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Abstract. We consider first-order formulas over relational strucsusdich may
use arbitrary numerical predicates. We require that thielixalof the formula is
independent of the particular interpretation of the nucampredicates and refer
to such formulas as Arb-invariant first-order.

Our main result shows a Gaifman locality theorem: two tuplies structure with
n elements, having the same neighborhood up to disteingez)““), cannot be
distinguished by Arb-invariant first-order formulas. Whestricting attention to
word structures, we can achieve the same quantitativegttréar Hanf locality.
In both cases we show that our bounds are tight.

Our proof exploits the close connection between Arb-irasatrfirst-order formu-
las and the complexity class ACand hinges on the tight lower bounds for parity
on constant-depth circuits.

1 Introduction

Definability in logics plays an important and delicate raieniodel checking, a central
tool in several areas of computer science such as databadesiomated verification.
The problem consists in testing whether a given structutisfes a certain property
expressed in the logic. On the one hand, wider expresgililibws for more efficient
implementations of a given property. On the other handt$imin the expressibility keep
the model checking task tractable and may be desirable lier oéasons. For example,
a database can be stored on a disk, which induces a linearandbe elements. An
implementation of a query may exploit this order for loopthgough all the elements of
the structure and performing all kinds of numerical compates. At the same time, the
result of the query should only depend on the database arahribe linear order that is
specific to its current representation on disk. In the datalzantext this requirement is
known as thalata independence principlén logic we usually speak aflosure under
isomorphisms

In order to capture such requirements, we consider finiimal structures and
queries expressed using first-order (FO) formulas which hlve access to a binary
predicate that is always interpreted as a linear order ordtmain of the relational
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structures. We accommodate numerical computations byalswing arbitrary nu-
merical predicates in the logic. We require that the resiu#t query not depend on the
actual choice of the linear order when all numerical predisare interpreted consistent
with the linear order. We refer to this logic Asb-invariantFO. The special case where
the query does not use any numerical predicate except fdirtbar order coincides
with the well-known notion obrder-invariantFO (cf., e.g., [12]).

In terms of computational power, Arb-invariant FO exprespeecisely the prop-
erties computable within the complexity class B@nd when restricting to formulas
using only the numerical predicatestoandx it corresponds to the uniform version
of AC® [11]. In particular, Arb-invariant FO is for ACwhat Arb-invariant Least Fixed
Point logic (LFP) is forP /poly [14], and(+, )-invariant FO is for uniform A€ what
order-invariant (LFP) is for PTime [16, 10]. Note thatandx are definable in order-
invariant LFP and therefore can be omitted from the syntattis is no longer the case
when considering first-order logic. It should be noted, hesvethat Arb-invariant FO
and order-invariant LFP are “logical systems” rather thiogics” in the strict formal
sense, as their syntax is undecidable (cf., e.g., [12]).

In this paper we study the expressive power of Arb-invariEDtand therefore the
power of the complexity class ACMore precisely, we investigate the locality of Arb-
invariant FO queries. Locality is a central notion in thedstwof first-order formulas. It
provides good intuition for the expressive power of suchrfolas, and a powerful tool
for showing inexpressibility. For instance, any non-lopabperty such as acyclicity,
connectivity, ork-colorability can immediately be shown non-expressiblaitogic
that exposes a certain amount of locality (see, e.g., [12p&n 4]). Locality is also
exploited in an essential way in the design of efficient gthars for evaluating first-
order definable queries on certain classes of structurég.[3,

There are two important notions of locality, known @aifman localityand Hanf
locality. Both are based on the distance measure on the elementsrattust when
viewed as the vertices of the structure’s Gaifman graph firctvtwo elements are con-
nected by an edge whenever they appear together in a tupleeobfothe structure’s
relations). In a nutshell, Gaifman locality means that arguwannot distinguish be-
tween two tuples having the same neighborhood type in a gitreisture, while Hanf
locality means that a query cannot distinguish between twmires having the same
(multi-)set of neighborhood types. Here, the neighborhtype of a tuple refers to the
isomorphism type of the substructure induced by the elesngmto distance from the
tuple, wherer is a parameter. It is known that Hanf locality implies Gaifiacality,
modulo a constant factor loss in the distance param€tt, e.g., [12, Theorem 4.11]).

