
Locality of queries definable in invariant first-order
logic with arbitrary built-in predicates

Matthew Anderson1,∗, Dieter van Melkebeek1,∗, Nicole Schweikardt2, Luc Segoufin3

1 University of Wisconsin - Madison, USA
{mwa,dieter}@cs.wisc.edu

2 Goethe-Universität Frankfurt am Main, Germany
schweika@informatik.uni-frankfurt.de

3 INRIA and ENS-Cachan, LSV, France
http://www-rocq.inria.fr/∼segoufin

Abstract. We consider first-order formulas over relational structures which may
use arbitrary numerical predicates. We require that the validity of the formula is
independent of the particular interpretation of the numerical predicates and refer
to such formulas as Arb-invariant first-order.
Our main result shows a Gaifman locality theorem: two tuplesof a structure with
n elements, having the same neighborhood up to distance(log n)ω(1), cannot be
distinguished by Arb-invariant first-order formulas. Whenrestricting attention to
word structures, we can achieve the same quantitative strength for Hanf locality.
In both cases we show that our bounds are tight.
Our proof exploits the close connection between Arb-invariant first-order formu-
las and the complexity class AC0, and hinges on the tight lower bounds for parity
on constant-depth circuits.

1 Introduction

Definability in logics plays an important and delicate role in model checking, a central
tool in several areas of computer science such as databases and automated verification.
The problem consists in testing whether a given structure satisfies a certain property
expressed in the logic. On the one hand, wider expressibility allows for more efficient
implementations of a given property. On the other hand, limits on the expressibility keep
the model checking task tractable and may be desirable for other reasons. For example,
a database can be stored on a disk, which induces a linear order on the elements. An
implementation of a query may exploit this order for loopingthrough all the elements of
the structure and performing all kinds of numerical computations. At the same time, the
result of the query should only depend on the database and noton the linear order that is
specific to its current representation on disk. In the database context this requirement is
known as thedata independence principle. In logic we usually speak ofclosure under
isomorphisms.

In order to capture such requirements, we consider finite relational structures and
queries expressed using first-order (FO) formulas which also have access to a binary
predicate that is always interpreted as a linear order on thedomain of the relational

∗Partially supported by NSF grants 0728809 and 1017597.

structures. We accommodate numerical computations by alsoallowing arbitrary nu-
merical predicates in the logic. We require that the result of a query not depend on the
actual choice of the linear order when all numerical predicates are interpreted consistent
with the linear order. We refer to this logic asArb-invariantFO. The special case where
the query does not use any numerical predicate except for thelinear order coincides
with the well-known notion oforder-invariantFO (cf., e.g., [12]).

In terms of computational power, Arb-invariant FO expresses precisely the prop-
erties computable within the complexity class AC0, and when restricting to formulas
using only the numerical predicates to+ and∗ it corresponds to the uniform version
of AC0 [11]. In particular, Arb-invariant FO is for AC0 what Arb-invariant Least Fixed
Point logic (LFP) is forP/poly [14], and(+, ∗)-invariant FO is for uniform AC0 what
order-invariant (LFP) is for PTime [16, 10]. Note that+ and∗ are definable in order-
invariant LFP and therefore can be omitted from the syntax, but this is no longer the case
when considering first-order logic. It should be noted, however, that Arb-invariant FO
and order-invariant LFP are “logical systems” rather than “logics” in the strict formal
sense, as their syntax is undecidable (cf., e.g., [12]).

In this paper we study the expressive power of Arb-invariantFO and therefore the
power of the complexity class AC0. More precisely, we investigate the locality of Arb-
invariant FO queries. Locality is a central notion in the study of first-order formulas. It
provides good intuition for the expressive power of such formulas, and a powerful tool
for showing inexpressibility. For instance, any non-localproperty such as acyclicity,
connectivity, ork-colorability can immediately be shown non-expressible ina logic
that exposes a certain amount of locality (see, e.g., [12, Chapter 4]). Locality is also
exploited in an essential way in the design of efficient algorithms for evaluating first-
order definable queries on certain classes of structures [3,5].

There are two important notions of locality, known asGaifman localityandHanf
locality. Both are based on the distance measure on the elements of a structure when
viewed as the vertices of the structure’s Gaifman graph (in which two elements are con-
nected by an edge whenever they appear together in a tuple of one of the structure’s
relations). In a nutshell, Gaifman locality means that a query cannot distinguish be-
tween two tuples having the same neighborhood type in a givenstructure, while Hanf
locality means that a query cannot distinguish between two structures having the same
(multi-)set of neighborhood types. Here, the neighborhoodtype of a tuple refers to the
isomorphism type of the substructure induced by the elements up to distancer from the
tuple, wherer is a parameter. It is known that Hanf locality implies Gaifman locality,
modulo a constant factor loss in the distance parameterr (cf., e.g., [12, Theorem 4.11]).

