii) obtain C ′ by adding a single new satisfying assignment
to C ′′. Starting from the output C ′1, . . . , C

′
t of polynomially many

independent runs of any of the above pruning procedures, we obtain
a randomized reduction from NP to ⊕P with success probability
1−1/ exp. In a similar way, using Adleman’s argument, we obtain
a deterministic P/poly reduction from NP to ⊕P, and under the
circuit complexity assumption of Klivans & van Melkebeek (2002),
a deterministic polynomial-time reduction from NP to ⊕P.

1.4. Organization of the paper. Section 2 contains basic def-
initions and notation, the various notions of witness isolation we
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consider, and lemmas that capture Adleman’s argument and Ko’s
argument in a way that is useful to us. We prove our conditional
impossibility results for deterministic and randomized isolation in
Section 3, and categorize several variants based on which collapse
of NP they are equivalent to. In Section 4, we prove our uncon-
ditional impossibility result in the blackbox setting. We suggest
some directions for further research in Section 5.

2. Preliminaries

2.1. Basic definitions and notation.

Complexity classes. We use standard definitions and notation
for complexity classes such as P, NP, and P/poly (see, e.g., Arora
& Barak (2009)), which we view as classes of languages over the
alphabet {0, 1}, or as classes of Boolean functions on {0, 1}∗. By
a slight abuse of notation, we extend the notation P and P/poly
to not necessarily Boolean functions from {0, 1}∗ to {0, 1}∗. Thus,
a function f : {0, 1}∗ → {0, 1}∗ is called P-computable if it is
computable by some deterministic polynomial-time algorithm, and
f is called P/poly-computable if it is computable by a family of
polynomial-size circuits.

Boolean circuits. We let SAT denote the satisfiability problem
for deterministic Boolean circuits: Given a deterministic circuit
C(x1, . . . , xn) with n variables x1, . . . , xn, decide whether it has a
satisfying assignment, that is, a binary string w ∈ {0, 1}n with
C(w) = 1. If C has exactly one satisfying assignment, we say that
C is uniquely satisfiable.

A (co-)nondeterministic circuit C(x1, . . . , xn) is a deterministic
circuit D(x1, . . . , xn, y1, . . . , ym) with additional “(co-)nondetermi-
nistic” variables y1, . . . , ym. For nondeterministic circuits, an as-
signment w ∈ {0, 1}n to the x-variables satisfies C if and only if
there exists an assignment w′ ∈ {0, 1}m to the y-variables such
that D(w,w′) = 1. For co-nondeterministic circuits, w satisfies C
if and only if all assignments w′ ∈ {0, 1}m to the y-variables sat-
isfy D(w,w′) = 1. A (co-)nondeterministic circuit C is uniquely
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satisfiable if it has exactly one satisfying assignment w ∈ {0, 1}n.
Throughout this paper, we write n for the number of (determin-

istic) variables of a circuit and ` for the length of binary encodings.
We assume that the encoding of circuits is efficient so that, e.g.,
for circuits C1 and C2 of length ` each, the circuit C1 ∨ C2 can be
computed in polynomial time and is of length at most O(`).

Promise problems. A promise problem is a pair Π = (Yes,No)
of disjoint subsets Yes ∪̇ No ⊆ {0, 1}∗. For the promise problem
of unique satisfiability for deterministic Boolean circuits, prUSAT,
the set Yes is the set of all uniquely satisfiable deterministic cir-
cuits, and No is the set of all unsatisfiable deterministic circuits.

We say that an algorithm A decides Π if it accepts all x ∈ Yes,
rejects all x ∈ No, and behaves arbitrarily for all other inputs.
In terms of complexity classes, we write Π ∈ C if there exists a
language L ∈ C such that Yes ⊆ L and No ⊆ L, where L

.
=

{0, 1}∗ \ L denotes the complement of L.

2.2. Notions of isolation. We study isolation and several vari-
ations that are all motivated by the question whether NP coincides
with UP, unambiguous polynomial time. Because of this connec-
tion, we use the generic term “disambiguation” to refer to all vari-
ants.

UP = NP is equivalent to the existence of a polynomial-time
verifier V (C,w) for SAT such that each input circuit C has at
most one valid witness w with V (C,w) = 1. Since the computa-
tion of V (C, .) for each fixed C can be modeled as a polynomial-
size Boolean circuit C ′, the UP = NP question is equivalent to the
existence of a polynomial-time transformation of a deterministic
circuit C into a deterministic circuit C ′ such that (i) if C is unsat-
isfiable, then C ′ is unsatisfiable, and (ii) if C is satisfiable, then C ′

has exactly one satisfying assignment.
More generally, we define a disambiguation for a class C of

Boolean circuits as follows, where natural choices for C are Boolean
formulas and deterministic or nondeterministic Boolean circuits.

Definition 2.1. A disambiguation for a class C of Boolean cir-
cuits is a randomized algorithm that maps a given circuit C ∈ C



Is VV’s Isolation Probability Improvable? 13

to a circuit C ′ ∈ C such that:

Perfect Soundness: if C is unsatisfiable, then C ′ is also unsat-
isfiable (with probability one).

p-Completeness: If C is satisfiable, then with probability at
least p the circuit C ′ has a unique satisfying assignment.

Here p = p(`) ∈ [0, 1] is the success probability of the disambigua-
tion, and may depend on the input length `. We typically want an
efficient disambiguation; we consider disambiguations computable
in P or in P/poly2. We call a disambiguation deterministic if it
does not use any randomness and satisfies the above conditions
with p = 1. We call a disambiguation satisfiability-preserving if C ′

is satisfiable whenever C is satisfiable.
For general disambiguations, no specific relationship between

the satisfying assignments of C and the satisfying assignments of C ′

is required. In this paper we study notions of disambiguation that
additionally impose such restrictions. In decreasing order of restric-
tiveness we consider witness-isolating disambiguation, or isolation
for short, and witness-recoverable disambiguation. We now spec-
ify the respective additional conditions as strengthenings of the
requirements in Definition 2.1.

Isolation. An isolation is a disambiguation that maps circuits
C to circuits C ′ on the same set of variables as C, in such a way
that every satisfying assignment of C ′ also satisfies C, with proba-
bility one. Any particular output C ′ of an isolation is a successful
isolation of a satisfiable circuit C if C ′ has a unique satisfying as-
signment. In a minimal witness isolation, we additionally require
the unique satisfying assignment of a successful isolation C ′ to
be the lexicographically smallest satisfying assignment of C. The
procedures of Valiant & Vazirani (1986), Mulmuley et al. (1987),
and Chari et al. (1995) yield randomized polynomial-time isola-
tions with success probabilities p = Ω(1/n), p = Ω(1/n2), and
p = Ω(1/n8), respectively.

