
NONDETERMINISTIC CIRCUIT

LOWER BOUNDS

FROM

MILDLY DERANDOMIZING

ARTHUR-MERLIN GAMES

Barış Aydınlıoğlu and Dieter van Melkebeek

March 24, 2014

Abstract.
In several settings derandomization is known to follow from circuit lower
bounds that themselves are equivalent to the existence of pseudorandom
generators. This leaves open the question whether derandomization
implies the circuit lower bounds that are known to imply it, i.e., whether
the ability to derandomize in any way implies the ability to do so in the
canonical way through pseudorandom generators.
For the setting of decision problems, Impagliazzo, Kabanets, and
Wigderson (2002) implicitly showed the following equivalence: Ran-
domized polynomial-time decision procedures for promise problems can
be simulated in NSUBEXP (the subexponential version of NP) with
subpolynomial advice on infinitely many input lengths if and only if
NEXP 6⊆ P/poly. We establish a full analogue in the setting of ver-
ification procedures: Arthur-Merlin games for promise problems can
be simulated in Σ2SUBEXP (the subexponential version of Σ2P) with
subpolynomial advice on infinitely many input lengths if and only if
Σ2EXP 6⊆ NP/poly.
A key ingredient in our proofs is improved Karp-Lipton style collapse
results for nondeterministic circuits. The following are two instanti-
ations that may be of independent interest: Assuming that Arthur-
Merlin games can be derandomized in Σ2P, we show that (i) PSPACE ⊆
NP/poly implies PSPACE ⊆ Σ2P, and (ii) coNP ⊆ NP/poly implies
PH ⊆ PΣ2P.
Of possible independent interest is a generic framework that we provide,
which captures several results in the literature of the form “derandom-

2 Aydınlıoğlu & van Melkebeek

ization implies circuit lower bounds.” In particular, our framework en-
ables a unified view of our result, the one by Impagliazzo et al. (2002)
mentioned above, as well as the result by Kabanets and Impagliazzo
(2004) that derandomizing polynomial identity testing yields arithmetic
circuit lower bounds.

Keywords. circuit lower bounds, nondeterministic circuits, Arthur-
Merlin games, derandomization

Subject classification. 68Q15, 68Q17

1. Introduction

The power of randomness constitutes a central topic in complexity
theory. In the context of randomized decision procedures the ques-
tion is whether the class BPP, or its promise version prBPP, can be
computed deterministically without much overhead – in subexpo-
nential or maybe even polynomial time. Similarly, in the context
of randomized verification procedures one seeks for efficient non-
deterministic computations of Arthur-Merlin games: the class AM,
or its promise version prAM.

A major development in the area are hardness versus ran-
domness tradeoffs (Babai et al. 1993; Impagliazzo & Wigderson
1997; Nisan & Wigderson 1994; Yao 1982), which state that either
nonuniformity speeds up computations significantly or else nontriv-
ial derandomization is possible. More precisely, these results show
how to use a language in some complexity class C that is assumed
to require “large” circuits, to construct a pseudorandom generator
(PRG) computable in C with “small” seed length. The PRG trans-
forms its seed into a longer string, say of length s, such that the
average behavior of any circuit C of size s is almost the same when
the input to C is provided from the uniform distribution or from
the output distribution of the PRG on a uniform seed. We say
that the PRG fools the circuit C. If C requires large circuits of a
certain type τ , then the resulting PRG fools circuits of type τ , and
can be used to derandomize any procedure that can be modeled by
small circuits of type τ (Klivans & van Melkebeek 2002). See the
table below for some examples from the above papers and Shaltiel
& Umans (2006), where E

.
= DTIME(2O(n)), NE

.
= NTIME(2O(n)),

Circuit Lower Bounds from Derandomization 3

and τ ∈ {d, n} denotes deterministic (d) or nondeterministic (n)
circuits.

τ class C
randomized

class derandomization

d E prBPP DTIME(t)
n NE ∩ coNE prAM NTIME(t)

Once we have such a PRG, the derandomization is obtained by
cycling over all seeds and simulating the randomized procedure on
the output of the PRG for each seed and then taking a majority
vote of the simulation outcomes. Stronger circuit lower bounds
for C imply smaller seed lengths for the generator, yielding more
efficient derandomizations. At the “low end,” superpolynomial cir-
cuit lower bounds yield subpolynomial seed length and hence de-
randomizations that run in subexponential time t. At the “high
end,” linear-exponential circuit lower bounds yield logarithmic seed
length and hence derandomizations that run in polynomial time t.

As the circuit lower bounds seem plausible, even at the high
end, the hardness versus randomness tradeoffs have fueled the con-
jecture that prBPP can be fully derandomized to P, and prAM to
NP. However, even the low-end hardness conditions remain open
to date. This raises the question whether there are means of deran-
domizing that do not need any of the above hardness conditions,
or whether derandomization is equivalent to hardness.

Proving an equivalence would establish a “canonical form” of
derandomization, namely through PRGs. It would show that if
we can individually derandomize each procedure of the type con-
sidered, then we can derandomize them “all at once” – we do not
need to know the particulars of a procedure in order to derandomize
it. On the other hand, proving a non-equivalence would establish
that the hardness-based PRG approach to derandomization is in-
complete, i.e., that there are better avenues to derandomization.
In fact, since the existence of PRGs is known to imply the hard-
ness conditions that yield them, this would render incomplete any
PRG-based approach – using hardness or not. Thus, another way
of phrasing the question is whether or not the ability to derandom-
ize implies the ability to do so through PRGs.

4 Aydınlıoğlu & van Melkebeek

In recent years we have seen a number of results for (pr)BPP
showing that derandomization implies hardness of some sort, al-
though typically not strong enough so as to imply back the deran-
domization (e.g., Impagliazzo et al. (2002); Kabanets & Impagli-
azzo (2004); Kinne et al. (2012)). One exceptional example is an
equivalence for a mild notion of derandomization for prBPP, im-
plicit in Impagliazzo et al. (2002). They show that NE 6⊆ P/ poly
if and only if every prBPP-problem can be decided in NTIME(2n

ε
)

with advice of length nε for infinitely many input lengths, for ar-
bitrarily small constant ε > 0. Note that this notion of deran-
domization is indeed mild compared to what is conjectured to hold
(namely a derandomization of prBPP in P): it uses nondetermin-
ism, a subexponential amount of time, a subpolynomial amount
of nonuniformity, and it is only required to work infinitely often.
Mild though it may be, it is a nontrivial derandomization nonethe-
less, and one that is not known to hold. If it can be done at all,
the Impagliazzo et al. (2002) result shows that it can be done in a
canonical way – through PRGs.

In contrast to the class prBPP, not much is known regarding
derandomization-to-hardness connections for Arthur-Merlin games.
The only result in this direction is a “hybrid” connection that shows
an implication from derandomizing prAM to deterministic circuit
lower bounds (Aydınlıog̃lu et al. 2011), whereas the hardness-to-
derandomization implication for prAM involves nondeterministic
circuits. In particular, what kind of nondeterministic circuit lower
bounds, if any, are implied by derandomizing prAM is an open
question.

Our results. In this paper we take up this last question and
obtain an analogue of the equivalence of hardness and derandom-
ization from Impagliazzo et al. (2002) for the class prAM instead
of prBPP.

Theorem 1.1 (Equivalence for Arthur-Merlin games).
The following are equivalent:

◦ Every prAM-problem can be decided in Σ2TIME(2n
ε
)/nε for

infinitely many input lengths, for every constant ε > 0.

Circuit Lower Bounds from Derandomization 5

◦ Σ2E 6⊆ NP/ poly.

Recall that prAM can be simulated in Π2P (Babai & Moran
1988). Although plausible hardness assumptions imply simulations
in NP, it is open whether a simulation in Σ2TIME(t) is possible for
subexponential t – even with subpolynomial advice, and even if
the simulation is only required to succeed infinitely often. In this
sense, Theorem 1.1 is a full analogue of the equivalence result in
Impagliazzo et al. (2002) for prBPP. In both their equivalence and
ours the derandomizations are mild in the same way: compared
to the standard notion they use extra time, extra advice, and an
extra level of nondeterminism (where each “extra” is quantified
identically in both results), and they are only required to work
infinitely often.

A further analogy follows from the fact that both prBPP and
prAM have complete problems related to approximating the frac-
tion of inputs that a given circuit accepts. For deterministic cir-
cuits, distinguishing between the case where the fraction is at least
2/3 and at most 1/3 is complete for prBPP. The corresponding
problem for nondeterministic circuits is complete for prAM. If fol-
lows that the classes prBPP and prAM in the statements of Im-
pagliazzo et al. (2002) and Theorem 1.1 can be replaced by their
respective complete problems.

Theorem 1.1 implies that mildly derandomizing Arthur-Merlin
games, or solving the above promise problem for nondeterministic
circuits in “better than Σ2E”, would yield new nondeterministic
circuit lower bounds, namely that Σ2E requires nondeterministic
circuits of superpolynomial size. Unconditionally, it is known that
the class one level up from Σ2E in the exponential-time hierar-
chy, namely Σ3E, has this hardness; it is open whether EΣ2P does.
This situation mimics the one for deterministic circuits “one level
down”, continuing the parallel with Impagliazzo et al. (2002).

Perhaps more interestingly, Theorem 1.1 implies that mildly
derandomizing prAM in any way implies that the same derandom-
ization can be done canonically.

Corollary 1.2. If prAM can be derandomized as in Theorem 1.1,
then there exist pseudorandom generators that yield the same de-

6 Aydınlıoğlu & van Melkebeek

randomization.

A key step in the proof of Theorem 1.1 shows that derandom-
izations of prAM imply improved Karp-Lipton style collapse results
for nondeterministic circuits. The following are two instantiations
that may be of independent interest.

Theorem 1.3 (High-end collapse results). Suppose that we can
decide prAM in Σ2P. Then

(i) PSPACE ⊆ NP/ poly =⇒ PSPACE ⊆ Σ2P, and

(ii) coNP ⊆ NP/ poly =⇒ PH ⊆ PΣ2P.

Karp and Lipton (Karp & Lipton 1982) showed that if NP ⊆
P/ poly then PH ⊆ Σ2P. Yap’s adaptation (Yap 1983) of the
Karp-Lipton result gives that if coNP ⊆ NP/ poly then PH ⊆ Σ3P.
Modulo the derandomization assumption, the second item of The-
orem 1.3 improves Yap’s result by “half a level”. Another variant
of the Karp-Lipton argument (attributed to Meyer in Karp & Lip-
ton (1982)) states that if PSPACE ⊆ P/ poly then PSPACE ⊆ Σ2P.
Relativizing the latter result yields the strongest collapse conse-
quence of PSPACE ⊆ NP/ poly known unconditionally, namely
PSPACE ⊆ Σ3P. The first item of Theorem 1.3 improves this col-
lapse by one level, modulo the derandomization assumption. We
refer to Section 2.4 for related work on more refined collapses.