A well-known result (see, e.g., [12]) shows that FO enjoys both Hanf and Gaifman
locality with a “constant” parameterr, i.e. depending only on the query. In the sequel
we refer to this property asω(1)-locality. In the presence of an extra linear order that
is part of the structure, all neighborhoods of positive radius degenerate to the entire
domain, so all queries are trivially 1-local. Locality becomes meaningful again in order-
invariant FO, where the formulas can make use of an order, butthe structure does not
contain the order and the semantics are independent of the order. It is shown in [8] that
order-invariant FO queries are Gaifmanω(1)-local. When we allow arbitrary numerical
predicates,ω(1)-locality turns out to fail, even if we require Arb-invariance. However,

by allowing the parameterr to depend on the numbern of elements of the structure, we
provide an essentially complete picture in the case of Gaifman locality.

Theorem 1. Arb-invariantFO formulas are Gaifman(logn)ω(1)-local, and for every
c ∈ N there exists an Arb-invariantFO formula that is not Gaifman(logn)c-local.

The upper bound in Theorem 1 means that for any query in Arb-invariant FO and any
large enough numbern, if a structure hasn elements and if two tuples of that structure
have the same neighborhood up to distance(log n)f(n) for any functionf ∈ ω(1), then
they cannot be distinguished by the query.

As in the case of order-invariant FO ([8]), the Hanf localityof Arb-invariant FO
queries is still open in general. However if we restrict our attention to structures that
represent strings, we can establish Hanf locality with the same bounds as in Theorem 1.
Recall that order-invariant FO is known to be Hanfω(1)-local over strings [2]. In the
following statement, Arb-invariant FO(Succ) refers to Arb-invariant queries over string
structures.

Theorem 2. Arb-invariantFO(Succ) sentences are Hanf(logn)ω(1)-local, and for ev-
ery c ∈ N there exists an Arb-invariantFO(Succ) sentence that is not Hanf(logn)c-
local.

Proof Techniques.The proof of the upper bound on Gaifman locality in Theorem 1
exploits the tight connection between Arb-invariant FO formulas and the complexity
class AC0. The notion of locality in logic has a similar flavor to the notion of sensitivity
in circuit complexity, and AC0 is known to have low (polylogarithmic) sensitivity [13].
The latter result is closely related to the exponential lower bounds for parity on constant-
depth circuits [9]. Rather than going through sensitivity,our argument directly uses the
circuit lower bounds, namely as follows.

Given an Arb-invariant FO formulaϕ that distinguishes two points of the universe
whose neighborhoods are of the same type up to distancer, we construct a circuit on
2m = Θ(r) inputs that distinguishes inputs with exactlym ones from inputs with
exactlym + 1 ones. In the special case of disjoint neighborhoods the circuit actually
computes parity. The depth of the circuit is a constant depending onϕ, and its size
is polynomial inn. The known exponential circuit lower bounds then imply thatr
is bounded by a polylogarithmic function inn. This argument establishes the upper
bound in Theorem 1 for the case of formulas with a single free variable and has some
similarities with the proof of [8] establishing theω(1)-locality of order-invariant FO.
However our proof is technically simpler and hinges on circuit lower bounds while the
argument in [8] refers to Ehrenfeucht-Fraı̈ssé games.

In order to handle an arbitrary numberk of free variables, we follow again the same
outline as [8]: we show how to reduce any case withk > 1 free variables to one with
fewer variables. Our reduction is conceptually harder thanthe one in [8]. Indeed the
reduction in [8] changes the size of the universe which can bedone while preserving
order-invariance but makes the preservation of Arb-invariance impossible.

The proof of the upper bound in Theorem 2 follows from a reduction to the upper
bound in Theorem 1. This strategy differs from the one used in[2], which argues that
the expressive power of order-invariant FO on strings is thesame as FO (and is hence
Hanfω(1)-local), because Arb-invariant FO(Succ) can express non-FO properties.

The lower bounds in Theorems 1 and 2 follow because arithmetic predicates like
addition and multiplication allow one to define a bijection between the elements of
a first-order definable subsetS of the domain of polylogarithmic size and an initial
segment of the natural numbers [4]. Thus, (the binary representation of) a single element
of the entire domain can be used to represent a list of elements ofS. By exploiting this,
Arb-invariant FO can express, e.g., reachability between two nodes inS by a path of
polylogarithmic length.

We defer all proofs to the full paper, which may be found on theauthors’ websites.