2As explained in Section 2.3, in contrast to the standard setting of decision
procedures, the combination “randomized P/poly” does make sense in the
setting of disambiguation procedures.
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Witness-recoverable disambiguation. A witness-recoverable
disambiguation is a disambiguation that maps circuits C to cir-
cuits C ′ on a potentially different set of variables. Furthermore,
there has to exist a deterministic polynomial-time witness recovery
algorithm W such that, if C is satisfiable, then with probability at
least p the following two conditions hold simultaneously:

◦ C ′ has a unique satisfying assignment, say w, and

◦ given C, C ′, and w, the algorithm W outputs a satisfying
assignment for C.

Every isolation is a witness-recoverable disambiguation: The
witness recovery algorithm can just output W (C,C ′, w) = w since
isolation guarantees that any satisfying assignment w of C ′ also sat-
isfies C. For nondeterministic circuits, the existence of these two
notions is in fact equivalent, that is, there is an isolation for non-
deterministic circuits if and only if there is a witness-recoverable
disambiguation for nondeterministic circuits. The reverse direc-
tion follows because a nondeterministic circuit C ′′ can guess and
verify a satisfying assignment w′ for the circuit C ′ that the witness-
recoverable reduction produces, and C ′′ can further compute w

.
=

W (C,C ′, w′) and check that w satisfies C. (See the step (iv)⇒ (ii)
in the proof of 3.8 for more details.)

A witness-recoverable disambiguation for deterministic circuits
yields a witness-recoverable disambiguation for nondeterministic
circuits – simply apply the former to the deterministic circuit un-
derlying the nondeterministic circuit, and recover the actual input
bits. (See the “furthermore” part at the end of the proof of The-
orem 3.8 for more details.) Combined with the above argument, a
witness-recoverable disambiguation for deterministic circuits yields
an isolation for nondeterministic circuits. This motivates the study
of isolation for nondeterministic circuits. If we were to require the
uniqueness condition after recovery rather than before, witness-
recoverable disambiguation for deterministic and for nondetermin-
istic circuits would be equivalent to each other, as well as to isola-
tion for nondeterministic circuits.
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2.3. Adleman’s argument. We derandomize randomized algo-
rithms by transforming them into deterministic algorithms with
small advice. In the case of decision algorithms, an argument
due to Adleman (1978) turns any BPP-machine into a P/poly-
algorithm that decides the same language, and it does not re-
ally make sense to talk about randomized P/poly-algorithms since
BPP/poly = P/poly. For transformations such as randomized dis-
ambiguations, the notions of randomized P/poly-algorithms and
deterministic P/poly-algorithms do seem to be different. Adle-
man’s argument allows us to list-derandomize randomized P/poly
transformations in the sense of the following lemma.

Lemma 2.2 (Adleman). Let A be a randomized P/poly-algorithm
that maps strings x to strings y. Let p1, p2 : N→ [0, 1] be functions
and let P1(x, y) and P2(x, y) be properties such that, for all inputs x
of length ` = |x|, P1

(
x, y
)

holds with probability at least p1(`)
and P2

(
x, y
)

holds with probability at least p2(`) over the internal
randomness of A.

Then, for every c > 0, there exists a deterministic P/poly-
algorithm B that, on input x of length `, produces a list y1, . . . , yt
such that (i) P1(x, yi) holds for at least p′1(`) · t many i ∈ [t] and
(ii) P2(x, yi) holds for at least p′2(`) · t many i ∈ [t], where p′j(`) = 1
whenever pj(`) = 1, and p′j(`) = pj(`)− 1/(c · `c) otherwise.

Proof. Let c > 0 and ` ∈ N. For some t = t(`) = poly(`) chosen
below, let At be the algorithm that runs A on an input x of length `
exactly t times, each time with fresh randomness, and outputs a
list y1, . . . , yt. For j ∈ {1, 2}, the expected number of i ∈ [t] that
satisfy Pj(x, yi) is at least pj ·t. If pj = 1, we can choose p′j = 1 since
all t instances satisfy the property. Otherwise, we set p′j = pj − ε
with ε = 1/(c · `c) and apply Hoeffding’s bound (Hoeffding 1963)
to prove concentration: The probability that fewer than p′jt runs
ofAt satisfy Pj(x, yi) is bounded from above by exp(−2ε2t). We can
make this probability smaller than 2−`−1 by setting t = O(`/ε2) =
poly(`). By the union bound, the probability that fewer than p′1t
of the pairs (x, yi) satisfy P1 or fewer than p′2t of the pairs (x, yi)
satisfy P2 is smaller than 2−`. Thus, for every input x ∈ {0, 1}`,
all but a fraction less than 2−` of the random strings of At produce
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y1, . . . , yt such that P1(x, yi) is satisfied for at least p′1t many i ∈ [t],
and P2(x, yi) is satisfied for at least p′2t many i ∈ [t]. By the
union bound, there must be a random string for At such that this
property is satisfied for every input. We provide this random string
as advice and get the deterministic procedure B as required. �

2.4. Ko’s argument. The following lemma captures the main
argument in Ko’s proof that the existence of a P-selector for a
language L implies L ∈ P/poly. The notion of a P-selector is due
to Selman (1979), who observed that a P-selector for SAT implies
P = NP. Ko (1983) proved his lemma for arbitrary languages, and
we formulate it here for promise problems so that we can apply it
to prUSAT.

Lemma 2.3 (Ko). Let Π = (Yes,No) be a promise problem, and
let R be a binary relation over Yes ∪ No satisfying the following
properties.

(K1) If x ∈ Yes and R(x, y), then y ∈ Yes.

(K2) If x, y ∈ Yes with |x| = |y|, then R(x, y) or R(y, x).

(K3) There exists a constant c > 0 such that for every ` ∈ N
and every x ∈ Yes of length `, there is a circuit Rx of size
at most c · `c that decides on input y ∈ Yes ∪ No of length `
whether R(x, y) holds.

If the circuits Rx are deterministic, then there is a P/poly-
algorithm for Π. If the circuits Rx are co-nondeterministic, then
there is a coNP/poly-algorithm for Π.

Proof. We fix the length ` of the input and design a polynomial-
size circuit that decides instances of length `, and we write Yes`

.
=

Yes∩ {0, 1}`. We first argue that the directed graph induced by R
on Yes` has a dominating set of size at most ` + 1. That is, we
show that there is a list a1, . . . , am ∈ Yes` with 0 6 m 6 ` + 1
such that, for all y ∈ Yes`, there exists an i ∈ [m] so that R(ai, y)
holds. To see this, assume we already constructed a1, . . . , aj for
some j > 0, and let Sj =

{
y ∈ Yes`

∣∣ R(ai, y) does not hold
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for any i ∈ [j]
}

. Note that S0 = Yes`. If Sj is empty, we are
done and set m = j. Otherwise, Sj 6= ∅ and we define aj+1 as
follows. Property (K2) implies that, for all x, y ∈ Sj, we have
R(x, y) or R(y, x). Thus the average out-degree of the directed
graph that R induces on Sj is at least |Sj|/2. In particular, there
exists an element aj+1 ∈ Sj such that at least half of all y ∈ Sj

satisfy R(aj+1, y). Thus |Sj+1| 6 1
2
|Sj| 6 1

2j+1 |S0|. Since |S0| 6 2`,
this implies that we reach Sm = ∅ for some m 6 `+ 1, and we are
done.