We use a low-end version of the first collapse result in Theo-
rem 1.3 to establish the forward direction of Theorem 1.1. The
proof relies on interactive proofs for PSPACE, and as such does not
relativize. If we use the second collapse result instead of the first
one, we obtain a relativizing proof of a weaker result, namely that
the same derandomization assumption implies EΣ2P 6⊆ NP/ poly.

A lower bound framework. Once we have established our col-
lapse results, we develop the derandomization-to-hardness part
of Theorem 1.1 as an instantiation of a generic framework that
we formulate in this paper. Our framework provides a unified
view of our result along with several well-known conditional lower
bound results, in particular the one from Impagliazzo et al. (2002)

Circuit Lower Bounds from Derandomization 7

mentioned above, as well as the one from Kabanets & Impagli-
azzo (2004) that derandomizing polynomial identity testing implies
arithmetic circuit lower bounds for NE.

Organization. In Section 2 we sketch the ideas behind our re-
sults, set up the lower bound framework, and discuss the relation-
ship with earlier work. In Section 3 we introduce our notation
for the formal development. In Section 4 we present the collapse
results, and in Section 5 the main result.

2. Outline of the Arguments and Related Work

We now outline the proofs of Theorem 1.1 and Theorem 1.3. We fo-
cus on the most novel part of the proof of Theorem 1.1, which is the
direction from derandomization to hardness, as well as the weaker
but relativizing variant mentioned in the introduction. Both can
be cast as instantiations of a general framework that also captures
several known results of this ilk. The framework is based on Kan-
nan’s theorem (Kannan 1982) that some level of the polynomial-
time hierarchy cannot be decided by circuits of fixed polynomial
size, and critically relies on collapse results in order to bring down
the required level of the polynomial-time hierarchy.

We first explain the collapse results we need and then present
the framework. For ease of exposition, in this overview we use
the assumption that prAM can be simulated in Σ2P, yielding the
high-end collapse results of Theorem 1.3, although for the proof of
Theorem 1.1 it suffices to have the weaker assumption that prAM
can be simulated in ∩ε>0i.o.-Σ2TIME(2n

ε
)/nε.

2.1. First high-end collapse result. Our first collapse result
is an adaptation to the nondeterministic setting of the classical
result that if PSPACE has polynomial-size deterministic circuits
then PSPACE ⊆ MA (Lund et al. 1992). Let us first recall the
proof of that classical result.

Assuming that PSPACE has polynomial-size deterministic cir-
cuits, we want to compute some PSPACE-complete language L in
MA. The proof hinges on the existence of an interactive proof sys-
tem for L in which the honest prover’s responses are computable

8 Aydınlıoğlu & van Melkebeek

in PSPACE (Shamir 1992). By assumption, there is a polynomial-
size deterministic circuit Dprover that encodes the honest prover’s
strategy; i.e., given the transcript of a message history, the circuit
computes the next bit the honest prover sends. Now the MA-
protocol for L is as follows: Merlin sends a polynomial-size circuit
D′ to Arthur, who then carries out the interactive protocol for L
by himself, evaluating the circuit D′ to determine the prover’s re-
sponses. If the input is in L, Merlin can send the circuit Dprover,
which makes Arthur accept with high probability. If the input is
not in L, the soundness property of the interactive proof system
guarantees that no deterministic circuit can make Arthur accept
with significant probability. This proves that L ∈ MA.

Now let us turn to our setting and try to achieve a similar
collapse under the assumption that PSPACE has nondeterministic
circuits of polynomial size. Since Arthur may need Merlin’s help in
evaluating nondeterministic circuits, we allow for one more round
of interaction between Arthur and Merlin, and aim for a collapse to
MAM = AM (Babai & Moran 1988) rather than MA. By assump-
tion, there exists a polynomial-size nondeterministic circuit Cprover

implementing the honest prover’s strategy; i.e., given the tran-
script of a message history and a bit b, Cprover accepts if the honest
prover’s next message bit is b, and rejects otherwise. Now consider
the following attempt at a protocol for the PSPACE-complete lan-
guage L: Merlin sends a polynomial-size nondeterministic circuit
C ′, purported to encode the strategy of the honest prover. Upon
receiving the circuit C ′, Arthur reveals his coin flips ρ to Merlin.
Merlin then provides the certificates for the circuit C ′ that allow
Arthur to construct and verify every bit of the transcript of the
interactive proof corresponding to the coin flips ρ. Finally, Arthur
accepts if the resulting transcript is accepting.

This protocol is complete but not necessarily sound. Indeed, it
could be that the nondeterministic circuit C ′ sent by Merlin has
accepting and rejecting computation paths on every input, which
would allow Merlin to adapt his strategy to the coin flips ρ in
whatever way he wants, by revealing accepting computation paths
only if he wishes to. We somehow need to force Merlin to commit
to a fixed strategy in advance.

Circuit Lower Bounds from Derandomization 9

In order to do so, we use our derandomization assumption and
aim for a collapse to Σ2P instead of AM. First, in an existen-
tial phase we “guess” a nondeterministic circuit C ′ supposed to
implement the honest prover’s strategy for L. We provide C ′ as
additional input to the AM-protocol, and require Merlin to con-
vince Arthur using the specific circuit C ′ provided. Moreover, in
parallel to the AM-protocol, we make sure C ′ commits Merlin to a
fixed strategy. More precisely, in a universal phase we check that
on every partial transcript for at least one of the choices of the bit
b, C ′ rejects on all computation paths. This fixes the soundness
problem while maintaining completeness.

Note that the above procedure can be implemented within Σ2P:
We use two alternations outside the AM-protocol, where the sec-
ond alternation for checking the circuit is executed in parallel to
the protocol. Since by our derandomization assumption the AM-
protocol can be simulated in Σ2P, a collapse of PSPACE to Σ2P
follows.

2.2. Second high-end collapse result. To outline the proof of
our second collapse result, let us first recall the proof of the classical
result by Karp and Lipton for the case of NP and deterministic
circuits. Assuming that satisfiability (SAT) has polynomial-size
circuits, we consider any Π2P-predicate of the form

(2.1) (∀u)(∃v)ϕ(u, v),

where ϕ is a Boolean formula, and translate it into an equivalent
Σ2P-predicate.

One way to construct the Σ2P-predicate goes as follows. Use
an existential quantifier to “guess” a deterministic circuit D, ver-
ify that D correctly decides SAT, and then use D to transform
the inner existential phase of the original Π2P-predicate into a de-
terministic one, effectively eliminating one quantifier alternation.
Hence, we obtain an equivalent predicate that reads as

(2.2) (∃D) [correct(D) ∧ (∀u)D(“(∃v)ϕ(u, v)”) = 1] .

Exploiting the self-reducibility of SAT, correct(D) can be ex-
pressed as a coNP-predicate. This way ((2.2)) becomes a Σ2P-
predicate.

10 Aydınlıoğlu & van Melkebeek

Let us now turn to our setting and try to achieve the same col-
lapse under the assumption that SAT has nondeterministic circuits
of polynomial size, by attempting to transform a Π2P-predicate
of the form ((2.1)) into an equivalent Σ2P-predicate. Mimicking
the above proof, we use an existential quantifier to guess a non-
deterministic circuit C, check its correctness for SAT, and then
feed the existential phase of the Π2P-predicate into C. The lat-
ter transforms the existential phase into an equivalent universal
phase, which can be merged with the initial universal phase of
the original Π2P-predicate. This complementation gives us a new
equivalent predicate of the form

(2.3) (∃C) [correct(C) ∧ (∀u)(∀w)C(“(∃v)ϕ(u, v)”, w) = 0] ,

where C(y, w) denotes the deterministic output of C on input y
and nondeterministic guess bits w.

In fact, it suffices that the predicate correct(C) checks the
completeness of C for SAT (that C accepts every unsatisfiable for-
mula) without explicitly checking the soundness of C for SAT (that
C only accepts unsatisfiable formulas). However, while soundness
can be tested in coNP, completeness seems to require Π2P. This
turns ((2.3)) into a Σ3P-predicate rather than a Σ2P-predicate.
Note that obtaining an equivalent Σ3P-predicate is trivial since we
started from a Π2P-predicate. If we start from a ΠP

3 -predicate
instead, an analogous transformation yields an equivalent Σ3P-
predicate, implying a collapse of the polynomial-time hierarchy
to the third level (this is Yap’s theorem (Yap 1983)). If we could
check for completeness in Σ2P, then the collapse would deepen to
the second level and we would be done, but we do not know how
to do this, even under our derandomization assumption. What we
can do under our assumption, is to construct a correct nondeter-
ministic circuit for SAT “half a level” up from Σ2P, namely in PΣ2P

(just like we could if we knew how to check completeness in Σ2P).
This collapses the polynomial-time hierarchy down to PΣ2P, giving
our second collapse result.

The particular problem in prAM that we assume can be deran-
domized is the following approximate lower bound problem: Given
a circuit C and an integer a, decide whether C accepts at least

Circuit Lower Bounds from Derandomization 11

a inputs or noticeably less than a, say, less than a(1 − ε) where
ε = 1/ poly(n). Goldwasser & Sipser (1986) showed that this prob-
lem lies in prAM, even when C is nondeterministic.

The key difference our derandomization assumption makes is
the added ability to guarantee, within Σ2P, that a nondeterministic
circuit C is “almost” complete, i.e., that C accepts at least a (1−ε)-
fraction of all unsatisfiable formulas, and even more generally, that
a nondeterministic circuit C accepts at least a (1 − ε)-fraction of
all unsatisfiable formulas that are rejected by some other given
nondeterministic circuit. This enables us to construct in PΣ2P,
out of a sound nondeterministic circuit Ci for SAT, another sound
nondeterministic circuit Ci+1 for SAT that misses at most half as
many unsatisfiable formulas as Ci does. Starting from the trivial
sound circuit C0 that rejects everything, this process yields a sound
and complete nondeterministic circuit for SAT within n iterations.