2 Preliminaries

Arb-invariant First-Order Logic. A relational schemais a set of relation symbols
each with an associated arity. Aτ -structureM over a relational schemaτ is afiniteset
dom(M), thedomain, containing all theelementsofM , together with an interpretation
RM of each relation symbolR ∈ τ . If U is a set of elements ofM , thenM|U denotes
the induced substructure ofM onU . That is,M|U is the structure whose domain isU
and whose relations are the relations ofM restricted to those tuples containing only
elements inU .

We say that twoτ -structuresM andM ′ are isomorphic, M ∼= M ′, if there exists
a bijectionπ : dom(M) → dom(M ′) such that for eachk-ary relation symbolR ∈ τ ,
(a1, a2, . . . , ak) ∈ RM iff (π(a1), π(a2), . . . , π(ak)) ∈ RM ′

. We writeπ : M ∼= M ′

to indicate thatπ is an isomorphism that mapsM toM ′. If a andb are tuples (of the
same length) of distinguished elements ofdom(M) anddom(M ′), respectively, then
we write (M,a) ∼= (M ′, b) to indicate that there is an isomorphismπ : M ∼= M ′

which mapsa to b. All classes of structures considered in this paper are closed under
isomorphisms.

Fix an infinite schemaσarb, containing a binary symbol< together with a symbol
for each numerical predicate. For instanceσarb contains a symbol+ for addition,∗ for
multiplication, and so on. Each numerical predicate is implicitly associated, for every
n ∈ N, with a specific interpretation as a relation of the appropriate arity over the
domain[n] := {1, 2, . . . , n}. For instance+ is associated with the restriction on[n] of
the classical relation of addition overN. Reciprocally for each such family of relations,
σarb contains an associated predicate symbol.

LetM be aτ -structure andn = |dom(M)|. An Arb-expansion ofM is a structure
M ′ over the schema consisting of the disjoint union ofτ andσarb such thatdom(M) =
dom(M ′), M andM ′ agree on all relations inτ , and< is interpreted as a linear order
overdom(M). This interpretation induces a bijection betweendom(M) and[n], identi-
fying each element ofM ′ with its index relative to<. All the numerical predicates are
then interpreted overdom(M ′) via this bijection and their associated interpretation over
[n]. For instance,+ is the ternary relation containing all tuples(a, b, c) of dom(M ′)3

such thati + j = k, wherea, b, andc are respectively theith, jth andkth elements of
dom(M ′) relative to<. Note thatM ′ is completely determined byM and the choice of
the linear order< ondom(M).

We denote by FO(τ) the first-order logic with respect to the schemaτ . We use the
standard syntax and semantics for FO (cf., e.g., [12]). Ifφ is a formula, we writeφ(x)

to denote thatx is a list of the free variables ofφ. We write(M,a) when we want to
emphasize the fact thata are distinguished elements ofM . We also writeM |= φ(a) or
(M,a) |= φ(x) to express that the tuplea of elements indom(M) makes the formula
φ(x) true onM .

We denote by FO(τ,Arb) the set of first-order formulas using the schemaτ ∪ σarb.
A formulaφ(x) of FO(τ,Arb) is said to beArb-invariant on a finite structureM over
the schemaτ , if for any tuplea of elements ofdom(M), and any two Arb-expansions
M ′ andM ′′ of M we have

M ′ |= φ(a) ⇐⇒ M ′′ |= φ(a). (1)

Whenφ(x) is Arb-invariant with respect to all finite structuresM over a schema,
we simply say thatφ(x) is Arb-invariant.

When φ(x) is an Arb-invariant formula of FO(τ,Arb) on M , we write M |=
φ(a) whenever there is an Arb-expansionM ′ of M such thatM ′ |= φ(a). Hence
Arb-invariant formulas can be viewed as formulas overτ -structures. We denote by
Arb-invariant FO(τ) the set of Arb-invariant formulas of FO(τ,Arb), or simply Arb-
invariant FO ifτ is clear from the context. When the formula uses only the predicate<
of σarb, we have the classical notion of order-invariant FO (see [8]and [12]).

Locality. To each structureM we associate an undirected graphG(M), known as the
Gaifman graphof M , whose vertices are the elements of the domain ofM and whose
edges relate two elements ofM whenever there exists a tuple in one of the relations of
M in which both appear. For example, consider a relational schemaτ consisting of one
binary relation symbolE. Eachτ -structureM is then a directed graph in the standard
sense, andG(M) coincides withM when ignoring the orientation. Given two elements
u andv of a structureM , we denote asdistM (u, v) the distance betweenu andv in M
which is defined as their distance in the Gaifman graphG(M). If a andb are tuples
of elements ofM , thendistM (a, b) denotes the minimum distance between any pair of
elements (one froma and one fromb).

For everyr ∈ N and tuplea ∈ dom(M)k, ther-ball arounda in M is the set

NM
r (a) := {v ∈ dom(M) : distM (a, v) ≤ r}.

and ther-neighborhood arounda in M is the structure

NM
r (a) :=

(

M|NM
r (a) , a

)

.