Based on the list a1, . . . , am, we now devise an algorithm A for
Π = (Yes,No) at input length `.

◦ Given: y ∈ {0, 1}`.

◦ Advice: The circuits Ra1 , . . . , Ram .

◦ Accept if and only if Rai(y) = 1 for some i ∈ [m].

If y ∈ No∩{0, 1}`, then (K1) guarantees that R(a, y) = 0 holds for
all a ∈ Yes`. Hence all circuits Rai reject y, and A rejects. On the
other hand, if y ∈ Yes`, then the choice of the advice guarantees
that some i ∈ [m] satisfies R(ai, y) = 1. In this case the circuit Rai

accepts y and A accepts.
If the Rai ’s are deterministic, then A is a P/poly-algorithm. If

the Rai ’s are co-nondeterministic, then A can simulate the Rai ’s in
coNP/poly. �

3. Isolation is unlikely to exist

In this section we show that efficient witness isolation and sev-
eral other kinds of disambiguation imply unlikely collapses of com-
plexity classes, namely NP = P, NP ⊆ P/poly, NP = coNP, or
NP ⊆ coNP/poly. In fact, in many cases the reverse implication
also holds, so we obtain equivalences. Our results can therefore
be viewed as taxonomic – they show that the existence of seem-
ingly very restricted isolation procedures, such as deterministic
non-uniform minimal witness isolation, is actually equivalent to
the existence of more relaxed forms of isolation, such as random-
ized non-uniform isolation with success probability p > 2/3.



18 Dell et al.

We obtain such results for both deterministic and nondetermin-
istic circuits. We first consider deterministic circuits.

3.1. Uniform disambiguation for deterministic circuits.
We argue that polynomial-time minimal witness isolation for the
class of deterministic circuits is a very strong notion. In the uni-
form setting, its existence is equivalent to NP = P. It is the only
form of disambiguation from which we obtain the collapse NP = P.
The argument has a somewhat different flavor than the main col-
lapse result described in the introduction.

Theorem 3.1. There is a P-computable minimal witness isolation
for deterministic circuits if and only if NP = P.

Proof. “⇒”. We devise a polynomial-time algorithm M for
SAT. Given an instance C(x1, . . . , xn) of SAT, we first add a vari-
able x0 and define the following circuit:

D(x0, x1, . . . , xn)
.
=
(
x0 = · · · = xn = 1

)
∨
(
x0 = 0 ∧ C(x1, . . . , xn)

)
.

Note that the satisfying assignments of D are of the form 1n+1∪0S,
where S ⊆ {0, 1}n is the set of satisfying assignments of C. The al-
gorithm M for SAT applies the assumed minimal witness isolation
to D, yielding a deterministic circuit D′, and then M accepts if and
only if D′ rejects the assignment 1n+1. For the correctness, note
that, if C is unsatisfiable, then the only satisfying assignment of D
and hence D′ is 1n+1, and our algorithm M rejects. Conversely,
if C is satisfiable, then 1n+1 is not the minimal witness of D, which
means that D′ rejects 1n+1 and our algorithm M accepts. Note
that testing whether the deterministic circuit D′ rejects 1n+1 can
be done in polynomial time.

“⇐”. Given a Boolean circuit C(x1, . . . , xn) and an assign-
ment w ∈ {0, 1}n, we can verify in PH that w is the lexicograph-
ically smallest satisfying assignment of C. If NP = P, we have
PH = P and this verification can be performed in P. Hence we
can efficiently compute a deterministic circuit C ′(x1, . . . , xn) that
outputs 1 if and only if its input is the lexicographically smallest
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satisfying assignment of C. If C is satisfiable, then the constructed
circuit C ′ is uniquely satisfied by the lexicographically smallest sat-
isfying assignment of C. On the other hand, if C is unsatisfiable,
then C ′ is unsatisfiable. Since C ′ can be computed from C in poly-
nomial time, this isolation procedure runs in polynomial time. �

3.2.Non-uniform disambiguation for deterministic circuits.
Our main result shows that several P/poly-computable notions of
disambiguation are equivalent to NP ⊆ P/poly. To prove the col-
lapse direction, we follow the two-step approach outlined in the
introduction. The forward direction of the following lemma imple-
ments Step 1, a reduction from SAT to prUSAT.

Lemma 3.2. prUSAT ∈ P/poly if and only if NP ⊆ P/poly.

Proof. “⇒”. AssumeM is a P/poly-algorithm for prUSAT. We
claim that SAT ∈ P/poly. Recall that Valiant–Vazirani gives a ran-
domized isolation procedure A with success probability p = Ω

(
1
n

)
.

Adleman’s argument (Lemma 2.2) yields a P/poly-algorithm B
that, given a circuit C, produces a list of t = poly(n) circuits
C ′1, . . . , C

′
t satisfying the following: (i) if C is unsatisfiable, then

each C ′i is unsatisfiable for i ∈ [t], and (ii) if C is satisfiable then
a fraction Ω(1/n) of the C ′i are successful isolations of C, that is,
are uniquely satisfiable.

The following algorithm decides SAT. Given an input circuit C,
compute the list B(C) = (C ′1, . . . , C

′
t). If M(C ′i) accepts for at least

one i, where i ∈ [t], then accept; otherwise, reject.
The described algorithm is clearly in P/poly. For correctness,

if C is unsatisfiable, then by (i) so are all C ′i, and hence M must
reject each of them. If C is satisfiable, then by (ii) some C ′i is
uniquely satisfiable, and hence M must accept this C ′i.

“⇐”. This direction holds because any algorithm for SAT also
solves prUSAT. �

We are now ready to prove our main result on disambiguations
for deterministic circuits in the non-uniform setting.

Theorem 3.3. Each of the following statements is equivalent to
NP ⊆ P/poly.
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(i) There is a P/poly-computable minimal witness isolation for
deterministic circuits.

(ii) There is a randomized P/poly-computable isolation for de-
terministic circuits with success probability p > 2

3
+ 1

poly(`)
.

(iii) There is a randomized P/poly-computable satisfiability-pre-
serving isolation for deterministic circuits with success prob-
ability p > 1

poly(`)
.

Obviously, the statements above are also equivalent to each other.
In particular, the implication (ii)⇒ (i) transforms any randomized
P/poly-computable isolation with success probability p = p(`) into
a deterministic minimal witness isolation, the strongest notion of
disambiguation that we consider. This implication holds for all
functions p : N → [0, 1] for which there exists a constant c > 0
such that p(`) > 2/3 + 1/(c · `c) for all ` ∈ N.