A well-known result (see, e.g., [12]) shows that FO enjoythbdanf and Gaifman
locality with a “constant” parametet; i.e. depending only on the query. In the sequel
we refer to this property as(1)-locality. In the presence of an extra linear order that
is part of the structure, all neighborhoods of positive uadilegenerate to the entire
domain, so all queries are trivially 1-local. Locality beses meaningful again in order-
invariant FO, where the formulas can make use of an ordethieustructure does not
contain the order and the semantics are independent of ¢lee. diris shown in [8] that
order-invariant FO queries are Gaifmaql)-local. When we allow arbitrary numerical
predicatesw(1)-locality turns out to fail, even if we require Arb-invariea. However,



by allowing the parameterto depend on the numberof elements of the structure, we
provide an essentially complete picture in the case of Gaiffocality.

Theorem 1. Arb-invariantFO formulas are Gaifmarglogn)~(")-local, and for every
¢ € N there exists an Arb-invariafO formula that is not Gaifmaiflog n)<-local.

The upper bound in Theorem 1 means that for any query in Avbariant FO and any
large enough number, if a structure has elements and if two tuples of that structure
have the same neighborhood up to distafiegn)/ (") for any functionf € w(1), then
they cannot be distinguished by the query.

As in the case of order-invariant FO ([8]), the Hanf localitfy Arb-invariant FO
queries is still open in general. However if we restrict otieation to structures that
represent strings, we can establish Hanf locality with Htreessbounds as in Theorem 1.
Recall that order-invariant FO is known to be Harifl )-local over strings [2]. In the
following statement, Arb-invariant F@ucq refers to Arb-invariant queries over string
structures.

Theorem 2. Arb-invariantFO(Sucg sentences are Harifog n)«~(!)-local, and for ev-
ery ¢ € N there exists an Arb-invariariO(Sucg sentence that is not Harffog n)°-
local.

Proof TechniquesThe proof of the upper bound on Gaifman locality in Theorem 1
exploits the tight connection between Arb-invariant FOnfatas and the complexity
class AC. The notion of locality in logic has a similar flavor to the foot of sensitivity

in circuit complexity, and A€ is known to have low (polylogarithmic) sensitivity [13].
The latter resultis closely related to the exponential idsainds for parity on constant-
depth circuits [9]. Rather than going through sensitivityr argument directly uses the
circuit lower bounds, namely as follows.

Given an Arb-invariant FO formula that distinguishes two points of the universe
whose neighborhoods are of the same type up to distanee construct a circuit on
2m = O(r) inputs that distinguishes inputs with exactly ones from inputs with
exactlym + 1 ones. In the special case of disjoint neighborhoods theitiactually
computes parity. The depth of the circuit is a constant ddjpenon ¢, and its size
is polynomial inn. The known exponential circuit lower bounds then imply that
is bounded by a polylogarithmic function . This argument establishes the upper
bound in Theorem 1 for the case of formulas with a single fragable and has some
similarities with the proof of [8] establishing the(1)-locality of order-invariant FO.
However our proof is technically simpler and hinges on dirtawer bounds while the
argument in [8] refers to Ehrenfeucht-Fraissé games.

In order to handle an arbitrary numbeof free variables, we follow again the same
outline as [8]: we show how to reduce any case witly 1 free variables to one with
fewer variables. Our reduction is conceptually harder tti@none in [8]. Indeed the
reduction in [8] changes the size of the universe which caddree while preserving
order-invariance but makes the preservation of Arb-irarace impossible.

The proof of the upper bound in Theorem 2 follows from a reaurcto the upper
bound in Theorem 1. This strategy differs from the one usd@Jinwhich argues that
the expressive power of order-invariant FO on strings isstame as FO (and is hence
Hanfw(1)-local), because Arb-invariant KSucg can express non-FO properties.