To explain the role of the derandomization hypothesis in more
detail, we first sketch how to find C1 because that case is easier.
In constructing C1 we make oracle queries of the form: Is there a
sound nondeterministic circuit of size s(n) for SAT that accepts
a inputs. These queries can be decided approximately by a Σ2P-
oracle because of our derandomization assumption and because
soundness can be checked in coNP. Assuming SAT has nondeter-
ministic circuits of size s(n), this enables us to approximate the
number ā of unsatisfiable formulas of length n through a binary
search using a Σ2P-oracle. Moreover, by self-reduction we get a
sound circuit C1 that accepts at least (1− ε)ā inputs, with the fac-
tor (1− ε) being due to the gap between the yes and no instances
of the approximate lower bound problem. Setting ε = 1/2, we thus
find a sound circuit C1 for SAT that accepts at least half of all
unsatisfiable formulas of length n.

To construct C2 we want to employ a similar strategy as in
the construction of C1, namely to find a sound circuit C̃1 for SAT
that seems to accept as many inputs as possible, and then set
C2 = C1 ∨ C̃1. The difference, however, is that this time we want
to maximize not over all inputs, but just over those inputs that C1

rejects. This causes a problem because the set of inputs that C1

rejects is in coNP, whereas the approximate lower bound problem

12 Aydınlıoğlu & van Melkebeek

allows us to estimate the size of NP sets only.

We overcome this obstacle by using the complementation idea
again. By assumption, SAT has small nondeterministic circuits
not only at input length n, but also at larger input lengths. In
particular, there is a nondeterministic circuit C ′ of size s(n′) for
SAT at input length n′, where n′ is large enough that we can ex-
press the computation of an n-input size-s(n) nondeterministic cir-
cuit – in particular C1 – with a Boolean formula of length n′. If
we can get a hold of such a circuit C ′, then we can express the
coNP-set {x ∈ {0, 1}n : C1 rejects x} alternately as the NP-set
{x ∈ {0, 1}n : C ′ accepts φC1(x, ·)}, where φC1(x, y) is a Boolean
formula of size n′ that expresses that y is a valid accepting com-
putation of C1 on input x. Since the latter set is in NP, it can be
provided as input to the approximate lower bound problem. Of
course, getting a hold of a circuit C ′ for SAT at length n′ is the
very problem we are trying to solve – only harder since n′ > n.
We observe, however, that we do not need to explicitly check the
completeness of C ′ for SAT; it suffices to check the soundness of
C ′ for SAT. Since the latter can be done in coNP, we can guess
and check the circuit C ′ in Σ2P.

To recapitulate, we want to find a sound nondeterministic cir-
cuit C̃1 for SAT that misses at most half of the unsatisfiable formu-
las that C1 misses. We accomplish this by first encoding the com-
putation of C1 on a generic input x as a Boolean formula φC1(x, y)
of length n′, such that φC1(x, ·) is satisfiable for a particular x iff
C1 accepts x. Then we make oracle queries that ask: Is there a
nondeterministic circuit C ′ of size s(n′) on n′ inputs, and a nonde-
terministic circuit C̃1 of size s(n) on n inputs, such that (i) the set
{x ∈ {0, 1}n : C̃1 accepts x and C ′ accepts φC1(x, ·) } is of size at
least a, and (ii) C ′ and C̃1 are both sound for SAT. By our de-
randomization assumption that prAM ⊆ Σ2P, these queries can be
made to a Σ2P-oracle, which allows us to construct C̃1 in PΣ2P. We
then set C2 = C1 ∨ C̃1.

As a side remark we point out that, although we do not explic-
itly require the circuit C ′ to be complete for SAT, the maximization
of a forces C ′ to be complete (on the relevant instances). This is
how we can avoid checking completeness explicitly (which seems

Circuit Lower Bounds from Derandomization 13

to require the power of Π2P) although we rely on it.
Having found C2, we then iterate to get a third nondeterministic

circuit C3 that misses at most half as many unsatisfiable formulas
as C2 does, and so on until we reach perfect completeness. This way
we construct in PΣ2P a nondeterministic circuit of size O(n · s(n))
for SAT at length n. The collapse of the polynomial-time hierarchy
to PΣ2P follows.

2.3. The lower bound framework. In both our main equiv-
alence for prAM and the one for prBPP due to Impagliazzo et al.
(2002), the proof of the forward direction – from derandomization
to hardness – can be cast as an instantiation of a generic framework
that we provide in this paper. This framework enables a unified
view of several results in the literature that obtain circuit lower
bounds assuming the existence of efficient algorithms of some sort
– in particular, assuming nontrivial derandomizations. We first
present the framework and then describe some instantiations.

Our goal is to show, under some derandomization assumption,
that some class C does not have type-τ circuits of size O(s(n)). In a
first reading the reader can take C = NE, s(n) = nk for some fixed
constant k, and τ as deterministic; more generally the argument
also applies to other linear-exponential classes C, resource bounds
s(n), and to nondeterministic and arithmetic1 circuits.

The proof goes by contradiction and consists of the following
ingredients. Suppose that the lower bound fails to hold, i.e., that
C has τ -circuits of size O(s).

(i) Collapse. Use the hypothesis that C has τ -circuits of sizeO(s)
to show that the entire polynomial time hierarchy PH, and
more generally DTIMEPH(poly(s)), can be decided in some
randomized class R.

(ii) Simulation. Use the derandomization assumption to show
that every language in R can be decided in C with linear

1We say that a class C has arithmetic circuits of size s(n) if for every lan-
guage L ∈ C, the multilinear extension of L over Z is computable by arithmetic
circuits of size s(n). The multilinear extension of L over Z at length n is the
unique n-variate polynomial over Z that has degree at most one in each vari-
able and agrees with the characteristic function of L on {0, 1}n.

14 Aydınlıoğlu & van Melkebeek

advice for infinitely many input lengths.

(iii) Kannan’s theorem. Kannan (1982) showed that for any re-
source bound s, the class DTIMEΣ3P(O(s log s)) contains a
language that for all but finitely many input lengths cannot
be decided by τ -circuits of size O(s).2

By combining the first two ingredients, we conclude that every
language in DTIMEPH(poly(s)) is computable by τ -circuits of size
O(s) on infinitely many input lengths. This contradicts the third
item and concludes the proof. We summarize with notation:

C ⊆τSIZE(O(s(n)))

=⇒ DTIMEPH(poly(s(n))) ⊆ R
(by collapse)

=⇒ DTIMEPH(poly(s(n))) ⊆ i.o.-C/n
(by simulation)

=⇒ DTIMEPH(poly(s(n))) ⊆ i.o.-τSIZE(O(s(n))

(by the hypothesis)

=⇒ contradiction

(by Kannan’s Theorem)

In executing the above framework, a key part of the effort lies
in identifying an appropriate randomized class R that meets two
competing requirements: On one hand,Rmust be powerful enough
to simulate the entire polynomial-time hierarchy assuming C has
small circuits. On the other hand, under the derandomization hy-
pothesis R must allow infinitely-often simulations in C with linear
advice. The two constraints are at odds with each other and sat-
isfying both of them amounts to a balancing act of sorts, but is
manageable in a number of settings.

Instantiations. The above generic framework captures several
results from the literature of the form “derandomization implies

2Kannan’s result is originally stated for deterministic circuits only, but is
straightforward to generalize.

Circuit Lower Bounds from Derandomization 15

circuit lower bounds.” The first two lines in Figure 2.1 list the
instantiations corresponding to the results mentioned in the intro-
duction. The last two lines in Figure 2.1 represent our results. We
now expand on those instantiations.

C τ R derandomization hypothesis

NE d MA prBPP ⊆ ∩ε>0i.o.-NTIME(2n
ε
)/nε

NE a MAPIT PIT ∈ ∩ε>0i.o.-NTIME(2n
ε
)/nε

Σ2E n M(AM||coNP) prAM ⊆ ∩ε>0i.o.-Σ2TIME(2n
ε
)/nε

EΣ2P n PprM(AM||coNP) prAM ⊆ ∩ε>0i.o.-Σ2TIME(2n
ε
)/nε

Figure 2.1: Instantiations of the framework to show that a class C
requires superpolynomial circuits of type τ assuming a derandom-
ization hypothesis and using an intermediate randomized class R.

◦ The first line in Figure 2.1 is implicit in Impagliazzo et al.
(2002). It derives the lower bound NE 6⊆ SIZE(poly(n)) under
the hypothesis that prBPP can be mildly derandomized. To
obtain the result from the framework, we set C = NE, τ = d,
and s(n) = nk for an arbitrary constant k.

– Collapse. Since NE ⊆ SIZE(nk) implies that P#P ⊆
SIZE(poly(n)), we can use the Karp-Lipton style col-
lapse P#P ⊆ SIZE(poly(n)) =⇒ PH ⊆ MA (Lund et al.
1992).

– Simulation. Under the derandomization hypothesis, the
class MA allows simulations in NE with linear advice
infinitely often. This follows because by the hypoth-
esis Arthur can be simulated on infinitely many input
lengths, and a linear amount of advice suffices to specify
one of those good input lengths if one exists nearby.

Thus, we set R as the class MA of languages decidable by
Merlin-Arthur games, and conclude by contradiction that
NE 6⊆ SIZE(nk). Since k is an arbitrary constant, this shows

16 Aydınlıoğlu & van Melkebeek

that NE 6⊆ SIZE(poly(n))
.
= ∪kSIZE(nk) as the condition

NE ⊆ SIZE(poly(n)) is equivalent to (∃k) NE ⊆ SIZE(nk).3

◦ The second line in Figure 2.1 captures the sequel to Impagli-
azzo et al. (2002), namely Kabanets & Impagliazzo (2004),
which states that if polynomial identity testing (i.e., the lan-
guage PIT of pairs of arithmetic circuits over Z that are
functionally equivalent) can be derandomized, then the same
lower bound as in Impagliazzo et al. (2002) follows – except
for arithmetic circuits rather than Boolean circuits: NE 6⊆
ASIZE(poly(n)).4 To obtain this result from the framework,
similar to the argument above for Impagliazzo et al. (2002),
we set C = NE, τ = a, and s(n) = nk for an arbitrary con-
stant k.

– Collapse. We use the fact that NE ⊆ ASIZE(nk) implies
that P#P ⊆ ASIZE(poly(n)), and then apply the col-
lapse P#P ⊆ ASIZE(poly(n)) =⇒ PH ⊆ MAPIT, where
MAPIT represents the variant of Merlin-Arthur games
in which Arthur uses his randomness solely to decide a
single instance of PIT.

– Simulation. Along the same lines as the first instanti-
ations, under the derandomization hypothesis, the PIT
query can alternately be decided by a computation in
NE with small advice infinitely often, which allows us to
simulate MAPIT in i.o.-NE/n.

Thus, we set R = MAPIT, and proceed in the same way as
for the Impagliazzo et al. (2002) instantiation.