NM
r (a) is the induced substructure ofM onNM

r (a) with k distinguished elementsa.

Gaifman Locality.Let f be a function fromN to R≥0. A formula φ(x) is said to be
Gaifmanf -local with respect to an infinite class of structuresM if there existsn0 ∈ N

such that for anyn > n0, for any structureM ∈ M with n = |dom(M)|, and any
tuplesa andb we have

NM
f(n)(a) ∼= NM

f(n)(b) =⇒ M |= φ(a) iff M |= φ(b). (2)

For a set of functionsF , a formula is said to be GaifmanF -local if it is Gaifmanf -local
for everyf ∈ F .

Hanf Locality.Let f be a function fromN to R≥0. For any twoτ -structuresM,M ′ with
domain sizen we writeM ≡f(n) M

′ if there is a bijectionh : dom(M) → dom(M ′)

such that for all elementsa in the domain ofM we haveNM
f(n)(a)

∼= NM ′

f(n)(h(a)).
A sentenceφ is said to be Hanff -local if there is an0 such that for allτ -structures

M,M ′ with domain sizen > n0 we have

M ≡f(n) M
′ =⇒ M |= φ iff M ′ |= φ. (3)

For a set of functionsF , a sentence is said to be HanfF -local if it is Hanf f -local for
everyf ∈ F .

Circuit complexity. We assume basic familiarity with Boolean circuits. Afamily of
circuits is a sequence(Cm)m∈N such that for allm ∈ N, Cm is a circuit usingm input
variables, hence defining a function from{0, 1}m to {0, 1}. We say that a language
L ⊆ {0, 1}∗ is accepted by a family of circuits(Cm)m∈N if for all m ∈ N and for all
binary wordsw of lengthm, Cm(w) = 1 iff w ∈ L.

When dealing with structures as inputs we need to encode the structures as strings.
The precise encoding is not relevant for us as long as it is generic enough. We denote by
Rep(M) the set of all binary encodings ofM . Similarly, if a is a tuple of distinguished
elements ofM , thenRep(M,a) denotes the set of all binary encodings of(M,a).

AC0 and FO(τ,Arb). A languageL is in (nonuniform) AC0 if there exists a family
of circuits(Cm)m∈N acceptingL, a constantd ∈ N, and a polynomial functionp(m)
such that for allm ∈ N each circuitCm has depthd and size at mostp(m). There is
a strong connection between AC0 and FO(τ,Arb) [11]. We make use of the following
characterization with respect to Arb-invariant FO(τ,Arb).

Lemma 3 (Implicit in [11]). Let φ(x) be ak-ary FO(τ,Arb) formula which is Arb-
invariant on a class ofτ -structuresM. There exists a family of constant-depth and
polynomial-size circuits(Cm)m∈N such that for eachM ∈ M, a ∈ dom(M)k, and
Γ ∈ Rep(M,a),

C|Γ |(Γ) = 1 ⇐⇒ M |= φ(a).

Lower bounds.Our locality bounds hinge on the well-known exponential size lower
bounds for constant-depth circuits that compute parity [1,6, 17, 9]. In fact, we use the
following somewhat stronger promise version. For a binary wordw ∈ {0, 1}∗, we let
|w|1 denote the number of1s in w.

Lemma 4 (Implicit in [9, Theorem 5.1]).For anyd ∈ N, there are constantsc andm0

such that form > m0 there is no circuit of depthd and size2cm
1

d−1 thatw ∈ {0, 1}2m

accepts all inputsw ∈ {0, 1}2m with |w|1 = m and rejects all inputs with|w|1 = m+1.

3 Gaifman Locality

We now prove the main result of the paper – the upper bound in Theorem 1. Recall,
our theorem claims that every Arb-invariant FO formula is Gaifman (logn)ω(1)-local.
In fact we prove the following slightly stronger version.

Theorem 5. For anyFO(τ,Arb) formulaφ(x), and infinite classM of τ -structures, if
φ(x) is Arb-invariant onM, thenφ(x) is Gaifman(log n)ω(1)-local onM.

We now briefly sketch the overall proof of Theorem 5. Suppose we have two tuples,
a and b, on a τ -structureM , with domain sizen, such that theirr-neighborhoods,
NM

r (a) andNM
r (b), are isomorphic (for some big enoughr). Suppose that there is

a FO(τ,Arb) formulaφ(x) which is able to distinguish betweena andb onM while
being Arb-invariant onM . Using the link between Arb-invariant FO(τ,Arb) formulas
and AC0 circuits from Lemma 3, we can view the formulaφ(x) as a constant-depth
circuitC.