Proof. The proof that NP ⊆ P/poly implies (i) is as in proof
of Theorem 3.1. The implications (i) ⇒ (ii) and (i) ⇒ (iii) are
immediate by setting p = 1.

(ii)⇒ (NP ⊆ P/poly). This corresponds to Step 2 as sketched
in the introduction. Let (Yes,No) denote the promise problem
prUSAT, i.e., Yes denotes the set of uniquely satisfiable circuits,
and No the set of unsatisfiable circuits. Assume that there exists
a randomized P/poly isolation procedure A with success proba-
bility p > 2

3
+ 1

poly(`)
. By Lemma 3.2, it suffices to show that

prUSAT ∈ P/poly. We apply Adleman’s argument (Lemma 2.2)
to A, where P1 expresses the soundness property of A, and P2 its p-
completeness. We use the parameter settings p1 = p′1 = 1, p2 = p,
and p′2 = p′ = p− 1/(c · `c), where we pick c > 0 sufficiently large
such that p′(`) > 2

3
holds for all ` ∈ N. We obtain a deterministic

P/poly-algorithm B that maps any deterministic circuit C to a list
of deterministic circuits C ′1, . . . , C

′
t with the following properties:

(i) every satisfying assignment of every C ′i also satisfies C, and (ii)
if C is satisfiable, then at least a p′-fraction of the circuits C ′i have
a unique satisfying assignment. We want to apply Ko’s argument,
Lemma 2.3, to prove prUSAT ∈ P/poly. For this, we construct
the following binary relation R ⊆ Yes× (Yes ∪ No). For C1 ∈ Yes
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with the unique satisfying assignment w1 and for C2 ∈ (Yes∪No),
we set R(C1, C2) true if and only if at least one of the following
conditions holds:

(a) w1 satisfies C2.

(b) w1 satisfies less than a p′-fraction of the circuits C ′i on the
list B(C), where C

.
= min(C1, C2) ∨max(C1, C2).

It remains to verify the three conditions in Lemma 2.3. For (K1), if
R(C1, C2), then w1 satisfies C2 and hence C2 ∈ Yes, or w1 satisfies
less than a p′-fraction of all circuits C ′i in the list B(C). The
latter implies that the list B(C) contains at least one successful
isolation C ′i of C that is not satisfied by w1. Since the unique
satisfying assignment of this C ′i is not w1, it must be a satisfying
assignment of C2. In either case, we have that C2 ∈ Yes.

To show (K2), assume for contradiction that there are C1, C2 ∈
Yes such that neither R(C1, C2) nor R(C2, C1) holds. Recall that
the list (C ′1, . . . , C

′
t)
.
= B(C) depends only on the set {C1, C2} and

not on the order of the inputs. By the assumption, we know that
C1 and C2 have different unique satisfying assignments w1 and w2

that each satisfy at least a p′-fraction of the C ′i. Inclusion-exclusion
yields that at least a fraction 2 · p′− 1 of the circuits C ′i on the list
B(C) are satisfied by both assignments. Since 2 · p′ − 1 > 1/3 >
1 − p′, this contradicts the fact that B produces a list of circuits,
at least p′ of which have a unique satisfying assignment. Hence
R(C1, C2) or R(C2, C1) holds.

For (K3), note that, for a fixed C1 ∈ Yes, the membership of
(C1, C2) in R can be decided by a deterministic circuit RC1 that
uses C1, w1, and p′t as advice, and B as a subroutine. The size of
the circuit is a fixed polynomial in the length of C1 and the circuit
complexity of B. Thus R satisfies the conditions of Lemma 2.3,
and we get prUSAT ∈ P/poly.

(iii) ⇒ (NP ⊆ P/poly). This is analogous to the previous
case, with the exception that we slightly modify the definition
of R. We start from a randomized P/poly-computable satisfiability-
preserving isolation A and transform it into a deterministic algo-
rithm B, again using Adleman’s argument, where P1 expresses the
property that A is sound and satisfiability-preserving, and P2 is the
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p-completeness of A. We use the parameter settings p1 = p′1 = 1,
p2 = p, and p′2 = p′ = p−1/(c · `c), where we pick c > 0 sufficiently
large such that p′(`) > 0 holds for all ` ∈ N. Thus, on input C,
the algorithm B outputs a list of circuits C ′i such that: all satis-
fying assignments of C ′i also satisfy C, and if C is satisfiable, then
each C ′i is satisfiable and at least one of the C ′i in the list is uniquely
satisfiable. For C1 ∈ Yes with the unique satisfying assignment w1

and for C2 ∈ (Yes ∪ No), we set R(C1, C2) true if and only if at
least one of the following conditions holds:

(a) w1 satisfies C2.

(b) Some circuit C ′i on the list B(C) is not satisfied by w1, where
C

.
= min(C1, C2) ∨max(C1, C2).

To argue (K1), note that if R(C1, C2) holds, then w1 satisfies C2

and hence C2 ∈ Yes, or some circuit C ′i in the list B(C) is not sat-
isfied by w1. In the latter case, since B is satisfiability-preserving,
this implies that C2 ∈ Yes. For (K2), if neither R(C1, C2) nor
R(C2, C1) holds, then C1 and C2 have two distinct unique satis-
fying assignments w1 and w2, respectively, and every circuit C ′i is
satisfied by both assignments w1 and w2. This contradicts the fact
that B outputs at least one uniquely satisfiable C ′i. The efficiency
condition (K3) can be argued just as in the previous case. Thus,
by Ko’s argument, we have prUSAT ∈ P/poly. �

Extensions. We stated Theorem 3.3 for randomized isolation
and randomized satisfiability-preserving isolation, but the proof
does not make use of all properties of these notions. For example,
the algorithm A only ever gets invoked for inputs C that have
exactly one or exactly two satisfying assignments, so we do not need
to make any assumptions on A’s behavior for other inputs. The
soundness and p-completeness conditions on those inputs can also
be relaxed. These observation allow us to generalize the theorem
as follows.

Theorem 3.4. Consider a randomized P/poly-algorithm A that
maps deterministic circuits C to deterministic circuits C ′ such that
the following two conditions hold:
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(1) If C has a unique satisfying assignment w, then, with prob-
ability at least p1, the circuit C ′ is satisfied by w.

(2) If C has exactly two satisfying assignments w1 and w2, then,
with probability at least p2, the circuit C ′ is not satisfied by
both assignments w1 and w2.

Such an algorithm A exists with p1 + 1
2
p2 > 1 + 1

poly(`)
if and only

if NP ⊆ P/poly.