The lower bounds in Theorems 1 and 2 follow because aritlonpe&dicates like
addition and multiplication allow one to define a bijectioatlween the elements of
a first-order definable subsét of the domain of polylogarithmic size and an initial
segment of the natural numbers [4]. Thus, (the binary repragion of) a single element
of the entire domain can be used to represent a list of elenoést By exploiting this,
Arb-invariant FO can express, e.g., reachability betweemriodes inS by a path of
polylogarithmic length.

We defer all proofs to the full paper, which may be found onah#hors’ websites.

2 Preliminaries

Arb-invariant First-Order Logic. A relational schemas a set of relation symbols
each with an associated arity./Astructure M over a relational schemais afinite set
dom(M ), thedomain containing all theslement®f M, together with an interpretation
RM of each relation symbak < 7. If U is a set of elements d¥/, thenM,;; denotes
theinduced substructure af/ onU. That is, M,y is the structure whose domainiis
and whose relations are the relationsidf restricted to those tuples containing only
elements irU.

We say that twar-structuresh and M’ areisomorphic M = M’, if there exists
a bijectionr : dom(M) — dom(M’) such that for each-ary relation symboR < r,
(a1, ag,...,a;) € RMiff (m(a1), w(az), ..., m(ax)) € RM'. We write : M = M’
to indicate thatr is an isomorphism that magd to M’. If a andb are tuples (of the
same length) of distinguished elementsdoim(A/) anddom(M’), respectively, then
we write (M, a) = (M’,b) to indicate that there is an isomorphism: M = M’
which mapsa to b. All classes of structures considered in this paper areedamder
isomorphisms.

Fix an infinite schema,y,, containing a binary symbet together with a symbol
for each numerical predicate. For instangg, contains a symbot for addition, for
multiplication, and so on. Each numerical predicate is ioifly associated, for every
n € N, with a specific interpretation as a relation of the apprateriarity over the
domain[n] := {1,2,...,n}. For instancet is associated with the restriction ¢ of
the classical relation of addition ovBlr Reciprocally for each such family of relations,
oarb CONtains an associated predicate symbol.

Let M be ar-structure anch = |dom(M)|. An Arb-expansion of\/ is a structure
M’ over the schema consisting of the disjoint uniorr@ndo gy, such thadom(M) =
dom(M’), M and M’ agree on all relations in, and< is interpreted as a linear order
overdom(M). This interpretation induces a bijection betweknm( /) and[n], identi-
fying each element o/’ with its index relative to<. All the numerical predicates are
then interpreted ovetom( M) via this bijection and their associated interpretatiorrove
[n]. For instance;t is the ternary relation containing all tuplés, b, ¢) of dom(M’)3
such that + j = k, wherea, b, andc are respectively thé", j** andk'* elements of
dom(M’) relative to<. Note thatM’ is completely determined hy/ and the choice of
the linear ordex ondom(M).

We denote by FOr) the first-order logic with respect to the schemale use the
standard syntax and semantics for FO (cf., e.g., [12]).i a formula, we writep(x)



to denote that is a list of the free variables af. We write (M, a) when we want to
emphasize the fact thatare distinguished elements bf. We also writeM |= ¢(a) or
(M, a) E ¢(x) to express that the tuple of elements irdom()/) makes the formula
¢(x) true oniM.

We denote by FOr, Arb) the set of first-order formulas using the schema o,
A formula ¢(x) of FO(r, Arb) is said to beArb-invariant on a finite structuré/ over
the schema, if for any tuplea of elements oflom(M/), and any two Arb-expansions
M'"andM" of M we have

M Egla) < M"E da). (1)

Wheng(x) is Arb-invariant with respect to all finite structurd¢ over a schema,
we simply say thap(x) is Arb-invariant.

When ¢(x) is an Arb-invariant formula of FQ-, Arb) on M, we write M E
¢(a) whenever there is an Arb-expansidd’ of M such thatM’ &= ¢(a). Hence
Arb-invariant formulas can be viewed as formulas ovestructures. We denote by
Arb-invariant FQ7) the set of Arb-invariant formulas of F@, Arb), or simply Arb-
invariant FO ifr is clear from the context. When the formula uses only the ipegd<
of o4, We have the classical notion of order-invariant FO (seaf&] [12]).