We are able to show that becauseφ(x) is Arb-invariant and distinguishes between
a andb onM , we can construct from the circuitC and structureM another circuitC̃
that for(2m)-length binary stringsw distinguishes between the cases whenw contains
m occurrences of1 andm+ 1 occurrences, for somem depending onr. This is thekey
stepin our argument. If this happens for infinitely manyn, we get a family of circuits
computing the promise problem described in Lemma 4. We can argue that the size of
C̃ is polynomial inn and the depth of̃C only depends onφ(x) and hence is constant.
Therefore ifm ∈ (logn)ω(1) the family of circuitsC̃ we construct violates Lemma 4
henceφ(x) cannot distinguish between tuples which have isomorphicr-neighborhoods.
Our construction is such thatm is linearly related tor and thereforeφ(x) is Gaifman
(logn)ω(1)-local.

3.1 Unary Formulas

In this subsection we consider only unary FO formulasφ(x). For didactic reasons we
first assume that ther-neighborhoods of the elementsa andb are disjoint. We argue
that we can perform the key step in this setting, then consider the general unary case.
We conclude by arguing a unary version of Theorem 5.

For clarity we describe the intuition with respect to structures that are graphs. LetM
be a graphG = (V,E) and take two verticesa, b ∈ V such thatπ : NG

r (a) ∼= NG
r (b).

Suppose, for the sake of contradiction, that there is a unaryFO formulaφ(x), which
is Arb-invariant onG, such thatG |= φ(a) ∧ ¬φ(b). Applying Lemma 3 toφ gives
us a circuitC which, for any vertexc ∈ V , outputs the same value for all strings in
Rep(G, c), and distinguishesRep(G, a) from Rep(G, b).

Disjoint neighborhoods.Let us assume thatNG
r (a) ∩ NG

r (b) = ∅. In this setting it
turns out we can pickr = m. The neighborhood isomorphism,π : NG

r (a) ∼= NG
r (b),

implies that the balls of radiusi < r arounda andb are isomorphic and disjoint inG.
Consider the following procedure, depicted in Figure 1. Forsomei ∈ [m] cut all the
edges linking nodes at distancei − 1 from a or b to nodes at distancei. Now, swap
the positions of the(i − 1)-neighborhoods arounda andb and reconnect the edges in
a way that respects the isomorphismπ. The resulting graph is isomorphic toG, but the
relative positions ofa andb have swapped.

Using this intuition we construct a new graphGw from G, a, andb that depends
on a sequence ofm Boolean variablesw := w1w2 · · ·wm. We constructGw so that
for each variablewi, we swap the relative positions of the radiusi − 1 balls arounda

ab

v2

v1

π(v2)

π(v1)
i − 1
i

m

a b

v2

v1

π(v2)

π(v1)
0

G

a b

v2

v1

π(v2)

π(v1)

=

Fig. 1. Diagram for swapping the neighborhoods ofa andb of radiusi, conditioned onwi = 1.

andb iff wi is 1. The number of such swaps is|w|1. Them-neighborhood isomorphism
betweena andb implies thatGw

∼= G. When|w|1 is even(Gw, a) ∼= (G, a) and when
|w|1 is odd(Gw , a) ∼= (G, b).

Using the above construction ofGw we derive a circuitC̃ from C that computes
parity onm bits. The circuitC̃ first computes a representationΓw ∈ Rep(Gw, a), and
then simulatesC on inputΓw. The above distinguishing property then implies thatC̃
computes parity onm bits. To constructΓw we start with a fixed string inRep(G, a) and
transform it into an element ofRep(Gw , a) by modifying the edges to switch between
the shells in the manner suggested above. Observe that the presence of each edge inGw

depends on at most a single bit ofw. This property implies thatΓw consists of constants
and variables inw or their negations. This means thatC̃ is no larger or deeper thanC.

We formalize this intuition for general structures and obtain the following lemma.

Lemma 6. Letm ∈ N. LetM be a structure. Leta, b ∈ dom(M) such that distM (a, b) >
2m andNM

m (a) ∼= NM
m (b). LetC be a circuit that accepts all strings inRep(M,a),

and rejects all strings inRep(M, b). There is a circuitC̃ with the same size and depth
asC that computes parity onm bits.

General Unary Case.We now develop the transformation corresponding to Lemma 6
for the general unary case, where ther-neighborhoods arounda andb may overlap. As
before, we describe the intuition in terms of structures that are graphs.