Algorithms A that satisfy (1) and (2) are more general than isola-
tion: The conditions on A only apply to inputs that have exactly
one or two satisfying assignments; in case (1) C ′ can have satisfying
assignments other than w; and in case (2) C ′ can be unsatisfiable
or have satisfying assignments other than w1 and w2. In fact, The-
orem 3.4 simultaneously generalizes the cases (ii) and (iii) of The-
orem 3.3, and it interpolates between them. In particular, (ii) is
captured by p1, p2 > 2

3
+ 1

poly(`)
, and (iii) by p1 = 1 and p2 > 1

poly(`)
.

Moreover, Theorem 3.4 also applies to randomized P/poly-re-
ductions that map satisfiable circuits C to circuits C ′ with an odd
number of satisfying assignments such that all satisfying assign-
ments of C ′ also satisfy C. A randomized polynomial-time al-
gorithm that achieves this task with success probability 1/2 was
given by Gupta (1998). Since such reductions satisfy (1) and (2)
where p1 = p2 is the success probability, our results rule out the
possibility of improving the success probability to 2/3 + 1

poly(`)
, un-

less NP ⊆ P/poly. We formulate this observation in the following
corollary to Theorem 3.4.

Corollary 3.5. Each of the following statements is equivalent
to NP ⊆ P/poly.

(i) There is a randomized P/poly-computable reduction mapping
circuits C to circuits C ′ such that, if C is satisfiable, then
with probability at least p > 2

3
+ 1

poly(`)
the circuit C ′ has

an odd number of satisfying assignments, each of which also
satisfies C.

(ii) There is a randomized P/poly-computable reduction mapping
circuits C to circuits C ′ such that, if C is satisfiable, then C ′
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is satisfiable, and with probability at least p > 1
poly(`)

the

circuit C ′ has an odd number of satisfying assignments, each
of which also satisfies C.

Let us now formally prove Theorem 3.4.

Proof (of Theorem 3.4). The reverse direction of the theorem
follows immediately from the implication NP ⊆ P/poly ⇒ (i) of
Theorem 3.3 and the fact that any minimal witness isolation sat-
isfies (1) and (2) with p1 = p2 = 1.

Now let us argue the forward direction, so let p1 = p1(`) and
p2 = p2(`) be such that p1+ 1

2
p2 > 1

poly(`)
, and let A be an algorithm

that satisfies (1) and (2). Using Adleman’s argument, we obtain
from A a list-derandomization B that achieves (1) with p1 replaced
by p′1 = p1 − ε (or p′1 = 1 if p1 = 1) and (2) with p2 replaced by
p′2 = p2 − ε (or p′2 = 1 if p2 = 1), where ε

.
= 1/(c`c) with c > 0

large enough so that p′1 + 1
2
p′2 > 1 + 1

poly(`)
holds. Such a constant

c exists by the assumption that p1 + 1
2
p2 > 1 + 1

poly(`)
holds. The

probabilities p′1 and p′2 are interpreted with respect to the uniform
distribution over the list B(C).

We devise a P/poly-algorithm for prUSAT. To adapt the proof
of Theorem 3.3 to this more general setting, we define the rela-
tion R on Yes × (Yes ∪ No) as follows. For any deterministic cir-
cuit C1 that is uniquely satisfied by some w1 and any deterministic
circuit C2 that has at most one satisfying assignment, we define
R(C1, C2) by the following conditions:

(a) w1 satisfies C2, or

(b) w1 satisfies less than a p′1-fraction of the C ′i in the list B(C),
where C

.
= min(C1, C2) ∨max(C1, C2).

The relation R satisfies the efficiency requirement (K3) just as in
the proof of Theorem 3.3. We claim that R also satisfies (K1)
and (K2) if p′1 + 1

2
p′2 > 1. By Ko’s argument, the existence of such

an algorithm A then implies NP ⊆ P/poly. We briefly argue (K1)
and (K2).

(K1). Let R(C1, C2) hold. If (a) holds, then C2 is satisfiable.
Otherwise (b) holds, and we assume for contradiction that C2 is
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unsatisfiable. Then C has the unique witness w1, in which case (1)
guarantees that a fraction at least p′1 of the C ′i have w1 as a witness.
But this contradicts (b), so C2 must be satisfiable.

(K2). Assume that neither R(C1, C2) nor R(C2, C1) hold for
some uniquely satisfiable C1 and C2. Then C has exactly two
witnesses w1 and w2, which must be distinct since (a) does not
hold. Because (b) does not hold in either direction, a fraction at
least 2p′1 − 1 of the C ′i are satisfied by both assignments. This
contradicts (2) since 2p′1 − 1 > 1− p′2. �

Limitations. Regarding the implication (ii) ⇒ NP ⊆ P/poly
of Theorem 3.3, one may wonder whether our proof technique as
captured by Theorem 3.4 can provide evidence against randomized
P/poly-computable isolation procedures with success probability p
below 2

3
+ 1

poly(`)
. The Valiant–Vazirani isolation procedure satisfies

(1) and (2) with p1 = 1/2 and p2 = 3/4: Recall that the Valiant–
Vazirani procedure intersects the solution space with a random
number of random hyperplanes. Applied to circuits with at most
two solutions, it suffices to fix the number of hyperplanes to one.
The latter achieves the above guarantees since any given witness
is on the hyperplane with probability p1 = 1/2, and two distinct
witnesses are not both on the hyperplane with probability p2 =
3/4. This means that we cannot expect our approach to work
when p 6 min(p1, p2) = 1

2
.

In fact, we cannot expect our approach to handle constant suc-
cess probabilities p < 1

ϕ
≈ .618, where ϕ denotes the golden ratio.

This is because, for every positive constant ε, we can construct an
algorithm A that satisfies (1) and (2) with p1, p2 > 1

ϕ
− ε. Here

is how. Let GF(q) denote a finite field with q elements. On input
a circuit C(x) on n variables x1, . . . , xn, the algorithm A picks an
affine function f : GF(q)n → GF(q) uniformly at random. That
is, A picks a random vector a ∈ GF(q)n and a random b ∈ GF(q),
and sets f(x) =

∑n
i=1 ai · xi + b. The output of A is the circuit

C ′(x)
.
= C(x) ∧ (f(x) ∈ S), where S ⊆ GF(q) is a subset indepen-

dent from C. The set of all such f forms a universal familiy of hash
functions. Hence, for every fixed w, the probability over the choice
of f that f(w) ∈ S holds is exactly p1 = |S|/|q|. Furthermore,
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the events f(w1) ∈ S and f(w2) ∈ S are independent for every
fixed w1 6= w2, and hence p2 = (1 − p21). Note that min(p1, p2) is
maximized for p1 = p2, which solves to p1 = 1

ϕ
. Since |S|/q can ap-

proximate 1
ϕ

arbitrarily well, we get for every ε > 0 an algorithm A

that satisfies (1) and (2) with p1, p2 > 1
ϕ
− ε. Thus it seems that

our approach cannot prove that Theorem 3.3(ii) for any constant
p < 1

ϕ
implies NP ⊆ P/poly.