◦ Our main result (Theorem 1.1) is obtained via our first col-
lapse involving PSPACE, and our weaker but relativizing re-
sult via our second collapse involving coNP. The simulations

3This follows from a padding argument and the existence of a complete
language for NE under linear reductions.

4The original lower bound in Kabanets & Impagliazzo (2004) is slightly
stronger, but is more complicated to state. Our framework also captures this
result; we opt for a simpler statement here that facilitates comparison.

Circuit Lower Bounds from Derandomization 17

follow in a straightforward way. The classes R used are tech-
nical augmentations of Arthur-Merlin protocols; they are im-
plicit in the proof of Theorem 1.3, and are explicitly defined
in Section 3. We develop the arguments in Section 5.1.

As a side remark we point out that the first two lines in Fig-
ure 2.1 represent proofs that are simpler than the original ones;
in addition they scale better and yield somewhat stronger results.
For example, the original proof of the first line uses the collapse
NE ⊆ SIZE(nk) =⇒ NE ⊆ MA (Impagliazzo et al. 2002), which
relies on the nondeterministic time hierarchy theorem, a hardness-
based PRG construction, as well as multi-prover interactive proofs.
The framework derives the same conclusion with the simpler col-
lapse technology involving #P mentioned above. In addition to be-
ing simpler, the latter collapse scales better: It holds in general that
P#P ⊆ SIZE(s′(n)) =⇒ DTIMEPH(s′(n)) ⊆ MATIME(s′(s′(n))),
where s′(n) denotes poly(s(n)). Under the derandomization hy-
pothesis prBPP ⊆ NTIME(t′(n))), the scaled collapse yields the
lower bound NE 6⊆ SIZE(O(s(n))), for any resource bounds t(n)
and s(n) satisfying t′(s′(s′(n)) = 2O(n). In fact, the same conclu-
sion holds for NE ∩ coNE rather than NE, as the collapse can be
strengthened to MATIME(·) ∩ coMATIME(·). A similar analysis is
worked out in Aaronson & van Melkebeek (2011); we refer to that
paper for more details.

2.4. Related work. In the setting of decision problems, Goldre-
ich (2011a,b) showed that the standard notion of derandomization
for prBPP (deterministic simulations without advice that work for
all but finitely many inputs) is equivalent to the existence of so-
called “targeted PRGs,” which are PRGs that have access to the
input or even to the circuit that models the randomized computa-
tion on the given input. For standard PRGs (which are oblivious to
the input and only depend on the running time of the randomized
computation) he showed an equivalence between their existence
and derandomizations of prBPP in an average-case setting: deter-
ministic simulations without advice that may err on some inputs
but such that generating erroneous inputs is computationally dif-
ficult. In both cases the equivalence with circuit lower bounds

18 Aydınlıoğlu & van Melkebeek

remains open.

In the setting of Arthur-Merlin games, Gutfreund et al. (2003)
suggest an approach to prove that AM can be simulated in the class
Σ2SUBEXP. Theorem 1.1 implies that if the approach works for
prAM then it would yield new circuit lower bounds.

Using Kannan’s argument to get circuit lower bounds from a de-
randomization assumption for prAM was carried out in Aydınlıog̃lu
et al. (2011). The same paper also presents an alternate and sim-
pler proof that does not use Kannan’s argument, but uses the power
of prAM to directly diagonalize against deterministic circuits.

The technique of using a prAM-oracle to iteratively construct
a sound circuit with rapidly increasing completeness, appears in
Chakaravarthy & Roy (2011). Using this technique they show that
PH collapses to PprAM, under the classical Karp-Lipton assumption
that NP ⊆ P/ poly.

Be it for diagonalization as in Aydınlıog̃lu et al. (2011), or for
finding a circuit as in Aydınlıog̃lu et al. (2011); Chakaravarthy &
Roy (2011) and our work, the use of a prAM-oracle can be viewed
as finding a witness ỹ that approximately maximizes a “quality
measure” f defined on the set of all strings. For diagonalization
purposes this measure would be the number of circuits that a given
string y eliminates when viewed as the characteristic string of a
function. For finding a circuit for SAT at length n, y is viewed as
a circuit and f(y) measures the number of unsatisfiable formulas
that y accepts provided that y is sound.

In Goldreich (2011a,b) a prBPP-oracle is used to construct tar-
geted PRGs. The constructions also involve approximately maxi-
mizing a quality measure f ; in this case f(y) may be defined re-
cursively as the average quality of the extensions of y, i.e., f(y) =
1
2
(f(y0) + f(y1)). The difference between the works mentioned in

the previous paragraph and Goldreich’s is that in the latter work f
can be additively approximated using a prBPP-oracle, whereas in
the former f is multiplicatively approximated using a prAM-oracle.

Regarding our high-end collapse result involving the classes
coNP and NP/ poly, at a more refined level of granularity the
strongest unconditional collapse consequence of coNP ⊆ NP/ poly
is that PH collapses to S2PNP (Cai et al. 2005), a class that con-

Circuit Lower Bounds from Derandomization 19

tains PΣ2P but is not known to equal it. Similarly, the strongest
unconditional collapse consequence of PSPACE ⊆ NP/ poly is that
PSPACE ⊆ S2PNP. As a consequence, it is known that the linear-
exponential analog of S2PNP requires nondeterministic circuits of
superpolynomial size (Cai et al. 2005).

The alternate proof of the result of Kabanets & Impagliazzo
(2004) yielded by our framework in Figure 2.1 was observed earlier
in Aaronson & van Melkebeek (2011). To facilitate comparison
with other results, Figure 2.1 lists a weaker version of the original
Kabanets & Impagliazzo (2004) result; Aaronson & van Melkebeek
(2011) gives a refined analysis that yields the original result.

3. Notation and Conventions

In this section we introduce our notation and conventions, includ-
ing the notion of an augmented Arthur-Merlin protocol, which is a
technical construct that naturally arises in our collapse arguments.
Most of our notation is standard (see, e.g., Arora & Barak (2009)),
except that in the remainder of this paper the term “circuit” al-
ways refers to a Boolean nondeterministic circuit, unless stated
otherwise.

Promise problems and languages. A promise problem Π is a
pair of disjoint sets (ΠY ,ΠN) of strings over the binary alphabet
{0, 1}. A language L is a promise problem of the form (L,L), where
L
.
= {x ∈ {0, 1}∗ : x 6∈ L}. A promise problem Π′ = (Π′Y ,Π

′
N) is

said to agree with a promise problem Π = (ΠY ,ΠN) if ΠY ⊆ Π′Y
and ΠN ⊆ Π′N . To decide a promise problem Π is to correctly
determine, for all inputs x ∈ ΠY ∪ΠN , which of ΠY or ΠN contains
x. For two classes of promise problems C and C ′, we write C ⊆ C ′
if for every Π ∈ C there exists Π′ ∈ C ′ such that Π′ agrees with
Π. We say that Π reduces to Π′ if there exists an oracle Turing
machine M such that ML′

agrees with Π for every language L′

that agrees with Π′. In particular, a language L is in PΠ′
if there

exists a polynomial-time oracle Turing machine M such that ML′

decides L for every language L′ that agrees with Π′. For more on
promise problems, see the survey Goldreich (2006).

20 Aydınlıoğlu & van Melkebeek

Arthur-Merlin protocols and augmentations. prAM repre-
sents the class of promise problems Π for which there exists a
constant c and a language L ∈ P such that for every input x
(3.1)

[completeness] x ∈ ΠY ⇒ Pry[(∃z)〈x, y, z〉 ∈ L] ≥ 2/3,
[soundness] x ∈ ΠN ⇒ Pry[(∃z)〈x, y, z〉 ∈ L] ≤ 1/3,

where n denotes the length of x, the variables y and z range over
{0, 1}nc , and the probabilities are with respect to the uniform dis-
tribution. AM denotes those problems in prAM that are languages.
Underlying each problem in prAM there is a protocol between a
randomized polynomial-time verifier (Arthur) and an all-powerful
prover (Merlin); we refer to these protocols as Arthur-Merlin pro-
tocols or Arthur-Merlin games.

In our proofs the following technical augmentation of Arthur-
Merlin protocols arises naturally. For lack of a better name, we
refer to them as “augmented” Arthur-Merlin protocols.

Definition 3.2 (Augmented Arthur-Merlin protocol). The class
prM(AM||coNP) consists of all promise problems Π for which there
exists a constant c, a promise problem Γ ∈ prAM, and a language
V ∈ coNP such that

[completeness] x ∈ ΠY ⇒ (∃y) (〈x, y〉 ∈ ΓY ∧ 〈x, y〉 ∈ V) ,
[soundness] x ∈ ΠN ⇒ (∀y) (〈x, y〉 ∈ ΓN ∨ 〈x, y〉 6∈ V) ,

where n denotes the length of x, and y ranges over {0, 1}nc . The
class M(AM||coNP) consists of those problems in prM(AM||coNP)
that are languages.

Similar to the class prAM, underlying each problem in the class
prM(AM||coNP) there is a protocol between an all-powerful prover,
Merlin, and – in this case – two verifiers, Arthur and Henry, who
cannot communicate with each other. Arthur is the usual random-
ized polynomial-time verifier from the prAM-problem Γ; Henry is
the coNP-verifier deciding V . Merlin goes first and sends a common
message to both verifiers. At this point, Henry has to make a deci-
sion to accept/reject, whereas Arthur can interact with Merlin as in
the Arthur-Merlin protocol for Γ before making a decision. The in-
put is accepted by the protocol iff both verifiers accept. (Since the

Circuit Lower Bounds from Derandomization 21

word “verifier” connotes restricted computational power, it may
be helpful to think of Henry as having private access to a second
all-powerful prover who competes with Merlin by providing a cer-
tificate that is to serve as a counter-certificate to Merlin’s initial
message.)

We point out that our use of the symbol “||” in prM(AM||coNP)
can be viewed as a binary operator ∧ on (classes of) promise
problems. For two given promise problems Π = (ΠY ,Πn) and
Π′ = (Π′Y ,Π

′
N), one can define Π∧Π′ as the promise problem (ΠY ∩

Π′Y ,ΠN ∪Π′N). One can also extend the definition of known unary
operators from (classes of) languages to (classes of) promise prob-
lems in the natural way: ∃ capturing nondeterminism, ∀ capturing
conondeterminism, and BP capturing randomness with bounded
error (Schöning 1989). Using that notation, we can write the class
prM(AM||coNP) as ∃ (BP∃ ∧ ∀) P.

The following basic fact equates a derandomization assumption
on Arthur-Merlin protocols to the same one on augmented Arthur-
Merlin protocols.