Locality. To each structurd/ we associate an undirected graph)M ), known as the
Gaifman graphof M, whose vertices are the elements of the domaif/odnd whose
edges relate two elements bf whenever there exists a tuple in one of the relations of
M in which both appear. For example, consider a relationaiseh consisting of one
binary relation symboFE. Eachr-structureM is then a directed graph in the standard
sense, and (M) coincides with)M when ignoring the orientation. Given two elements
u andw of a structureM, we denote adist" (u, v) the distance betweanandv in M
which is defined as their distance in the Gaifman gréfffi/). If a andb are tuples
of elements of\/, thendist* (a, b) denotes the minimum distance between any pair of
elements (one from and one frond).

For everyr € N and tuplea € dom(M ), ther-ball arounda in M is the set

NM(a) := {vedomM):dist”(a,v) <r}.
and ther-neighborhood around in M is the structure
NTM(a) = (]\/[‘NTZ‘\/I(O‘) s a),

NM(a) is the induced substructure 8f on N M (a) with k distinguished elements
Gaifman Locality.Let f be a function fromN to R.,. A formula ¢(x) is said to be
Gaifmanf-local with respect to an infinite class of structusesif there exists,y € N
such that for anyr > ny, for any structured € M with n = |dom(M)|, and any
tuplesa andb we have

Nilw(a) 2 NG (b) = M = ¢(a) iff M = ¢(b). (2)

For a set of functiong’, a formula is said to be Gaifman-local if it is Gaifmany-local
foreveryf € F.



Hanf Locality.Let f be a function fronN toR..,. For any twor-structuresh, M’ with
domain sizen we write M =,y M’ if there is a bijectiorh : dom(M) — dom(M')
such that for all elementsin the domain of\/ we haveN}(, \(a) = J\/M’ (h(a)).

A sentence) is said to be Hanf-local if there is ang such that for aI -structures
M, M’ with domain sizen > ng we have

For a set of functiong”, a sentence is said to be Hafiflocal if it is Hanf f-local for
everyf e F.

Circuit complexity. We assume basic familiarity with Boolean circuits.fémily of
circuitsis a sequencé’,, )men such that for alln € N, C,, is a circuit usingn input
variables, hence defining a function froffi, 1}™ to {0,1}. We say that a language
L C {0,1}* is accepted by a family of circuits”,, )men if for all m € N and for all
binary wordsw of lengthm, C,,(w) = 1iff w € L.

When dealing with structures as inputs we need to encodérnidsres as strings.
The precise encoding is not relevant for us as long as it isgeanough. We denote by
Rep(M) the set of all binary encodings 8f . Similarly, if a is a tuple of distinguished
elements of\/, thenRep(M, a) denotes the set of all binary encodingg 8f, a).

AC' and FO(r, Arb). A IanguageL is in (nonuniform) AC if there exists a family
of circuits (C,, )men acceptingL, a constant! € N, and a polynomial functiop(m)
such that for alln € N each circuitC,,, has depthi and size at most(m). There is
a strong connection between A@nd FQr, Arb) [11]. We make use of the following
characterization with respect to Arb-invariant FOArb).

Lemma 3 (Implicit in [11]). Let ¢(x) be ak-ary FO(r, Arb) formula which is Arb-
invariant on a class of-structuresM. There exists a family of constant-depth and
polynomial-size circuit$C,, )nen such that for each € M, a € domM)*, and
I € Rep(M, a),

Crl) =1 < MEda).

Lower boundsQur locality bounds hinge on the well-known exponentiakdiawer
bounds for constant-depth circuits that compute parit$][17, 9]. In fact, we use the
following somewhat stronger promise version. For a binagrdw € {0,1}*, we let
|w|1 denote the number dfs in w.

Lemma 4 (Implicitin [9, Theorem 5.1]). For anyd € N, there are constantsandm,

_1
such that forn > my there is no circuit of depth and size2°™“~" thatw € {0, 1}?™
accepts allinputs € {0, 1}2™ with |w|; = m and rejects all inputs withw|, = m+1.