3.3. Uniform disambiguation for nondeterministic circuits.
Similar to Theorem 3.1 in the case of deterministic circuits, we
now show that the existence of polynomial-time minimal witness
isolation for the class of nondeterministic circuits is equivalent to
NP = coNP.

Theorem 3.6. There is a P-computable minimal witness isolation
for nondeterministic circuits if and only if NP = coNP.

Proof. “⇒”. This is analogous to the proof of the correspond-
ing direction of Theorem 3.1. The difference is that the circuit D′

obtained after the isolation may now be nondeterministic. In this
case, testing whether the nondeterministic circuits D′ rejects the
assignment 1n+1 can be done in coNP, for which reason the algo-
rithm M for SAT now runs in coNP.

“⇐”. This is as in the proof of Theorem 3.1, except that
NP = coNP is only known to imply PH = NP, and hence the
efficiently constructed circuit C ′ is no longer deterministic, but
nondeterministic. �

3.4. Non-uniform disambiguation for nondeterministic cir-
cuits. We now develop the analog of our main result (Theo-
rem 3.3) for nondeterministic instead of deterministic circuits. One
motivation is the fact that a witness-recoverable disambiguation
for deterministic circuits implies an isolation for nondeterministic
circuits.

To prove the collapse direction, we again follow the two-step
approach outlined in the introduction. The following lemma is
an analog of Lemma 3.2 one level higher in the polynomial-time
hierarchy. Note that the underlying problems SAT and prUSAT
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are the same as before, and in particular, their instances are still
deterministic circuits.

Lemma 3.7. prUSAT ∈ coNP/poly if and only if coNP ⊆ NP/poly.

Proof. “⇒”. Let M be the assumed coNP/poly-algorithm for
prUSAT. That is, if C has a unique satisfying assignment, then
M(C) accepts on all computation paths; and if C is unsatisfiable,
M(C) rejects on at least one computation path. We will devise a
coNP-algorithm A that decides SAT, the satisfiability of determin-
istic circuits. The algorithm uses the same P/poly-algorithmB that
we used in the proof of Lemma 3.2 to reduce from SAT to prUSAT.
Recall that B is a list-derandomization of Valiant–Vazirani’s isola-
tion lemma for deterministic circuits, that is, B maps a determin-
istic input circuit C to a list of t = poly(n) deterministic circuits
C ′1, . . . , C

′
t so that: (i) if C is unsatisfiable then so is C ′i for every

i ∈ [t], and (ii) if C is satisfiable then at least one C ′i is uniquely
satisfiable.

The following coNP/poly-algorithm A decides SAT. On input a
deterministic circuit C, we compute the list B(C) = (C ′1, . . . , C

′
t).

For each i ∈ [t], we co-nondeterministically guess a string zi ∈
{0, 1}poly(n), and simulate the coNP/poly-computation M(C ′i) us-
ing zi as the co-nondeterministic choices. We accept if, for at
least one i, the computation M(C ′i) accepts when using the co-
nondeterministic choices zi; otherwise, we reject.

The described algorithm A is a co-nondeterministic polynomial-
time algorithm with polynomial advice. It remains to argue that
A decides SAT. If C is satisfiable, then by (ii) there is an i ∈ [t]
such that C ′i is uniquely satisfiable, and hence M(C ′i) accepts for
every string zi. In this case, every computation path of A on input
C is accepting. On the other hand, if C is unsatisfiable, then by (i)
every C ′i is unsatisfiable, and hence, for every i ∈ [t], there is a zi
such that M(C ′i) rejects when using zi as the co-nondeterministic
choices. The sequence of these zi’s yields a rejecting computation
path for the algorithm A on input C.

“⇐”. This direction holds because any algorithm for SAT also
solves prUSAT. �
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Here is the analog of Theorem 3.3 for nondeterministic circuits.

Theorem 3.8. Each of the following statements is equivalent to
coNP ⊆ NP/poly.

(i) There is a P/poly-computable minimal witness isolation for
nondeterministic circuits.

(ii) There is a randomized P/poly-computable isolation for non-
deterministic circuits with success probability p > 2

3
+ 1

poly(`)
.

(iii) There is a randomized P/poly-computable satisfiability-pre-
serving isolation for nondeterministic circuits with success
probability p > 1

poly(`)
.

(iv) There is a randomized P/poly-computable witness-recoverab-
le disambiguation for nondeterministic circuits with success
probability p > 2

3
+ 1

poly(`)
.

Furthermore, the following statement implies coNP ⊆ NP/poly.

(v) There is a randomized P/poly-computable witness-recover-
able disambiguation for deterministic circuits with success
probability p > 2

3
+ 1

poly(`)
.

Proof. The proof that coNP ⊆ NP/poly implies (i) is as in the
proof of Theorem 3.6 using the fact that PH = NP/poly. The
proof that (i) implies each of (ii), (iii), (iv), and (v) is immediate
by setting p = 1.

(ii)⇒ (coNP ⊆ NP/poly). This step is similar to the step that
condition (ii) in Theorem 3.3 implies NP ⊆ P/poly. Assume A
is the given isolation for nondeterministic circuits. We use Adle-
man’s argument (Lemma 2.2) where P1 is the soundness property
of A and P2 is its p-completeness. We use the parameter settings
p1 = p′1 = 1, p2 = p, and p′2 = p′ = p − 1/(c · `c) > 2/3 for
some large enough constant c > 0 to obtain a deterministic list-
derandomization B of A: On input a (non)deterministic circuit C,
the procedure B outputs a list of nondeterministic circuits C ′i such
that the satisfying assignments of the circuits C ′i in the list also
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satisfy C, and if C is satisfiable then at least a p′-fraction of the C ′i
in the list have a unique satisfying assignment.

Because of Lemma 3.7, it suffices to prove that prUSAT ∈
coNP/poly. We want to apply Ko’s argument, Lemma 2.3, to
show that prUSAT ∈ coNP/poly. For this, we define a binary
relation R ⊆ Yes × (Yes ∪ No) where Yes is the set of uniquely
satisfiable deterministic circuits and No is the set of unsatisfiable
deterministic circuits. For C1 ∈ Yes with the unique satisfying as-
signment w1 and for C2 ∈ (Yes∪No), we set R(C1, C2) true if and
only if the pair (C1, C2) satisfies (a) or (b):

(a) w1 satisfies C2.

(b) w1 satisfies less than a p′-fraction of the circuits C ′i on the
list B(C), where C

.
= min(C1, C2) ∨max(C1, C2).