Proposition 3.3. prAM ⊆ Σ2P if and only if prM(AM||coNP) ⊆
Σ2P.

Proof. The forward direction follows because replacing ΓY in
Definition 3.2 by a Σ2P-predicate and ΓN by its complement, turns
ΠY into Σ2P-predicate and ΓN into its complement. The backward
direction is trivial as prAM ⊆ prM(AM||coNP). �

Proposition 3.3 generalizes to weaker derandomizations; in particu-
lar its analogue for mild derandomizations is critical in establishing
Theorem 1.1 (and is the content of Lemma 5.1).

Nondeterministic circuits. A nondeterministic Boolean cir-
cuit C consists of AND and OR gates of fan-in 2, NOT gates of
fan-in 1, input gates of fan-in 0, and additionally, choice gates of
fan-in 0. We say that the circuit accepts input x, or C(x) = 1 in
short, if there is some assignment of Boolean values to the choice
gates that makes the circuit evaluate to 1; otherwise we say that C
rejects x, or C(x) = 0 in short. We measure the size of a circuit by

22 Aydınlıoğlu & van Melkebeek

the number of its connections. A circuit of size s can be described
by a binary string of length O(s log s).

4. Collapse Results

In this section we establish our collapse result (Theorem 1.3), which
uses a derandomization assumption for prAM. In fact, we prove
an unconditional collapse result involving the class of augmented
Arthur-Merlin protocols introduced in Definition 3.2, from which
Theorem 1.3 follows under the derandomization assumption. We
first establish a collapse result assuming PSPACE has nondetermin-
istic circuits of polynomial size (corresponding to the first part in
Theorem 1.3) and then do the same for coNP instead of PSPACE
(corresponding to the second part in Theorem 1.3).

4.1. Collapse result for PSPACE. The proof of the following
theorem uses interactive proofs for PSPACE and as such does not
relativize.

Theorem 4.1.
If PSPACE ⊆ NP/ poly then PSPACE ⊆ M(AM||coNP).

Proof. Let L be in PSPACE, fix an interactive proof system for
L, and consider the language Lprover consisting of all tuples 〈x, y, b〉
such that y is a prefix of the transcript of an interaction of the ver-
ifier with the honest prover on input x, and the next bit in the
transcript is sent by the prover and equals b. Without loss of gen-
erality we can assume that Lprover is paddable such that given a
random string ρ for the verifier, we can construct the entire tran-
script with the honest prover on an input x ∈ {0, 1}n by making
queries to Lprover of a single length `(n) = poly(n).

By the assumption that PSPACE ⊆ NP/ poly, Lprover can be
decided by some polynomial-size nondeterministic circuit Cprover.
Now consider the following augmented Arthur-Merlin protocol for
deciding L on x ∈ {0, 1}n. Merlin sends to both verifiers a non-
deterministic circuit C ′ of polynomial size, purported to compute
Lprover at length `(n). The coNP-verifier V checks that C ′ is nowhere
“ambiguous”, i.e., V checks that for all possible queries to the cir-
cuit C ′, if for some query 〈x0, y0, b0〉 the circuit C ′ accepts then C ′

Circuit Lower Bounds from Derandomization 23

rejects the complementary query 〈x0, y0,¬b0〉. Note that this check
is indeed in coNP.

Arthur picks a random string ρ of the appropriate length (at
most `(n)) and sends it to Merlin. Merlin sends the transcript for
the interactive protocol for L on input x corresponding to the coin
flips ρ. Merlin also sends the certificates for C ′ that purportedly
produce that transcript. Arthur accepts iff C ′ produces the tran-
script when given those certificates, and the transcript is accepting.

To argue completeness, consider x ∈ L. Then Merlin can just
send C ′ = Cprover. That circuit passes the coNP-verifier Henry and
also passes Arthur’s verification with high probability.

For the soundness, consider x /∈ L, and suppose that Mer-
lin sends a circuit C ′ that passes Henry. This means that C ′ is
nowhere ambiguous, and corresponds to a fixed prover strategy.
Then Arthur rejects with high probability by the soundness of the
original interactive proof system for L. �

The proof of the first part of Theorem 1.3 follows immediately
from Theorem 4.1:

Proof (of part (i) of Theorem 1.3). By Proposition 3.3, if prAM
can be simulated in Σ2P then so can prM(AM||coNP). If in addi-
tion PSPACE ⊆ NP/ poly, Theorem 4.1 implies that PSPACE ⊆
M(AM||coNP) ⊆ Σ2P. �

4.2. Collapse result for coNP. We proceed with a relativizable
proof of the following unconditional collapse result assuming coNP
has nondeterministic circuits of polynomial size.

Theorem 4.2. If coNP ⊆ NP/ poly then Σ3P ⊆ PprM(AM||coNP).

The second part of Theorem 1.3 follows immediately from The-
orem 4.2 under its derandomization assumption for prAM, in a
relativizable way.

Proof (of part (ii) of Theorem 1.3). By Proposition 3.3, if prAM
can be simulated in the class Σ2P then so can prM(AM||coNP). If
in addition coNP ⊆ NP/ poly, Yap’s theorem (Yap 1983) and The-
orem 4.2 imply that PH ⊆ Σ3P ⊆ PprM(AM||coNP) ⊆ PΣ2P. �

24 Aydınlıoğlu & van Melkebeek

We now argue Theorem 4.2. Assume that SAT has nondeter-
ministic circuits of size s(n), where s is some polynomial. Following
the outline of Section 2.2, with the aid of a prM(AM||coNP)-oracle,
we construct a circuit of size O(n ·s(n)) that correctly decides SAT
on all instances of size n. The circuit is obtained as the end of
a sequence of sound circuits with rapidly improving completeness,
starting from the trivial circuit that rejects everything. Recall that
a circuit with n inputs is sound/complete for a set S ⊆ {0, 1}n if
it accepts only/all inputs in S.

To measure the improvement in each step, we consider the fol-
lowing function µ : {0, 1}∗×{0, 1}∗ → N, which takes as arguments
the current circuit C in the sequence, and a candidate circuit C̃ to
improve the completeness of C in the next step, while maintaining
soundness.

(4.3) µ(C, C̃) =

{
|C−1(0) ∩ C̃−1(1)| if C̃ is sound for SAT
0 otherwise.

We map circuits C̃ that are not sound to zero because their use
would violate the soundness of the sequence. If C̃ is sound, µ
counts the number of instances of SAT that are missed by C but
caught by C̃.

For a given circuit C that is sound but not complete, our goal is
to find a circuit C̃ that approximately maximizes µ(C, C̃). For this
task we only need access to an approximation of µ to within a con-
stant multiplicative factor. This motivates the following definition.

Definition 4.4. For a function f : {0, 1}∗ × {0, 1}∗ → N, Af
denotes the promise problem (Yf , Nf) such that

(4.5)
Yf = {〈x, y, a, ε〉 : f(x, y) ≥ a}
Nf = {〈x, y, a, ε〉 : f(x, y) < (1− ε)a},

where a is a nonnegative integer in binary and 1/ε is a positive
integer in unary.

The crux of our argument is the following lemma.

Circuit Lower Bounds from Derandomization 25

Lemma 4.6. Let µ be the function defined by ((4.3)), and Aµ
the promise problem given by ((4.5)). If coNP ⊆ NP/ poly then
Aµ ∈ prM(AM||coNP).

Proof. We follow the outline from Section 2.2, but cast the
resulting algorithm for Aµ in terms of an augmented Arthur-Merlin
protocol on input 〈C, C̃, a, ε〉.

Since the coNP-verifier Henry can check whether C̃ is sound for
SAT, if suffices to construct an augmented Arthur-Merlin protocol
for Aν , where ν is the relaxation of µ defined by

ν(C, C̃)
.
= |C−1(0) ∩ C̃−1(1)|.

Goldwasser & Sipser (1986) showed that for every predicate
L ∈ NP and function
(4.7)
f : {0, 1}∗ × {0, 1}∗ → N : (u, v) 7→ |{w ∈ {0, 1}∗ : 〈u, v, w〉 ∈ L}|,

the promise problem Af is decidable by an Arthur-Merlin protocol.
Note that the function ν is of the form ((4.7)), except that the
underlying predicate L

.
= {〈C, C̃, w〉 : C(w) = 0 ∧ C̃(w) = 1}

syntactically looks like the difference of two NP languages rather
than a mere NP language. More precisely, L = L0 ∩ L1, where

L0
.
= {〈C, v, w〉 : C(w) = 0} and L1

.
= {〈u, C̃, w〉 : C̃(w) = 1}.

Note that L0 ∈ coNP and L1 ∈ NP. To remedy this issue, we
invoke the hypothesis coNP ⊆ NP/ poly and use the added power
afforded by Henry in an augmented protocol as follows.

Let C have n inputs and be of size at most s. By the Cook-Levin
Theorem, we can construct in time poly(s) a Boolean formula
φC(w, z) of size n′ such that for all w ∈ {0, 1}n and z ∈ {0, 1}n′

,
φC(w, z) evaluates to true iff z represents an accepting computa-
tion of C on input w. In other words, for all w ∈ {0, 1}n, C(w) = 0
iff φC(w) ∈ SAT. Now define L′ = L′0 ∩ L1, where

L′0
.
= {〈〈C,C ′〉, v, w〉 : C ′(φC(w)) = 1}.

Intuitively, L′0 is L0 “according to” the circuit C ′, for any given C ′.
Indeed, let LC

′
0 denote the restriction of L′0 by fixing its parameter

26 Aydınlıoğlu & van Melkebeek

C ′, i.e., the inputs 〈C, C̃, w〉 such that 〈〈C,C ′〉, C̃, w〉 ∈ L′0. We
have that if C ′ computes SAT correctly, then LC

′
0 is identical to L0

on the relevant inputs, i.e., an input 〈C, v, w〉 is in LC
′

0 iff it is in
L0. More generally, whenever C ′ is sound for SAT we have that
an input 〈C, v, w〉 is in LC

′
0 iff it is in L0. Observe that L′0 is an

NP-predicate, and therefore so is L′.

Now suppose coNP ⊆ NP/ poly. Then there is a circuit C ′
SAT

of size poly(n′) for SAT on inputs of length n′. This suggests
the following augmented Arthur-Merlin protocol for Aν on input
〈C, C̃, a, ε〉.

Merlin sends as his initial message a circuit C ′ of size poly(n′)
on n′ inputs, purported to be a circuit for SAT at length n′. Henry
checks that C ′ is sound for SAT,5 and Arthur engages in a protocol
with Merlin for the promise problem Aν′ , where ν ′ is the variant of
ν defined by the underlying predicate L′ instead of L. Since L′ is
an NP-predicate, ν ′ exactly matches the Goldwasser-Sipser format
((4.7)), and hence an Arthur-Merlin protocol for Aν′ exists.

