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for depth d. Finally, we extend our results and allow the inputs to be replaced with
sparse polynomials. Our results encompass recent deterministic identity tests for sums
of a constant number of read-once formulae, and for multilinear depth-four formulae.
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1. Introduction

Polynomial identity testing (PIT) denotes the fundamental problem of deciding whether a given
polynomial identity holds. More precisely, we are given an arithmetic circuit or formula F on n
inputs over a given field F, and want to know whether all the coefficients of the formal polynomial
P computed by F vanish. Due to its basic nature, PIT shows up in many constructions in theory
of computing. Particular problems that reduce to PIT include integer primality testing [AB03] and
finding perfect matchings in graphs [Lov79].

PIT has a very natural randomized algorithm – pick the values of the variables uniformly at
random from a small set S, and accept iff P evaluates to zero on that input. If P ≡ 0 then the
algorithm never errs; if P 6≡ 0 then by Schwartz-Zippel [Sch80, Zip79, DL78] the probability of error
is at most d/|S|, where d denotes the total degree of P . This results in an efficient randomized
algorithm for PIT. It works in a blackbox fashion in the sense that it does not need access to the
representation of the polynomial P but only to the value of P at inputs of the algorithms choosing
(from F or an extension field of F).

Despite the simplicity of the above randomized algorithm, no efficient deterministic algorithm
for PIT is known. In fact, the development of a deterministic subexponential-time algorithm for
PIT would imply Boolean or arithmetic circuit / formula lower bounds that have been a central
elusive goal in theory of computing for a very long time [KI04, Agr05, KvMS09, AvM10].

Recent years have seen considerable progress on deterministic PIT algorithms for restricted classes
of arithmetic formulae, in particular for constant-depth formulae. For depth two several determin-
istic polynomial-time blackbox algorithms are known [BOT88, KS01, Agr03, AM10, BHLV09]. For
depth three the state-of-the-art is a deterministic polynomial-time blackbox algorithm when the
fanin of the top gate is fixed to any constant [SS10]. The same is known for depth four but only
when the formulae are multilinear, i.e., when every gate in the formula computes a polynomial of
degree at most one in each variable [SV10]. There are also a few incomparable results for rather
specialized classes of depth-four formulae [Sax08, AM10, SV09]. We refer to the excellent survey
paper [Sax09] for more information.

Another natural restriction are arithmetic formulae in which each variable appears only a limited
number of times. We call such formulae read-k, where k denotes the limit. PIT for read-once
formulae is trivial in the non-blackbox setting as there can be no cancellation of monomials. Shpilka
and Volkovich considered a special type of constant-read formulae, namely formulae that are the
sum of a constant number of read-once formulae. For such formulae they established a deterministic
polynomial-time non-blackbox algorithm as well as a deterministic blackbox algorithm that runs
in quasi-polynomial time, i.e., in time 2polylog n on formulae with n variables [SV08, SV09].

1.1. Results

As our main result we present a deterministic polynomial-time PIT algorithm for multilinear
constant-read formulae, as well as a deterministic quasi-polynomial-time blackbox algorithm.

Theorem 1.1 (PIT for Multilinear Constant-Read Formulae). There exists a determinis-

tic polynomial identity testing algorithm for multilinear formulae that runs in time sO(1) · nkO(k)
,

where s denotes the size of the formula, n the number of variables, and k the maximum number of
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times a variable appears in the formula. There also exists a deterministic blackbox algorithm that
runs in time nkO(k)+O(k log n) and queries points from an extension field of size O(n2).

Note that Theorem 1.1 extends the class of formulae which Shpilka and Volkovich could handle
since a sum of read-once formulae is always multilinear.

Shpilka and Volkovich actually proved their result for sums of a somewhat more general type
of formulae than read-once, namely read-once formulae in which each leaf variable is replaced by
a low-degree univariate polynomial in that variable. In the non-blackbox setting we can handle a
further extension in which the leaf variables are replaced by sparse multivariate polynomials, as
long as (i) each variable appears in at most k of those multivariate polynomials, and (ii) for every
multiplication gate of the original formula the different input branches of the gate are variable
disjoint. We use the term “sparse-substituted formula” for a formula along with substitutions for
the leaf variables by multivariate polynomials that are each given as a list of terms (monomials). We
call a sparse-substituted formula read-k if it satisfies (i), and structurally multilinear if it satisfies
(ii). Note that structural multilinearity is a relaxation of multilinearity. In the blackbox setting we
only know how to handle multilinear sparse substitutions but not structurally multilinear ones.