3 Gaifman Locality

We now prove the main result of the paper — the upper bound aofiém 1. Recall,
our theorem claims that every Arb-invariant FO formula isf@an (logn)~")-local.
In fact we prove the following slightly stronger version.



Theorem 5. For anyFO(r, Arb) formula¢(x), and infinite class\ of r-structures, if
¢(x) is Arb-invariant onM, theng(z) is Gaifman(log n)~)-local on M.

We now briefly sketch the overall proof of Theorem 5. Supposérawe two tuples,
a andb, on ar-structure M, with domain sizen, such that their-neighborhoods,
NM(a) and VM (b), are isomorphic (for some big enough Suppose that there is
a FQ(r, Arb) formula¢(x) which is able to distinguish betweenandb on M while
being Arb-invariant on\/. Using the link between Arb-invariant K@, Arb) formulas
and AC circuits from Lemma 3, we can view the formuldz) as a constant-depth
circuit C.

We are able to show that becausier) is Arb-invariant and distinguishes between
a andb on M, we can construct from the circuit and structure\/ another circuitC
that for(2m)-length binary stringsv distinguishes between the cases whetontains
m occurrences of andm + 1 occurrences, for some depending om. This is thekey
stepin our argument. If this happens for infinitely manywe get a family of circuits
computing the promise problem described in Lemma 4. We cgneathat the size of
C is polynomial inn and the depth of’ only depends ow(x) and hence is constant.
Therefore ifm € (logn)~") the family of circuitsC' we construct violates Lemma 4
hencep(x) cannot distinguish between tuples which have isomorpinieighborhoods.
Our construction is such that is linearly related ta- and therefore(x) is Gaifman
(logn)“M-local.

3.1 Unary Formulas

In this subsection we consider only unary FO formup&s). For didactic reasons we
first assume that the-neighborhoods of the elemenisandb are disjoint. We argue
that we can perform the key step in this setting, then consgidegeneral unary case.
We conclude by arguing a unary version of Theorem 5.

For clarity we describe the intuition with respect to stures that are graphs. L&t
be a graptG = (V, E) and take two vertices, b € V such thatr : N'¢(a) =2 NS (b).
Suppose, for the sake of contradiction, that there is a uR@nformula¢(z), which
is Arb-invariant onG, such thatG E ¢(a) A —=¢(b). Applying Lemma 3 top gives
us a circuitC' which, for any vertex: € V, outputs the same value for all strings in
Rep(G, ¢), and distinguisheBep(G, a) from Rep(G, b).

Disjoint neighborhoods. Let us assume tha¥'%(a) N V% (b) = 0. In this setting it
turns out we can pick = m. The neighborhood isomorphism,: N'%(a) = N (b),
implies that the balls of radius< r arounda andb are isomorphic and disjoint i6v.
Consider the following procedure, depicted in Figure 1. §@mme: € [m] cut all the
edges linking nodes at distan¢e- 1 from a or b to nodes at distance Now, swap
the positions of th¢: — 1)-neighborhoods aroundandb and reconnect the edges in
a way that respects the isomorphismThe resulting graph is isomorphic &, but the
relative positions ofi andb have swapped.

Using this intuition we construct a new gragh, from G, a, andb that depends
on a sequence ofi Boolean variables := wjws - - - w,,. We constructz,, so that
for each variablev;, we swap the relative positions of the radius 1 balls around:



Fig. 1. Diagram for swapping the neighborhoodsacéindb of radiusé, conditioned onw; = 1.

andb iff w; is 1. The number of such swaps|is|;. Them-neighborhood isomorphism
betweern andb implies thatG,, & G. When|w|; is even(G, a) = (G, a) and when
|wly is 0dd(Gy, a) = (G, b).