To argue the correctness of the protocol for Aν , let LC
′

0 denote,
as before, the restriction of L′0 by fixing its parameter C ′, and let
LC

′
and ν ′ denote the analogous notions for L′ and ν ′, respectively.

We begin with the completeness of the protocol. Suppose that
ν(C, C̃) ≥ a. In order to make both verifiers accept, Merlin can
send as his initial message a polynomial-size circuit C ′

SAT
for SAT

at length n′, which exists by the hypothesis that coNP ⊆ NP/ poly.
Since C ′

SAT
is sound for SAT, Henry accepts. As for Arthur, since

C ′
SAT

correctly computes SAT at length n′, we have that L
C′

SAT
0

is identical to L0 on the relevant instances: an input 〈C, v, w〉 is

in L
C′

SAT
0 iff it is in L0. Therefore, LC

′
SAT is identical to L on the

relevant instances: an input 〈C, C̃, w〉 is in LC
′
SAT iff it is in L. It

follows that νC
′
(C, C̃) = ν(C, C̃) ≥ a. The completeness of the

Arthur-Merlin protocol for Aν′ then guarantees that Arthur can
be convinced with high probability.

To argue soundness, suppose that ν(C, C̃) < a(1 − ε). First,
if Henry accepts, then Merlin must have sent a sound circuit C ′

5Formally, referring to Definition 3.2, we set V
.
= {〈u,C ′〉 :

(∀v)[C ′(v) accepts ⇒ v ∈ SAT]}.

Circuit Lower Bounds from Derandomization 27

for SAT in the first round. In that case LC
′

0 ⊆ L0, and hence
νC

′
(C, C̃) ≤ ν(C, C̃) < a(1 − ε). By the soundness of the Arthur-

Merlin protocol for Aν′ , this means that Arthur rejects with high
probability. Thus, whenever Henry accepts, Arthur rejects with
high probability. This completes the proof. �

Lemma 4.6 allows us to efficiently improve the completeness of
a sound but incomplete circuit C for SAT when given oracle access
to a language that agrees with Aµ by finding a circuit C̃ that
approximately maximizes µ(C, C̃), and outputting C ∨ C̃. The
approximate maximization can be done using the following generic
lemma.

Lemma 4.8. Let f : {0, 1}∗ × {0, 1}∗ → N be such that f(x, y) ≤
2|x|

c
for some constant c, for all inputs x, y. IfAf ∈ prM(AM||coNP),

where Af denotes the promise problem defined by ((4.5)), then
there exists a promise problem Π ∈ prM(AM||coNP) such that the
following holds for any language L that agrees with Π. On input
a binary string x, and 1/ε in unary, we can find, in deterministic
polynomial time with oracle access to L, a value ỹ ∈ {0, 1}m such
that

f(x, ỹ) ≥ (1− ε) · max
y∈{0,1}m

f(x, y).

Proof (of Lemma 4.8). We run a prefix search for ỹ. In order
to do so, we make use of the auxiliary function

g(x, y)
.
= max

yy′∈{0,1}m
f(x, yy′),

where yy′ denotes the concatenation of y and y′. Observe that
the assumption Af ∈ prM(AM||coNP) implies that Π

.
= Ag ∈

prM(AM||coNP). This is because on input 〈x, y, a, ε〉, the aug-
mented Arthur-Merlin protocol for Ag can have Merlin first guess
y′ ∈ {0, 1}m−|y| and then run the augmented Arthur-Merlin proto-
col for Af on input 〈x, yy′, a, ε〉. Let Π

.
= Ag and let L denote any

language that agrees with the promise problem Π.
We run the search for ỹ in two phases. In the first phase we

find an approximation ã to a∗
.
= maxy∈{0,1}m f(x, y) satisfying

(4.9) (1− η)ã ≤ a∗ ≤ ã

28 Aydınlıoğlu & van Melkebeek

for some value η that depends on ε and will be set later. To do so,
we make use of the predicate

(4.10) P (a)
.
= (a ≤ 2|x|

c

) ∧ (〈x, λ, a, η〉 ∈ L),

where λ denotes the empty string, η is as just above, and the rest of
the parameters are the inputs given in the statement of the lemma.
Note that P (0) holds because f is nonnegative. At the other end,
P (2|x|

c
+1) fails by definition. We run a binary search for an integer

value ã ∈ [0, 2|x|
c
] such that P (ã) holds and P (ã+1) fails. Observe

that any such ã is guaranteed to satisfy ((4.9)). Indeed, if P (ã)
holds, then by ((4.10)) we have 〈x, λ, ã, η〉 ∈ L, and since L agrees
with Ag, by ((4.5)) we in turn have 〈x, λ, ã, η〉 6∈ Ng, i.e., (1−η)ã ≤
g(x, λ) = a∗. This argues the first half of ((4.9)). The second half
follows along similar lines: If P (ã + 1) fails, then by ((4.10)) and
by the assumption on the range of f we have g(x, λ) < ã+ 1. This
concludes the first phase.

In the second phase we run the actual prefix search for ỹ. We
maintain the invariant that

(4.11) g(x, ỹ1...i) ≥ ãi,

for 0 ≤ i ≤ m, where ỹ1...i denotes the prefix of length i of ỹ,
and the values ãi are chosen not too much smaller than ã. More
specially, we set ã0 = (1− η)ã, and for i = 0, . . . ,m− 1 we extend
the prefix of ỹ of length i to length i + 1 as follows. By ((4.11))
we know that for at least one choice of ỹi+1 ∈ {0, 1} we must have
g(x, ỹ1...i+1) ≥ ãi. Since L agrees with Ag, using ((4.5)) this means
that

(4.12) 〈x, ỹ1...i+1, ãi, η〉 ∈ L.

We further know that for any choice of ỹi+1 ∈ {0, 1} satisfying
((4.12)), we must have g(x, ỹ1...i+1) ≥ (1− η)ãi. This follows again
from ((4.5)) and because L agrees with Ag. Therefore, we may
pick ỹi+1 as any value in {0, 1} for which ((4.12)) holds, and set
ãi+1 = (1− η)ãi.

In the end, we obtain ỹ ∈ {0, 1}m satisfying

f(x, ỹ) = g(x, ỹ) ≥ ãm = (1−η)mã0 ≥ (1−η)m+1ã ≥ (1−η)m+1a∗,

Circuit Lower Bounds from Derandomization 29

which is at least (1− ε)a∗ provided we set η = ε/(m+ 1).

Since both phases run in polynomial time with oracle access to
L, the result follows. �

Starting from the trivial sound circuit C0 that rejects all inputs,
we iteratively apply the improvement step based on Lemma 4.6
and Lemma 4.8 with ε = 1/2. After no more than n iterations this
yields a circuit of polynomial size that decides SAT on inputs of
size n. We have proved the following theorem.

Theorem 4.13. Suppose that coNP ⊆ NP/ poly. There exists a
promise problem Π ∈ prM(AM||coNP) such that the following holds
for any language L that agrees with Π. Given n, we can construct
a polynomial-size nondeterministic circuit for SAT at length n in
deterministic polynomial time with oracle access to L.

With Theorem 4.13 in hand, the nondeterministic variant of the
Karp-Lipton argument yields the collapse stated in Theorem 4.2.

Proof (of Theorem 4.2). Let K denote the Σ3P-complete lan-
guage consisting of all Boolean formulas ϕ(x, y, z) on three sets of
variables x, y, z such that (∃x)(∀y)ϕ(x, y, ·) ∈ SAT. We show that
under the assumptions of the theorem, K ∈ PprM(AM||coNP).

Consider the related language K ′ consisting of all pairs 〈ϕ,C〉,
where ϕ is a Boolean formula as above and C is a circuit such that
(∃x)(∀y)C(ϕ(x, y, ·)) = 0. As the condition C(ϕ(x, y, ·)) = 0 can
be decided in coNP, K ′ ∈ Σ2P ⊆ M(AM||coNP). Moreover, if C is
a circuit that correctly decides SAT on inputs of the appropriate
size, then ϕ ∈ K iff 〈ϕ,C〉 ∈ K ′.

In order to decide L on an input ϕ of size n, we first run the
algorithm from Theorem 4.13 on input n to obtain a circuit C of
polynomial size for SAT on inputs of the required size, and then
check whether 〈ϕ,C〉 ∈ K ′. Note that any language L that agrees
with the promise problem Π ∈ prM(AM||coNP) from Theorem 4.13
suffices as oracle for the construction; the circuit C we construct
may depend on the choice of L, but the final membership decision
to K does not. The theorem follows. �

30 Aydınlıoğlu & van Melkebeek

5. Equivalence Result

In this section we establish our hardness-derandomization equiva-
lence for Arthur-Merlin games (Theorem 1.1). We first argue the
derandomization-to-hardness direction for Σ2E, as well as a weaker
but relativizing claim for EΣ2P. We finish with the hardness-to-
derandomization direction for Σ2E.

5.1. From derandomization to hardness. We use the lower
bound framework introduced in Section 2.3. We assume that C ⊆
NP/ poly, where C = Σ2E or C = EΣ2P, and derive a contradiction
with Kannan’s result that the polynomial-time hierarchy does not
have (nondeterministic) circuits of size nk for any fixed constant
k. The derivation entails two key ingredients: (i) collapsing the
polynomial-time hierarchy to some randomized class R, and (ii)
simulating R assuming that prAM ⊆ ∩ε>0i.o.-Σ2TIME(2n

ε
)/nε. We

developed (i) in Section 4. We now discuss (ii).

The classes R we consider involve augmented Arthur-Merlin
protocols as introduced in Definition 3.2 of Section 3. More pre-
cisely, we consider R = prM(AM||coNP) and R = PprM(AM||coNP).
Under the stronger derandomization assumption that prAM is in
Σ2SUBEXP

.
= ∩ε>0Σ2TIME(2n

ε
), those classes R can trivially be

simulated in Σ2SUBEXP or SUBEXPΣ2P, respectively. To carry
over that argument to the i.o.-setting with small advice, we need
to make sure that the simulation of R on inputs of length n only
makes use of the derandomization of prAM on one of the infinitely
many good input lengths m where the latter derandomization is
guaranteed to work. The following lemma shows how to do that
for infinitely many input lengths n by exploiting the paddability
of prAM and using an additional short advice string to point to a
nearby good length m.