Consider the iterative application of the isomorphismπ to a. We distinguish be-
tween two cases. The first case occurs when this iteration travels far froma. That is, for
somet ∈ N, πt(a) is a pointc that is far froma. We chooser large enough so that a
large neighborhood aroundc is isomorphic to the neighborhood arounda or b. By the
triangle inequality, sincea is far from c either:b is far from a, or c is far from a and
b. In the latter caseC must distinguish between eithera andc or b andc. Therefore,
w.l.o.g., we have a pair of vertices that are distinguished by C, and whose neighbor-
hoods are isomorphic and disjoint. For this pair of vertices, we are in the disjoint case
and Lemma 6 can be applied to produce a small circuit that computes parity.

The other case occurs when the iterative application ofπ to a stays close toa (and
b). LetS0 be the orbit ofa underπ, and letSi be the vertices at distancei from S0, for
i ∈ [2m]. Becauseπ(S0) = S0 andπ is a partial isomorphism onG, the shellsSi are
closed underπ.

We now play a game similar to the disjoint case. Consider the following procedure,
depicted in Figure 2. For somei ∈ [2m] cut all edges between the shellSi−1 andSi.

π(a) = baπ
−1(a)

v1π
−1(v1) π(v1)

v2π
−1(v2) π(v2)

=

aπ
−1(a)π

−2(a)

π
−1(v1)π

−2(v1) v1

v2π
−1(v2) π(v2)

S0

G

Si−1

Si

Sm

π(a) = baπ
−1(a)

v1π
−1(v1) π(v1)

v2π
−1(v2) π(v2)

Fig. 2.Diagram for rotating the shell of radiusi aroundS0 whenwi = 1.

“Rotate” the radiusi − 1 ball aroundS0 by π relative toSi, and reconnect the edges.
Because the shells are closed underπ, the resulting graph is isomorphic toG. Further,
the positions ofa andb have shifted relative to an application ofπ.

As before, we encode this behavior into a modified graphGw depending on a se-
quence of2m Boolean variablesw := w1w2 · · ·w2m. Whenwi = 0, we preserve the
edges between the shellsSi−1 andSi. Whenwi = 1 we rotate the edges byπ. That
is, an edge(v1, v2) ∈ (Si−1 × Si) ∩ E becomes the edge(v1, π(v2)) in Gw. The
neighborhood isomorphism betweena andb implies thatG ∼= Gw. We can argue that

(Gw , a) ∼= (G, π|w|1(a)). (4)

We define the circuit̃C to simulateC on an inputΓw ∈ Rep(Gw, a). The above distin-
guishing property implies that̃C distinguishes between|w|1 ≡ 0 mod |S0| and|w|1 ≡
1 mod |S0|. This is not quite the promise problem defined in Lemma 4. For this rea-
son we modify the construction to shifta bym applications ofπ−1 in Γw. This means
thatΓw ∈ Rep(Gw, π

−m(a)) andC̃ can distinguish between|w|1 ≡ m mod |S0| and
|w|1 ≡ m+ 1 mod |S0|. This is ruled out by Lemma 4, completing the argument.

For general structures, the idea is formalized in the following lemma.

Lemma 7. Letm ∈ N. LetM be a structure. Leta, b ∈ dom(M) such thatNM
12m(a) ∼=

NM
12m(b). LetC be a circuit that accepts all strings inRep(M,a) and rejects all strings

in Rep(M, b), and for eachc ∈ dom(M), C has the same output for each string in
Rep(M, c). There is a circuitC̃ with the same size and depth asC that distinguishes
|w|1 = m and|w|1 = m+ 1 for w ∈ {0, 1}2m.

Proof of Theorem 5 in the case of unary formulas.Now that we know how to con-
struct the circuitC̃ as in Lemmas 6 and 7, we are ready to finish the proof of Theo-
rem 5 in the unary case. Assume thatφ(x) is a unary formula of FO(τ,Arb) that is
Arb-invariant with respect to an infinite class ofτ -structuresM.

Sinceφ(x) is FO(τ,Arb), it is computable by a family of circuits in AC0 (cf.,
Lemma 3). That is, there are a constantd, polynomialss(n) andr(n), and a circuit fam-
ily (Cr(n))n∈N with depthd and sizes(n) such that, for everyn ∈ N, the circuitCr(n)

computesφ(x) on structuresM ∈ M with |dom(M)| = n andr(n) bounds the length
of the binary encoding of(M,a) for anya ∈ dom(M). Sinceφ(x) is Arb-invariant on
M , Cr(n) has the same output for all strings inRep(M,a) for eacha ∈ dom(M).

Now, for the sake of contradiction, supposeφ(x) is not Gaifman(log n)ω(1)-local
on M. This implies that there is an infinite subclass of structures M′ ⊆ M and a

functionf(n) in (log n)ω(1), where for eachM ∈ M′, φ(x) distinguishes between two
elementsa, b ∈ dom(M) having isomorphicf(n)-neighborhoods.