Using the above construction 6f,, we derive a circuitC' from C' that computes
parity onm bits. The circuitC first computes a representatidh, € Rep(G.,,a), and
then simulate€” on input’,,. The above distinguishing property then implies tBat
computes parity om bits. To construct’,, we start with a fixed string iRep(G, a) and
transform it into an element dtep(G,,, a) by madifying the edges to switch between
the shells in the manner suggested above. Observe thatabenme of each edgeds,
depends on at most a single bit:of This property implies thaf’,, consists of constants
and variables inv or their negations. This means th@itis no larger or deeper tha.

We formalize this intuition for general structures and abtae following lemma.

Lemma 6. Letm € N. LetM be a structure. Let, b € dom(M) such thatdist (a, b) >
2m and N M (a) = NM(b). Let C be a circuit that accepts all strings iRep(M, a),
and rejects all strings iRep(M, b). There is a circuit”' with the same size and depth
asC that computes parity om bits.

General Unary Case We now develop the transformation corresponding to Lemma 6
for the general unary case, where theeighborhoods aroundandb may overlap. As
before, we describe the intuition in terms of structures #na graphs.

Consider the iterative application of the isomorphisnto a. We distinguish be-
tween two cases. The first case occurs when this iteratigalg&ar froma. That is, for
somet € N, nt(a) is a pointc that is far froma. We choose- large enough so that a
large neighborhood aroundis isomorphic to the neighborhood arouadr b. By the
triangle inequality, since is far fromc either:b is far froma, or c is far froma and
b. In the latter cas€' must distinguish between eitherandc or b andc. Therefore,
w.l.0.g., we have a pair of vertices that are distinguishgd’ and whose neighbor-
hoods are isomorphic and disjoint. For this pair of vertjeses are in the disjoint case
and Lemma 6 can be applied to produce a small circuit that coesgparity.

The other case occurs when the iterative application tuf o stays close ta (and
b). Let Sy be the orbit ofe underr, and letS; be the vertices at distan¢dérom Sy, for
i € [2m]. Becauser(Sy) = Sp andr is a partial isomorphism o6, the shellsS; are
closed undett.

We now play a game similar to the disjoint case. Considerdheviing procedure,
depicted in Figure 2. For somec [2m] cut all edges between the shéll_; and S;.



Fig. 2. Diagram for rotating the shell of radidsaroundS, whenw; = 1.

“Rotate” the radiug — 1 ball aroundS, by = relative toS;, and reconnect the edges.
Because the shells are closed undgthe resulting graph is isomorphic . Further,
the positions ofi andb have shifted relative to an applicationof

As before, we encode this behavior into a modified gr&ghdepending on a se-
quence oRm Boolean variables := wyws - - - wa,,. Whenw; = 0, we preserve the
edges between the shells_; andS;. Whenw; = 1 we rotate the edges hy. That
is, an edge(v1,v2) € (S;—1 x S;) N E becomes the edg@, 7(v2)) in G,. The
neighborhood isomorphism betweemndb implies thatG = G,,. We can argue that

(Gu,a) = (G, 7" (a)). (4)

We define the circui€ to simulateC on an inputl’,, € Rep(G,,a). The above distin-

guishing property implies that distinguishes betwedm|; = 0 mod |Sy| and|w|; =

1 mod |Sy|. This is not quite the promise problem defined in Lemma 4. Rix tea-

son we modify the construction to shiftby m applications ofr—! in I,,. This means

that I, € Rep(Gw, 7 " (a)) andC can distinguish betweem|; = m mod |Sy| and

|wli = m + 1 mod |Sy|. This is ruled out by Lemma 4, completing the argument.
For general structures, the idea is formalized in the foll@iemma.

Lemma 7. Letm € N. LetM be a structure. Let, b € dom(M) such thatV¥  (a) =
N (b). LetC be a circuit that accepts all strings iRep(M, a) and rejects all strings
in Rep(M, b), and for eachc € dom M), C has the same output for each string in
Rep(M,c). There is a circuitC’ with the same size and depth @sthat distinguishes
|lwl;y = m and|w|; = m + 1 forw € {0, 1}*™.

Proof of Theorem 5 in the case of unary formulasNow that we know how to con-
struct the circuitC’ as in Lemmas 6 and 7, we are ready to finish the proof of Theo-
rem 5 in the unary case. Assume thidtr) is a unary formula of FOr, Arb) that is
Arb-invariant with respect to an infinite classofstructuresm.