Lemma 5.1 (Simulation Lemma).
If prAM ⊆ ∩ε>0i.o.-Σ2TIME(2n

ε
)/nε then

(i) prM(AM||coNP) ⊆ ∩ε>0i.o.-Σ2TIME(2n
ε
)/nε, and

(ii) PprM(AM||coNP) ⊆ ∩ε>0i.o.-DTIMEΣ2P(2n
ε
)/nε.

Circuit Lower Bounds from Derandomization 31

Proof. Part (i): Let C denote ∩ε>0i.o.-Σ2TIME(2n
ε
)/nε, and let

Π ∈ prM(AM||coNP). We exhibit a language R ∈ C that agrees
with Π under the assumption of the lemma. Per Definition 3.2,
underlying Π there is a prAM-problem Γ and a coNP-language V .
By assumption, there is a language Q ∈ C that agrees with Γ. If
we replace the predicate Γ by Q in the definition of Π, we obtain
the language

(5.2) R = {x : (∃y ∈ {0, 1}nc) (〈x, y〉 ∈ Q ∧ 〈x, y〉 ∈ V)}.

Observe that R agrees with Π. It remains to show that R ∈ C.
We can assume without loss of generality that Q is paddable;

by this we mean (a) 〈x, y〉 ∈ Q iff 〈x, y, 0pad〉 ∈ Q for all pad ∈ N,
and (b) if 〈x, y〉 is of length m then for all m′ ≥ m there is a setting
of pad such that 〈x, y, 0pad〉 is of length m′.

Fix any ε > 0. We want to exhibit Rε ∈ Σ2TIME(2n
ε
)/nε that

agrees with R on infinitely many lengths n. By assumption, for
every δ > 0 there is a language Qδ ∈ Σ2TIME(2m

δ
)/mδ and an

infinite set of lengths Mδ such that Qδ agrees with Q on all lengths
in Mδ. We use Qδ for a sufficiently small value of δ > 0 to construct
Rε as follows.

Let `(n) denote the maximum length of the (unpadded) queries
issued to the language Q when deciding the language R on inputs
x of length n. Suppose there exists a length m ∈ Mδ in the range
`(n) ≤ m ≤ `(n + 1). Then we pick such a length m, give Rε at
length n as advice the value of m as well as the advice for Qδ at
length m, and let Rε at length n be defined by ((5.2)) but with each
query “〈x, y〉 ∈ Q” replaced by the equivalent query to Qδ padded
to length m, i.e., by “〈x, y, 0pad〉 ∈ Qδ”, where pad is such that
|〈x, y, 0pad〉| = m. Note that in this case Rε agrees with R at length
n. If there is no length m ∈Mδ in the range `(n) ≤ m ≤ `(n+ 1),
we define Rε in the same way but with m set to `(n). In this case
there is no guarantee that Rε and R agree at length n.

Since Qδ agrees with Q for infinitely many lengths m, and the
intervals [`(n), `(n+1)] cover all but finitely many lengths m, it fol-
lows from the construction of Rε that Rε agrees with R on infinitely
many lengths n.

All that remains is the complexity analysis of Rε. The queries
to Qδ are padded up to length no more than `(n + 1), which is

32 Aydınlıoğlu & van Melkebeek

polynomially bounded in n. It follows that those queries can be
decided in Σ2TIME(2n

cδ
)/ncδ for some fixed constant c. The advice

for Rε is of length at most log(`(n + 1)) + ncδ. Thus, if we set
δ = ε/(c + 1) we have that Rε ∈ Σ2TIME(2n

ε
)/nε. This completes

part (i).
Part (ii): Let L ∈ DTIMEΠ(nc) where Π ∈ prM(AM||coNP). Fix

any ε > 0. We want to exhibit a language Lε ∈ DTIMEΣ2P(2n
ε
)/nε

that agrees with L on infinitely many lengths n. By assump-
tion and by part (i), for every δ > 0 there is a language Rδ ∈
Σ2TIME(2m

δ
)/mδ and an infinite set of lengths Mδ such that Rδ

agrees with Π on all lengths in Mδ. Similar to part (i), we use Rδ

to construct Lε, as follows.
Let D be the oracle machine deciding L when given as oracle

any language that agrees with Π. We give to D as oracle Rδ, and
alter D so that all its queries are padded to the same length m,
and supply the value for m as advice to D – just as we did in part
(i). It follows that

(5.3) Lε ∈ i.o.-DTIMEΣ2TIME(2m
δ
)/mδ(nd)/d log n,

where d is a constant depending on c, and m = nd. We now
simplify ((5.3)). First, the oracle machine D underlying Lε can
simulate its oracle queries with an oracle for Σ2TIME(2m

δ
) instead,

provided that the advice of length mδ needed in the original oracle
is given as additional advice to D. Next, we set δ = ε/(d + 1),
thereby turning ((5.3)) into

(5.4) Lε ∈ i.o.-DTIMEΣ2TIME(2n
ε
)(nd)/nε.

Finally, since DTIMEΣ2TIME(s(n))(r(n)) ⊆ DTIMEΣ2P(s(r(n))) for
nicely-behaved functions r and s (such as those in ((5.4))), the
conclusion follows. �

For our main result, and more generally for superpolynomial
lower bounds, the framework exploits the fact that linear-expo-
nential classes such as E, NE, etc., have polynomial-size circuits
if and only if they have fixed -polynomial-size circuits; this follows
because those classes contain complete languages under linear-time
reductions. The next lemma formalizes this fact in a way that will
be handy later.

Circuit Lower Bounds from Derandomization 33

Lemma 5.5. Let C ∈ {Σ2E,EΣ2P}. Suppose C ⊆ NP/ poly. Then
every language in C/n has nondeterministic circuits of size nd for
all but finitely many input lengths, where d is a fixed constant.

We include a proof for completeness.

Proof. Let K be a complete language for C under linear-time
mapping reductions. By hypothesis, there exists a family C0, C1, . . .
of nondeterministic circuits such that C` decides K on inputs of
length `, and the size of C` is at most `c for some constant c.

By definition, for any language L ∈ C/n, there exists L′ ∈ C
and a sequence a0, a1, . . . of strings with |an| ≤ n such that for
any string x of length n, x ∈ L ⇔ 〈x, a|x|〉 ∈ L′. Since L′ ∈ C,
there exists a linear-time mapping f such that for any input z,
z ∈ L′ ⇔ f(z) ∈ K. The following process then decides L on
input x: Compute y

.
= f(〈x, a|x|〉), and run C|y| on input y.

Since |y| = |f(〈x, an〉)| = O(n), by incorporating all C` for `
up to O(n), the above process can be implemented by a nondeter-
ministic circuit of size O(nc+1), which is no more than nd for d > c
and sufficiently large n. �

The framework derives a contradiction with the following non-
deterministic version of a classical result of Kannan’s.

Lemma 5.6 (implicit in Kannan 1982). For every constant d > 0
there exists a language in PΣ3P that requires nondeterministic cir-
cuits of size nd for all but finitely many input lengths n.

We include a proof for completeness.

Proof. Let s(n) = nd. Since any (nondeterministic) circuit of
size s(n) can be described by a string of length O(s(n) log s(n)) =
o(2n), for all but finitely many n there are more strings of length
2n than there are Boolean functions computable by circuits of size
s(n). Thus there exists a characteristic sequence of length 2n that
cannot be computed by circuits of size less than s(n). In fact,
for the same reason, there exists a length-`(n) prefix σ, where
`(n) = O(s(n) log s(n)) = o(2n), such that no size-s(n) circuit
agrees with σ, i.e., no such circuit can compute a characteristic
sequence that extends σ.

34 Aydınlıoğlu & van Melkebeek

The lexicographically least such prefix σ, say σ∗, can be found
through a binary search, by using a Σ3P-oracle, in time poly(s(n)).
To see this, given a size-s circuit C and a length-` string σ, consider
the task of deciding whether the circuit C does not agree with σ.
This task can be performed with an NP-oracle in time poly(s(n)),
and hence in Π2TIME(poly(s(n)). To run the binary search, we
need to answer queries as to whether a given string can be ex-
tended to a string σ such that for all circuits C of size less than
s(n), C does not agree with σ. As these queries can be decided
in Σ3TIME(poly(s(n))), it follows by a padding argument that we
can construct σ∗ in time poly(s(n)) with oracle access to Σ3P.

Once found, σ∗ is viewed as a string σ′ of length 2n that is all
zeroes beyond the first ` bits (and that equals σ∗ in its first ` bits).
It follows that σ′ is the characteristic string of a language L that
cannot be decided by a circuit of size less than s(n) at length n.
On input x of length n, whether x ∈ L can be decided according
to the xth bit of σ′. Thus, L ∈ DTIMEΣ3P(poly(s)). Since s(n) is
polynomial, the claim follows. �

We now have all the ingredients to instantiate the lower bound
framework described in Section 2.3 and obtain the following deran-
domization-to-hardness results for Arthur-Merlin games.

Theorem 5.7. (i) If prAM ⊆ ∩ε>0i.o.-Σ2TIME(2n
ε
)/nε then

Σ2E 6⊆ NP/ poly.

(ii) Relative to any oracle, if prAM ⊆ ∩ε>0i.o.-Σ2TIME(2n
ε
)/nε

then EΣ2P 6⊆ NP/ poly.

Proof. The derivation below proves both parts by contradic-
tion. For part (i) we set C = Σ2E and R = M(AM||coNP), and for
part (ii) we set C = EΣ2P and R = PprM(AM||coNP).

The first line for part (i) follows from Theorem 4.1; this is
because the hypothesis Σ2E ⊆ NP/ poly implies that Σ2EXP ⊆
NP/ poly by padding, and PSPACE ⊆ Σ2EXP. The first line for
part (ii) follows from Theorem 4.2 as coNP ⊆ EΣ2P .

The relativization claim in (ii) follows because all steps in that
part relativize (whereas the collapse argument for (i) involves a
nonrelativizing step).

Circuit Lower Bounds from Derandomization 35

C ⊆NP/ poly

=⇒ PH ⊆ R
(by the collapse results from Section 4)

=⇒ PH ⊆ i.o.-C/n
(by Lemma 5.1)

=⇒ PH ⊆ i.o.-NSIZE(nd)

(by Lemma 5.5)

=⇒ contradiction

(by Lemma 5.6),

where d is some constant, and NSIZE(nd) denotes the class of lan-
guages with nondeterministic circuits of size nd.

�

Note that part (i) of Theorem 5.7 yields the forward direction of
Theorem 1.1.

5.2. From hardness to derandomization. Finally, we argue
the direction from hardness to derandomization in Theorem 1.1.
This direction follows in a straightforward way from the known
hardness versus randomness tradeoffs, and is implicit in Klivans &
van Melkebeek (2002); Shaltiel & Umans (2006).