The conditions (a) and (b) are the same as the ones in the proof
that condition (ii) in Theorem 3.3 implies NP ⊆ P/poly. The
only difference is that the C ′i here may be nondeterministic instead
of deterministic. This, however, does not affect the proof that
the relation R satisfies (K1) and (K2). The only difference is the
efficiency of the algorithm: For (K3), we argue that R(C1, C2) can
be computed by a small co-nondeterministic circuit for every fixed
C1 ∈ Yes. Condition (a) can be checked in P/poly since we can
give w1 as advice and C2 is a deterministic circuit. Furthermore,
condition (b) is of the form “more than (1−p′) · t of the circuits C ′i
reject w1”, which can be checked in coNP/poly since each C ′i is
a nondeterministic circuit. This gives rise to a family RC1 of co-
nondeterministic circuits, where each circuit has size polynomial in
the length of C1 and the circuit complexity ofB. Hence, Lemma 2.3
implies that prUSAT ∈ coNP/poly.

(iii)⇒ (coNP ⊆ NP/poly). This is analogous to the proof that
condition (iii) in Theorem 3.3 implies NP ⊆ P/poly. The only
difference is, again, that the efficiency of the constructed relation R
changes from P/poly to coNP/poly.

(iv)⇒ (ii). Let A be a randomized P/poly-computable witness-
recoverable disambiguation for nondeterministic circuits with suc-
cess probability p. We construct a randomized P/poly-computable
isolation B for nondeterministic circuits with the same success
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probability p. Intuitively, on input a circuit C, B constructs a
circuit C ′′ that guesses and verifies a witness w′ for the circuit C ′

that A produces on input C, uses the witness recovery procedure of
A to obtain a witness w for C, and verifies that w satifies C. More
precisely, let W denote a polynomial-size circuit that implements
the witness recovery procedure of A, i.e., given C, C ′, and a satisfy-
ing assignment of A’s output, W produces a satisfying assignment
of A’s input. Consider a nondeterministic circuit C(x1, . . . , xn)
and let D(x1, . . . , xn, y1, . . . , ym) denote the underlying determin-
istic circuit. On input C, our new machine B first runs A to
compute the nondeterministic circuit C ′(x′1, . . . , x

′
n′) and the un-

derlying deterministic circuit D′(x′1, . . . , x
′
n′ , y

′
1, . . . , y

′
m′). Then B

constructs and outputs the nondeterministic circuit C ′′(x1, . . . , xn)
induced by the deterministic circuit

D′′(x1, . . . , xn, y1, . . . , ym, x
′
1, . . . , x

′
n′ , y

′
1, . . . , y

′
m′)

that outputs 1 if and only if all of the following conditions hold:

◦ D(x1, . . . , xn, y1, . . . , ym) = 1,

◦ D′(x′1, . . . , x′n′ , y′1, . . . , y′m′) = 1, and

◦ (x1, . . . , xn) = W (C,C ′, x′1, . . . , x
′
n′).

Note that C ′′ only accepts inputs that are also accepted by C.
Moreover, if C is satisfiable and C ′ is the output of a successful
run of A, then C ′ accepts exactly one input w′, which by the defin-
ing property of the witness recovery procedure W implies that C ′′

accepts exactly one input, namely w
.
= W (C,C ′, w′). Thus, the

algorithm B that computes C ′′ is an isolation procedure for non-
deterministic circuits, and its success probability is the same as
that of A.

(v) ⇒ (coNP ⊆ NP/poly). Let A be a randomized P/poly-
computable witness-recoverable disambiguation for deterministic
circuits with success probability p, and let W be the corresponding
deterministic recovery procedure. We argue that A also constitutes
a witness-recoverable disambiguation for nondeterministic circuits
with the same success probability p, and then apply (iv). Given a
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nondeterministic circuit C(x1, . . . , xn) with underlying determinis-
tic circuit D(x1, . . . , xn, y1, . . . , ym), we simply apply A to D. This
produces a deterministic circuit D′ on some variables z1, . . . , zm,
which we view as a nondeterministic circuit C ′ on the same inputs
(without nondeterministic variables). If C is unsatisfiable, then so
are D, D′, and C ′. If C is satisfiable, then D is satisfiable, and if A
is successful on this D, then D′ has a unique satisfying assignment
w′ such that w

.
= W (D,D′, w′) satisfies D; in that case the first n

bits of w satisfy C. Thus, if we define W ′(C,C ′, w′) as the first n
bits of W (D,D′, w′), then A combined with the recovery algorithm
W ′ is a randomized P/poly-computable witness-recoverable disam-
biguation for nondeterministic circuits with success probability p.
This means that (iv) holds, which implies coNP ⊆ NP/poly. �

Remark 3.9. The proof of Theorem 3.8 only ever considers de-
terministic circuits as input to the isolation procedures for nonde-
terministic circuits. Thus the statements (i) — (iv) of Theorem 3.8
can be strengthened by restricting the input of the procedures to
deterministic circuits while still allowing their output to be nonde-
terministic circuits.

Remark 3.10. We pointed out after the proof of Theorem 3.3
that a relaxed form of disambiguation is sufficient for the proof of
cases (ii) and (iii) to go through. The same relaxation, this time
for nondeterministic circuits, is possible for the cases (ii) and (iii)
of Theorem 3.8, for the same reasons.

4. Blackbox isolation

We consider a general situation where some randomized procedure
is used to isolate one element in a given unknown set W in some
specified familyW of subsets of {0, 1}n. The randomized procedure
can be designed depending on W , but it is not given any informa-
tion on which W ∈ W is chosen. The randomized procedure can
check whether a given w ∈ {0, 1}n is chosen or not; in other words,
it is specified as a distribution D over subsets of {0, 1}n, where
each D ∈ D is the set of strings that the randomized procedure
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selects when its random seed is fixed. This leads to the following
type of isolation. Below, for a distribution D and an element D
from the support of D, we denote by D ← D the fact that D is
chosen according to the distribution D.

Definition 4.1 (Blackbox isolation). For any family W of non-
empty subsets of {0, 1}n, a blackbox isolation procedure is a dis-
tribution D over subsets D of {0, 1}n. For any D ∈ D and any
W ∈ W , we say that D succeeds on W if |D ∩W | = 1.

The isolation probability of D for W is defined as

min
W∈W

Pr
D←D

[
|D ∩W | = 1

]
.

While this is regarded as the “worst-case” isolation probability,
we may also consider an average isolation probability. For this,
we regard W as a distribution over subsets of {0, 1}n. For any
distribution W over subsets of {0, 1}n and any blackbox isolation
procedure D, the average isolation probability of D forW is defined
as EW←W [ PrD←D[ |D ∩W | = 1 ] ]. Clearly, the average isolation
probability for a distributionW is an upper bound on the isolation
probability for the corresponding subset family W .