Since ¢(z) is FO(r, Arb), it is computable by a family of circuits in AC(cf.,
Lemma 3). Thatis, there are a constdypolynomialss(n) andr(n), and a circuit fam-
ily (Cy(n))nen with depthd and sizes(n) such that, for every. € N, the circuitC.,,)
computesy(z) on structures\/ € M with |[dom(M )| = n andr(n) bounds the length
of the binary encoding ofM, a) for anya € dom(M). Sinceg(x) is Arb-invariant on
M, C, () has the same output for all stringsiep(M, a) for eacha € dom(M).

Now, for the sake of contradiction, suppasgr) is not Gaifman(log n)“("-local
on M. This implies that there is an infinite subclass of strucutd’ C M and a



function f(n) in (logn)“("), where for each € M’, ¢(x) distinguishes between two
elements:, b € dom(M) having isomorphicf (n)-neighborhoods.

Consider some structut®l € M’, with n = |dom(M)|. Letm := L%J. By
the above, there exists b € domM) such that\7Y, (a) = NY (b) and M
$(a) A —¢(b) without loss of generality. Let’ := C,.(,,); this circuit then satisfies the
assumptions of Lemma 7. From the lemma, we obtain a citéuf depthd and size
s(n) that distinguishes betweén|; = m and|w|; = m + 1 forw € {0,1}?>™.

From Lemma 4 we obtain tha(n) > 2°™"“""_ Noting thatm = (logn)~®,

s is polynomial, and{ is constant, this yields a contradiction by choosifge M’
sufficiently large, completing the proof. a

3.2 k-ary Formulas

To argue Theorem 5 in the case of formulas with an arbitramnimer of free vari-
ables, we prove the following reduction. Givenkeary FQ(Arb) formula ¢ that is
Arb-invariant on the structuré/ and distinguishes twé-tuplesa and b that have
isomorphicr-neighborhoods, we produce, for soide< k, ak’-ary formula FQArb)
¢’ that is Arb-invariant on an extended structit€ and distinguishes between it
tuplesa’ andb’ that have isomorphic’ -neighborhoods. Furthermoré,is only slightly
smaller tharr. The formal statement of the reduction is as follows.

Lemma 8. Letk,d € N, r a function fromN to R.,, andr be a schema. Fix < %k
Leto(x) be ak-ary FO(r, Arb) formula of quantifier-deptt that is Arb-invariant over
an infinite class of-structuresM and that is not Gaifman-local.

Then there ig’ < k, a schema”’ D 7, an infinite class of’-structuresM’ and a
k'-ary FO(7’, Arb) formula¢’ (y) of quantifier-depttid+ (k—%’)) that is Arb-invariant
over M’ and not Gaifmarr-local.

Repeated application of this lemma transforms a distirguoigst-ary formula into a
distinguishing unary formula with slightly weaker paraerst For large enough initial
radius this is sufficient to contradict the Gaifman locatifyjunary formulas.

4 Hanf Locality

The main result of this section is the upper bound in Theorgwhich states that Arb-
invariant FO formulas over strings are Haldg )<(")-local.

Fix a finite alphabef\ and consider structures over the schemaontaining one
unary predicate per element &f and one binary predicatE. Let S be the class of
T-StructuresM that interpretsk as a successor relation and where each element of
M belongs to exactly one of the unary predicates.nEach structure il represents
a string in the obvious way and we blur the distinction betweestringw and its
actual representation as a structure. We then considérsRQo4y,) formulas that are
Arb-invariant overS and denote the corresponding set of formulas by Arb-inwaria
FO(Sucg. We say that a language C A* is definable in Arb-invariant FCBucg if
there is a sentence of Arb-invariant F8ucg whose set of models if is exactlyL.



The proof of the upper bound in Theorem 2 has several stepdirsténtroduce
a closure property of languages allowing, under certairdit@mns, substrings inside a
word to be swapped without affecting language membershgth&n argue that lan-
guages definable in Arb-invariant FSucg have this closure property. Finally, we con-
clude by proving that this closure property implies that Ameariant FGSucg sen-
tences are Hanflogn)“("-local. In the following, we describe these steps in some
more detail.