Theorem 5.8. Let s and σ denote monotone constructible func-
tions from N to N. If

Σ2E 6⊆ NSIZE(s(n)),

then there exists a pseudorandom generator that yields the deran-
domization

prAM ⊆ i.o.-Σ2TIME(2σ(nO(1)))/σ(nO(1)),

provided that σ(n) ≥ (s−1(nc))2/ log n, where c > 0 is a universal
constant and s−1(m) denotes min{n ∈ N : s(n) ≥ m}.

36 Aydınlıoğlu & van Melkebeek

Given the hardness hypothesis, for any ε > 0, we can pick s(n)
in Theorem 5.8 to be nk for a large enough constant k and get a
PRG that yields the simulation of a polynomial-time Arthur-Merlin
protocol in Σ2TIME(2n

ε
)/nε for infinitely many input lengths n.

This establishes the backward direction of Theorem 1.1.

Proof (of Theorem 5.8). The proof follows by combining two
lemmas that are implicit in the literature. We state the lemma’s
and briefly indicate how they are obtained.

First, in order to derandomize prAM it suffices to construct
pseudorandom generators that fool nondeterministic circuits.

Lemma 5.9 (implicit in Klivans & van Melkebeek 2002). If there
is a pseudorandom generator G that on seed length σ(n) is com-
putable in Σ2TIME(2O(σ(n))) with advice of length σ(n), and fools
nondeterministic circuits of size n for infinitely many n, then prAM
can infinitely often be simulated in Σ2TIME(2O(σ(nO(1)))nO(1)) with
advice of length σ(nO(1)).

A pseudorandom generator G being computable in a class C means
that the language LG

.
= {〈s, i, b〉 : the ith bit of G(s) equals b}

belongs to C.
Referring to ((3.1)) in the definition of Arthur-Merlin games,

the simulation in Lemma 5.9 on input x follows from using G to
generate the random bit string y of length nO(1) needed by Arthur,
and then performing a trivial derandomization of the resulting
pseudorandom process. More precisely, we guess half of the seeds
s of length σ(nO(1)) and do the following for each guessed s: Guess
y, check that y = G(s), guess z, and check that 〈x, y, z〉 ∈ L. The
correctness of the simulation follows from the fact that G fools
nondeterministic circuits. The computability of G implies that the
simulation runs in Σ2TIME(2O(σ(nO(1)))nO(1)) with advice of length
σ(nO(1)).

The pseudorandom generators needed in Lemma 5.9 follow from
the given hardness assumption by the known hardness versus ran-
domness tradeoffs for prAM.

Circuit Lower Bounds from Derandomization 37

Lemma 5.10 (implicit in Shaltiel & Umans 2006). There exists a
positive constant c such that the following holds for any con-
structible function ` : N → N. If there is a language in Σ2E
that requires nondeterministic circuits of size nc at length `(n)
for infinitely many n, then there exists a pseudorandom genera-
tor G that has constructible seed length σ(n) = O(`2(n)/ log n),
is computable in Σ2TIME(2O(σ(n))) on seed length σ(n) with ad-
vice of length σ(n), and fools nondeterministic circuits of size n at
infinitely many lengths n.

The generator G from Lemma 5.10 is built out of a language
H ∈ Σ2E that follows from the hardness hypothesis. More specif-
ically, the ith bit of G(s) is defined as the membership to H of
a string u that is computable in polynomial time from s and the
index i. This implies that the language

L′G
.
= {〈s, i〉 : the ith bit of G(s) equals 1}

is in Σ2TIME(2O(`(n))nO(1)). Using as advice the number of pairs
〈s′, i′〉 of the same length as 〈s, i〉 that are in L′G, we can check
that the ith bit of G(s) is 0 by guessing that many pairs 〈s′, i′〉 of
that length different from 〈s, i〉 and verifying that each is in L′G.
Noting that the hardness condition of Lemma 5.10 implies that
`(n) = Ω(log n) and `2(n)/ log n = Ω(log n), it follows that G is
computable in Σ2TIME(2O(σ(n))) on seed length σ(n) with advice
of length σ(n) for some function σ(n) = O(`2(n)/ log n).

Using G from Lemma 5.10 in Lemma 5.9 yields the required
derandomization of prAM. �

6. Concluding Remarks

Both our main result (Theorem 1.1) and the corresponding result
for prBPP in Impagliazzo et al. (2002) establish an equivalence of
derandomization and PRGs at just one point within the deran-
domization spectrum. A natural question to ask is whether these
equivalences can be extended to other regions of the derandom-
ization spectrum: simulations of prBPP/prAM using less time, less
advice, or with one fewer alternation – if they can be done at all,
then can they be done through PRGs? What about simulations

38 Aydınlıoğlu & van Melkebeek

that succeed on all-but-finitely-many input lengths rather than in-
finitely many?

Acknowledgements

We would like to thank the anonymous referees for their construc-
tive suggestions. The research was partially supported by NSF
grants CCF-1017597 and CCF-1319822. An extended abstract of
this paper appears in the proceedings of CCC 2012 (Aydınlıog̃lu
& van Melkebeek 2012).

References

Scott Aaronson & Dieter van Melkebeek (2011). On circuit
lower bounds from derandomization. Theory of Computing 7, 177–184.

Sanjeev Arora & Boaz Barak (2009). Computational Complexity:
A Modern Approach. Cambridge University Press.

Barış Aydınlıog̃lu, Dan Gutfreund, John M. Hitchcock &
Akinori Kawachi (2011). Derandomizing Arthur-Merlin Games and
Approximate Counting Implies Exponential-Size Lower Bounds. Com-
putational Complexity 20(2), 329–366.

Barış Aydınlıog̃lu & Dieter van Melkebeek (2012). Nondeter-
ministic Circuit Lower Bounds from Mildly Derandomizing Arthur-
Merlin Games. In Proceedings of the IEEE Conference on Computa-
tional Complexity, 269–279.

László Babai, Lance Fortnow, Noam Nisan & Avi Wigderson
(1993). BPP Has Subexponential Time Simulations Unless EXPTIME
has Publishable Proofs. Computational Complexity 3, 307–318.

László Babai & Shlomo Moran (1988). Arthur-Merlin games: a
randomized proof system, and a hierarchy of complexity classes. Journal
of Computer and System Sciences 36(2), 254–276.

Jin-Yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemas-
paandra & Mitsunori Ogihara (2005). Competing provers yield
improved Karp-Lipton collapse results. Information and Computation
198(1), 1–23.

Circuit Lower Bounds from Derandomization 39

Venkatesan T. Chakaravarthy & Sambuddha Roy (2011).
Arthur and Merlin as oracles. Computational Complexity 20(3), 505–
558.

Oded Goldreich (2006). On Promise Problems: A Survey. In Essays
in Memory of Shimon Even, 254–290.

Oded Goldreich (2011a). In a World of P=BPP. In Studies in
Complexity and Cryptography, 191–232.

Oded Goldreich (2011b). Two Comments on Targeted Canonical
Derandomizers. Technical Report TR11-047, Electronic Colloquium on
Computational Complexity (ECCC).

Shafi Goldwasser & Michael Sipser (1986). Private Coins versus
Public Coins in Interactive Proof Systems. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 59–68.

Dan Gutfreund, Ronen Shaltiel & Amnon Ta-Shma (2003). Uni-
form hardness versus randomness tradeoffs for Arthur-Merlin games.
Computational Complexity 12(3-4), 85–130.

Russell Impagliazzo, Valentine Kabanets & Avi Wigderson
(2002). In search of an easy witness: exponential time vs. probabilistic
polynomial time. Journal of Computer and System Sciences 65(4),
672–694.

Russell Impagliazzo & Avi Wigderson (1997). P = BPP if E
Requires Exponential Circuits: Derandomizing the XOR Lemma. In
Proceedings of the ACM Symposium on Theory of Computing (STOC),
220–229.

Valentine Kabanets & Russell Impagliazzo (2004). Derandomiz-
ing polynomial identity tests means proving circuit lower bounds. Com-
putational Complexity 13(1/2), 1–46.

Ravi Kannan (1982). Circuit-size lower bounds and nonreducibility
to sparse sets. Information and Control 55(1), 40–56.

Richard M. Karp & Richard J. Lipton (1982). Turing machines
that take advice. L’Enseignement Mathématique 28(2), 191–209.

40 Aydınlıoğlu & van Melkebeek

Jeff Kinne, Dieter van Melkebeek & Ronen Shaltiel (2012).
Pseudorandom Generators, Typically-Correct Derandomization, and
Circuit Lower Bounds. Computational Complexity 21(1), 3–61.

Adam Klivans & Dieter van Melkebeek (2002). Graph Noniso-
morphism Has Subexponential Size Proofs Unless the Polynomial-Time
Hierarchy Collapses. SIAM Journal on Computing 31(5), 1501–1526.

Carsten Lund, Lance Fortnow, Howard J. Karloff & Noam
Nisan (1992). Algebraic Methods for Interactive Proof Systems. Jour-
nal of the ACM 39(4), 859–868.

Noam Nisan & Avi Wigderson (1994). Hardness vs. randomness.
Journal of Computer and System Sciences 49(2), 149–167.

Uwe Schöning (1989). Probabilistic complexity classes and lowness.
Journal of Computer and System Sciences 39(1), 84–100.

Ronen Shaltiel & Christopher Umans (2006). Pseudorandomness
for Approximate Counting and Sampling. Computational Complexity
15(4), 298–341.

Adi Shamir (1992). IP = PSPACE. Journal of the ACM 39(4), 869–
877.

Andrew Chi-Chih Yao (1982). Theory and Applications of Trapdoor
Functions (Extended Abstract). In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 80–91.

Chee-Keng Yap (1983). Some Consequences of Non-Uniform Condi-
tions on Uniform Classes. Theoretical Computer Science 26, 287–300.

Manuscript received 1 September 2013

Barış Aydınlıoğlu
Department of Computer Sciences
University of Wisconsin
Madison, WI 53706
USA
baris@cs.wisc.edu

Dieter van Melkebeek
Department of Computer Sciences
University of Wisconsin
Madison, WI 53706
USA
dieter@cs.wisc.edu

	Nondeterministic Circuit Lower Bounds from Mildly Derandomizing Arthur-Merlin Games
	Introduction
	Outline of the Arguments and Related Work
	First high-end collapse result
	Second high-end collapse result
	The lower bound framework
	Related work

	Notation and Conventions
	Collapse Results
	Collapse result for PSPACE
	Collapse result for coNP

	Equivalence Result
	From derandomization to hardness
	From hardness to derandomization

	Concluding Remarks
	Acknowledgements