Consider some structureM ∈ M′, with n = |dom(M)|. Let m := ⌊ f(n)
12 ⌋. By

the above, there existsa, b ∈ dom(M) such thatNM
12m(a) ∼= NM

12m(b) andM |=
φ(a) ∧ ¬φ(b) without loss of generality. LetC := Cr(n); this circuit then satisfies the
assumptions of Lemma 7. From the lemma, we obtain a circuitC̃ of depthd and size
s(n) that distinguishes between|w|1 = m and|w|1 = m+ 1 for w ∈ {0, 1}2m.

From Lemma 4 we obtain thats(n) > 2cm1/(d−1)

. Noting thatm = (logn)ω(1),
s is polynomial, andd is constant, this yields a contradiction by choosingM ∈ M′

sufficiently large, completing the proof. ⊓⊔

3.2 k-ary Formulas

To argue Theorem 5 in the case of formulas with an arbitrary number of free vari-
ables, we prove the following reduction. Given ak-ary FO(Arb) formula φ that is
Arb-invariant on the structureM and distinguishes twok-tuplesa and b that have
isomorphicr-neighborhoods, we produce, for somek′ < k, ak′-ary formula FO(Arb)
φ′ that is Arb-invariant on an extended structureM ′ and distinguishes between twok′-
tuplesa′ andb′ that have isomorphicr′-neighborhoods. Furthermore,r′ is only slightly
smaller thanr. The formal statement of the reduction is as follows.

Lemma 8. Letk, d ∈ N, r a function fromN to R≥0, andτ be a schema. Fixα ≤ 1
7k

.
Letφ(x) be ak-ary FO(τ,Arb) formula of quantifier-depthd that is Arb-invariant over
an infinite class ofτ -structuresM and that is not Gaifmanr-local.

Then there isk′ < k, a schemaτ ′ ⊇ τ , an infinite class ofτ ′-structuresM′ and a
k′-aryFO(τ ′,Arb) formulaφ′(y) of quantifier-depth(d+(k−k′)) that is Arb-invariant
overM′ and not Gaifmanαr-local.

Repeated application of this lemma transforms a distinguishingk-ary formula into a
distinguishing unary formula with slightly weaker parameters. For large enough initial
radius this is sufficient to contradict the Gaifman localityof unary formulas.

4 Hanf Locality

The main result of this section is the upper bound in Theorem 2, which states that Arb-
invariant FO formulas over strings are Hanf(logn)ω(1)-local.

Fix a finite alphabetA and consider structures over the schemaτs containing one
unary predicate per element ofA and one binary predicateE. Let S be the class of
τs-structuresM that interpretsE as a successor relation and where each element of
M belongs to exactly one of the unary predicates inτs. Each structure inS represents
a string in the obvious way and we blur the distinction between a stringw and its
actual representation as a structure. We then consider FO(τs ∪ σarb) formulas that are
Arb-invariant overS and denote the corresponding set of formulas by Arb-invariant
FO(Succ). We say that a languageL ⊆ A∗ is definable in Arb-invariant FO(Succ) if
there is a sentence of Arb-invariant FO(Succ) whose set of models inS is exactlyL.

The proof of the upper bound in Theorem 2 has several steps. Wefirst introduce
a closure property of languages allowing, under certain conditions, substrings inside a
word to be swapped without affecting language membership. We then argue that lan-
guages definable in Arb-invariant FO(Succ) have this closure property. Finally, we con-
clude by proving that this closure property implies that Arb-invariant FO(Succ) sen-
tences are Hanf(logn)ω(1)-local. In the following, we describe these steps in some
more detail.

Arb-invariant FO (Succ) is Closed Under Swaps.Let f : N → R≥0. A languageL
is said to beclosed underf(n)-swaps if there exists an0 ∈ N such that for all strings
w := xuyvz ∈ A∗, with |w| = n > n0, and wherei, j, i′, andj′ are, respectively,
the positions inw immediately before the substringsu, y, v, andz, andNw

f(n)(i)
∼=

Nw
f(n)(i

′) andNw
f(n)(j)

∼= Nw
f(n)(j

′) we have:w := xuyvz ∈ L iff w′ := xvyuz ∈ L.

A language is closed underF -swaps if is it closed underf(n)-swaps for allf ∈ F .
Let φ be an Arb-invariant FO(Succ) sentence. Suppose the stringsw andw′ satisfy

the initial conditions for closure under(log n)ω(1)-swaps, but are distinguished byφ.
We first consider the case when the fourf(n)-neighborhoods ofi, j, i′, j′ are disjoint.
In this case not only do the neighborhoods around the stringsu andv look same, but
u andv are far apart. We define a FO(Arb) formulaψ derived fromφ and a structure
M derived fromw andw′, such thatψ onM simulatesφ on eitherw or w′ depend-
ing on the input toψ. Moreover,ψ is Arb-invariant onM and the input tuples thatψ
distinguishes have large isomorphic neighborhoods, implied by the neighborhood iso-
morphisms amongi, j, i′, andj′. Applying our Gaifman locality theorem (Theorem 1)
to the formulaψ induces a contradiction.