Arb-invariant FO (Succ) is Closed Under Swaps.Let f : N — R.,. A languagel
is said to beclosed undelf (n)-swapsif there exists avy € N such that for all strings
w = zuyvz € A*, with jlw| = n > ng, and where;, j,4/, andj’ are, respectively,
the positions inw immediately before the substringsy, v, andz, andj\/}”(n)(i) =

Foy (@) andj\/}”(n)(j) = ./\/'}”(n)(j’) we havew := zuyvz € Liff w' := zvyuz € L.
A language is closed undét-swaps if is it closed undef(n)-swaps for allf € F.

Let ¢ be an Arb-invariant FCSucg sentence. Suppose the stringsndw’ satisfy
the initial conditions for closure undétog n)~(1)-swaps, but are distinguished by
We first consider the case when the fgi{rn)-neighborhoods of, j, ', j' are disjoint.
In this case not only do the neighborhoods around the stringsdv look same, but
u andv are far apart. We define a F@rb) formula« derived from¢ and a structure
M derived fromw andw’, such that) on M simulatesp on eitherw or w’ depend-
ing on the input ta). Moreover, is Arb-invariant onM and the input tuples that
distinguishes have large isomorphic neighborhoods, eagtiy the neighborhood iso-
morphisms among 7, 4’, andj’. Applying our Gaifman locality theorem (Theorem 1)
to the formulay induces a contradiction.

When the neighborhoods are not disjoint we reduce to theidisjase by making
two key observations. The first is that when some of the neigidnds overlap only a
small amount there is freedom to select slightly smalleghleorhoods that are pairwise
disjoint, though still induce the same swap. The secongliriss that when several of
the neighborhoods have considerable overlap, the neigbbdrisomorphisms induce
periodic behavior within those neighborhoods. So much abttie substringayv and
vyu must be identical. This contradicts the fact thedndw’ are distinct. This intuition
is formalized in the following lemma.

Lemma 9. If L is a language definable in Arb-invariafO(Sucg then L is closed
under(logn)~1)-swaps.

Arb-invariant FO (Succ) is Hanf (logn)“()-local. We are now ready to prove the
upper bound of Theorem 2. Consider a pair of equal lengthgsriv, w’ such that

w =y, w' for some bijectior. Observe that it = w’, we can chooseé to be the
identity. The identity mapping is monotone in the senseftiraach position € [n], for

allj <, h(j) < h(i). Whenw # w', h is not the identity and not monotone. However,
h is monotone when considering only the first position. We rdtihe set which is
monotone on bylog n)~(*)-swapping substrings ab while being careful to preserve
the bijection tow’. Eventually becomes monotone with respect to all positions and
is the identity. The final insight is this, if we only perforftog n)~(1)-swaps language
membership is maintained by Lemma 9. Thus, we transforméssrtw andw’ without



changing language membership,sc L iff w’ € L. Hence Arb-invariant FGBucg
is Hanf(log n)~(W-local.

5 Discussion

We have established the precise level of locality of Arbai@nt FO formulas for the
Gaifman notion of locality. We leave it as an open problem thbethe same bounds
could be achieved for the Hanf notion of locality. We manatgegrove Hanf locality
for the special case of strings and we believe that a simifguraent also works for
trees and possibly graphs of bounded treewidth.

As pointed out in [7] “it would be interesting to see a smalhmaexity class like
uniform AC? [...] can be captured by a logic” (recall from the introdectthat although
Arb-invariant FO does capture ACit does not have an effective syntax). As a (simple)
first step towards a solution to this problem, in the jourrabion of this paper we will
show thabver regular language#rb-invariant FQSucg has exactly the same expres-
sive power as FCsucclm), wherelm is the family of predicates testing the length of
a string modulo some fixed number. Note that when combinirsg#sult with the one
of [15], this shows all the numerical predicates do not bang extra expressive power
than the one of addition over regular languages.
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