We now construct a distribution W∗ for which the average iso-
lation probability of any blackbox isolation D is O(1/n). In or-
der to do so, we first analyze what happens with the distribu-
tion WK defined as follows, where K is any integer in the range
1 6 K 6 N

.
= 2n: We put each w ∈ {0, 1}n into W independently

with probability pK
.
= K/N . Roughly, W ← WK has K strings

on average. That is, we consider the isolation when we can ap-
proximate the target set size well. The Valiant–Vazirani procedure
achieves an isolation probability of at least 1/8 when given an in-
teger k such that |W | ∈ [2k, 2k+1], and an isolation probability of
at least 1/4 when given an integer k such that |W | = 2k (see, e.g.,
p. 450–451 of Papadimitriou (1994)). We show that one cannot go
beyond (1 + o(1))/e using any blackbox isolation procedure when
K = o(N). More precisely, we obtain the following bound.

Theorem 4.2. For any blackbox isolation procedure D, its aver-
age isolation probability for WK is at most (1− K

N
)−1e−1.
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Proof. Consider any set D with H elements. Then its isolation
probability for WK is

Pr
W←WK

[ |D ∩W | = 1 ] = H · pK (1− pK)H−1

=

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H

(4.3)

6

(
1− K

N

)−1
· HK
N
· e−HK/N

6

(
1− K

N

)−1
· e−1 ,

where the last inequality follows since x · e−x has e−1 as its maxi-
mum value, which is achieved for x = 1, i.e., for H = N/K. Note
that the upper bound is the same for any D. Since the average
isolation probability of D is a convex combination of the probabil-
ities that |D ∩W | = 1, the result follows. �

We construct the distribution W∗ as a uniform superposition
of the distributions WK , where K ranges over a well-chosen set K.
For K not too close to N , (4.3) shows that the isolation probability
for WK of a set D with H elements is maximized for H around
N/K, and decreases rapidly when H deviates from N/K. This
means that if we pick the values of K in K such that their ratios
remain far from 1, then any set D can only have a significant
contribution to the isolation probability for WK for a few K ∈ K,
and the overall isolation probability ofD forW∗ becomes O(1/|K|).
In particular, for a geometrically increasing set of values K ∈ K,
we obtain the tight upper bound of Θ(1/ logN) = Θ(1/n) on the
isolation probability of any blackbox isolation for W∗.

The next theorem refers to the specific distributionW∗ defined
as follows: Choose K from K .

= {1, 2, 4, . . . , 2n−1} uniformly at
random, and then sample W according to the distribution WK .

Theorem 4.4. For any blackbox isolation procedure D, its aver-
age isolation probability for W∗ is O(1/n).

Proof. Since the average isolation probability of D is a convex
combination of the probabilities that |D ∩W | = 1 for all fixed D,
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it suffices to upper bound the latter probabilities. Let D be any
set with H elements. By (4.3), we have that

Pr
W←W∗

[ |D ∩W | = 1 ] =
1

n
·
∑
K∈K

Pr
W←WK

[ |D ∩W | = 1 ]

=
1

n
·
∑
K∈K

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H

.

To upper bound the right-hand side, we split the sum into the cases
K ≤ N/H and K > N/H. Then noting that K ≤ 2n−1 = N/2, we
have ∑

K∈K

(
1− K

N

)−1
· HK
N
·
(

1− K

N

)H

≤
∑
K∈K

2HK

N

(
1− K

N

)H

≤
∑
K∈K

K≤N/H

2HK

N

(
1− K

N

)H

+
∑

K>N/H

2HK

N
e−HK/N

≤
∑
K∈K

K≤N/H

2HK

N

(
1− K

N

)H

+O(1) ,(4.5)

where the last line follows from the fact that
∑

x≥1 xe
−x = O(1).

On the other hand, since we have

2HK

N

(
1− K

N

)H

≤ 2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)
,

and∑
K∈K

K≤N/H

2HK

N

(
1− HK

N
+

1

2

(
HK

N

)2
)

≤ 2H

N
· 2N

H
− 2H2

N2
· 4N2

3H2
+

2H3

2N3
· 8N3

7H3
= 4− 8

3
+

8

7
≤ 3 ,

we conclude that (4.5) is O(1), which gives the desired bound. �
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One application of isolation is finding witnesses using non-
adaptive queries to a satisfiability oracle. The standard search-to-
decision reduction constructs a witness bit-by-bit using n adap-
tive queries to a satisfiability oracle. If the witness is unique,
then the queries can be made in a nonadaptive fashion. The
Valiant–Vazirani procedure thus yields a nonadaptive search-to-
decision procedure that makes n queries and succeeds with prob-
ability Ω(1/n). By running the procedure O(n) times in parallel,
we obtain a nonadaptive search-to-decision procedure that makes
O(n2) queries and succeeds with probability Ω(1). Ben-David et al.
(1992) present an alternate procedure with similar behavior. Re-
cently, Kawachi et al. (2012) extended our blackbox framework and
showed that in that setting every nonadaptive search-to-decision
procedure with success probability Ω(1) has to make Ω(n2) queries.

5. Further discussion

We have considered different ways in which one might want to
strengthen the Valiant–Vazirani isolation: deterministic isolation,
randomized isolation with large constant success probability, or
satisfiability-preserving randomized isolation with inverse-polyno-
mial success probability. We showed that any such strengthening
would lead to a collapse of the polynomial-time hierarchy, and thus,
is unlikely. We also showed that a natural “blackbox” isolation pro-
cedure (generalizing the one of Valiant & Vazirani (1986)) cannot
have success probability better than O(1/n).

Our result that an efficient deterministic isolation procedure
would imply NP ⊆ P/poly (Theorem 3.3) can be interpreted as say-
ing that derandomizing the Isolation Lemma (in the strong sense,
where the output of the isolation procedure is a single circuit)
would imply circuit upper bounds for NP. This is in contrast to the
previous results showing that derandomization would imply circuit
lower bounds for NEXP (Arvind & Mukhopadhyay 2008; Impagli-
azzo et al. 2002; Kabanets & Impagliazzo 2004). Also, while such
strong derandomization of the Valiant–Vazirani Isolation Lemma
seems unlikely, the derandomization in the weak sense, where a sat-
isfiable circuit is mapped to a list of circuits with at least one being
uniquely satisfiable, is likely to exist (under plausible complexity
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assumptions of Klivans & van Melkebeek (2002)).

While we have argued that an efficient randomized isolation
with success probability p > 2/3 is unlikely to exist, it remains
an interesting open problem to consider intermediate values of p,
namely ω(1/n) < p 6 2/3. Regarding more general mapping re-
ductions from NP to UP, does the assumption NP = UP lead to
any surprising consequences?

Our results also apply to mapping reductions from NP to ⊕P
that can only remove witnesses. In this setting the open range
for the success probability is 1/2 < p 6 2/3. In contrast, general
mapping reductions from NP to ⊕P can have success probabili-
ties arbitrarily close to 1, and are therefore strictly more powerful
unless NP ⊆ P/poly.
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