When the neighborhoods are not disjoint we reduce to the disjoint case by making
two key observations. The first is that when some of the neighborhoods overlap only a
small amount there is freedom to select slightly smaller neighborhoods that are pairwise
disjoint, though still induce the same swap. The second insight is that when several of
the neighborhoods have considerable overlap, the neighborhood isomorphisms induce
periodic behavior within those neighborhoods. So much so that the substringsuyv and
vyumust be identical. This contradicts the fact thatw andw′ are distinct. This intuition
is formalized in the following lemma.

Lemma 9. If L is a language definable in Arb-invariantFO(Succ) thenL is closed
under(log n)ω(1)-swaps.

Arb-invariant FO (Succ) is Hanf (log n)ω(1)-local. We are now ready to prove the
upper bound of Theorem 2. Consider a pair of equal length stringsw,w′ such that
w ≡f(n) w

′ for some bijectionh. Observe that ifw = w′, we can chooseh to be the
identity. The identity mapping is monotone in the sense thatfor each positioni ∈ [n], for
all j < i, h(j) < h(i). Whenw 6= w′, h is not the identity and not monotone. However,
h is monotone when considering only the first position. We extend the set whichh is
monotone on by(logn)ω(1)-swapping substrings ofw while being careful to preserve
the bijection tow′. Eventuallyh becomes monotone with respect to all positions and
is the identity. The final insight is this, if we only perform(log n)ω(1)-swaps language
membership is maintained by Lemma 9. Thus, we transform betweenw andw′ without

changing language membership, sow ∈ L iff w′ ∈ L. Hence Arb-invariant FO(Succ)
is Hanf(logn)ω(1)-local.

5 Discussion

We have established the precise level of locality of Arb-invariant FO formulas for the
Gaifman notion of locality. We leave it as an open problem whether the same bounds
could be achieved for the Hanf notion of locality. We managedto prove Hanf locality
for the special case of strings and we believe that a similar argument also works for
trees and possibly graphs of bounded treewidth.

As pointed out in [7] “it would be interesting to see a small complexity class like
uniform AC0 [...] can be captured by a logic” (recall from the introduction that although
Arb-invariant FO does capture AC0, it does not have an effective syntax). As a (simple)
first step towards a solution to this problem, in the journal version of this paper we will
show thatover regular languages, Arb-invariant FO(Succ) has exactly the same expres-
sive power as FO(Succ, lm), wherelm is the family of predicates testing the length of
a string modulo some fixed number. Note that when combining this result with the one
of [15], this shows all the numerical predicates do not bringany extra expressive power
than the one of addition over regular languages.

References

1. Ajtai, M.: Σ
1
1 -formulae on finite structures. APAL 24(1), 1–48 (1983)

2. Benedikt, M., Segoufin, L.: Towards a characterization oforder-invariant queries over tame
structures. JSL 74(1), 168–186 (2009)

3. Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Proc. of LICS (2007)
4. Durand, A., Lautemann, C., More, M.: Counting results in weak formalisms. In: Circuits,

Logic, and Games. No. 06451 in Dagstuhl Seminar Proc. (2007)
5. Dvorak, Z., Král, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: Proc.

of FOCS (2010)
6. Furst, M., Saxe, J., Sipser, M.: Parity, circuits, and thepolynomial-time hierarchy. TOCS

17(1), 13–27 (1984)
7. Grohe, M.: Fixed-point definability and polynomial time.In: Proc. of CSL (2009)
8. Grohe, M., Schwentick, T.: Locality of order-invariant first-order formulas. ACM TOCL

1(1), 112–130 (2000)
9. Håstad, J.: Computational limitations for small-depthcircuits. Ph.D. thesis, MIT (1986)

10. Immerman, N.: Relational queries computable in polynomial time. Information and Control
68(1-3), 86–104 (1986)

11. Immerman, N.: Languages that capture complexity classes. SICOMP 16(4), 760–778 (1987)
12. Libkin, L.: Elements of Finite Model Theory. Springer (2004)
13. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnabil-

ity. JACM 40(3), 620 (1993)
14. Makowsky, J.A.: Invariant definability and P/poly. In: Proc. of CSL (1998)
15. Schweikardt, N., Segoufin, L.: Addition-invariant FO and regularity. In: Proc. of LICS (2010)
16. Vardi, M.: The complexity of relational query languages. In: Proc. of STOC (1982)
17. Yao, A.: Separating the polynomial-time hierarchy by oracles. In: Proc. of FOCS (1985)