Theorem 1.2. (PIT for Sparse-Substituted Constant-Read Formulae). There exists a
deterministic polynomial identity testing algorithm for structurally-multilinear sparse-substituted
formulae that runs in time sO(1) · (n log t)k

O(k)(log(t)+1), where s denotes the size of the formula, n
the number of variables, k the maximum number of substitutions in which a variable appears, and t
the maximum number of terms a substitution consists of. There also exists a deterministic blackbox
algorithm for multilinear sparse-substituted formulae that runs in time nkO(k)(log(t)+1)+O(k log n) and
queries points from an extension field of size O(n2).

Note Theorem 1.1 is a specialization of Theorem 1.2 obtained by setting t = 1.
We observe that any multilinear depth-four formula with an addition gate of fanin k as the

output can be written as the sum of k sparse-substituted read-once formulae, where the read-once
formulae are single monomials and the substitutions correspond to multilinear depth-two formulae.
This implies that our blackbox algorithm also extends the work by Karnin et al. [KMSV10], who
established a deterministic quasi-polynomial-time blackbox algorithm for multilinear formulae of
depth four. Thus, our results can be seen as unifying identity tests for sums of read-once formulae
[SV08, SV09] with identity tests for depth-four multilinear formulae [KMSV10] while achieving
comparable running times in each of those restricted settings.

We can improve the running time of our blackbox algorithm in the case where the formulae have
small depth.

Theorem 1.3. (Blackbox PIT for Multilinear Sparse-Substituted Constant-Depth Con-
stant-Read Formulae). There exists a deterministic blackbox polynomial identity testing algo-

rithm for multilinear sparse-substituted formulae with unbounded fanin that uses nkO(k2)(log(t)+1)+O(kd)

time and queries points from an extension field of size O(n2), where n denotes the number of vari-
ables, d the depth of the formula, k the maximum number of substitutions in which a variable
appears, and t the maximum number of terms a substitution consists of.

In particular, we obtain a polynomial-time blackbox algorithm for constant-read constant-depth
formulae with unbounded fanin.
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For completeness we mention a couple related results regarding depth-three constant-read formu-

lae that do not require multilinearity. In particular, [KS08] gives a n2O(k2)
blackbox identity testing

algorithm for read-k depth-three formulae. Later work in [SS09] implies an improved running time

of n2O(k)
for this algorithm.

1.2. Techniques

As we have mentioned earlier, polynomial identity testing is trivial for read-once formulae. Our
overall approach for multilinear constant-read formulae is a recursive one in which we reduce to
instances with smaller read-value and/or fewer variables until we reach a trivial case. Our reduction
alternates between two steps and uses as an intermediate stage formulae that are the sum of two
multilinear read-k formulae. We refer to such formulae as multilinear

∑2-read-k formulae.

Step 1. Reduce PIT for multilinear read-(k + 1) formulae to PIT for multilinear
∑2-read-k for-

mulae and PIT for multilinear read-(k + 1) formulae on half the number of variables.

Step 2. Reduce PIT for multilinear
∑2-read-k formulae to PIT for multilinear read-k formulae.

We combine techniques developed for sums of read-once formulae (the SV-generator from [SV09])
and techniques developed for multilinear depth-four formulae (the rank bound for depth-three
formulae [SS09] as in [KMSV10]) with a novel fragmentation technique. The latter enables us to
realize Step 1 in the blackbox setting, as well as Step 2 in both the blackbox and non-blackbox
settings. The key technical difficulty lies in Step 2, where we show how the fragmentation technique
brings the rank bound for depth-three formulae to bear on multilinear

∑2-read-k formulae. We
now discuss the two steps and their key ingredients in more detail, with a focus on the role of
fragmentation.

1.2.1. Fragmenting Multilinear Formulae

Our fragmentation technique for multilinear formulae involves partial derivatives with respect to
well-chosen variables. For a read-once formula F , it boils down to the following observation: Taking
the partial derivative with respect to the median variable x on which F depends in leaf order, yields
a nonzero formula ∂xF that is the product of subformulae each of which depends on at most half
the variables. For a general multilinear read-(k + 1) formula on n variables, a similar procedure
yields the following.

Lemma 1.4 (Simplified Fragmentation Lemma). Given a nonzero multilinear read-(k + 1)
formula F on n variables, there exists a variable x such that ∂xF is nonzero and can be written as
the product of subformulae on at most n/2 variables each, and possibly one other formula that is
the derivative of a

∑2-read-k subformula.

The Fragmentation Lemma helps us in realizing the blackbox version of Step 1 as follows. In
general, a blackbox PIT algorithm for a class F of formulae is equivalent to the construction
of a low-degree polynomial mapping G on few variables such that F ◦ G is nonzero for every
nonzero F ∈ F . We refer to such a mapping as a hitting set generator for F , and say that G
hits every F ∈ F . A hitting set generator for F also hits all products of elements from F . Thus,
by the Fragmentation Lemma, a hitting set generator that hits multilinear

∑2-read-k formulae
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on n variables as well as multilinear read-(k + 1) formulae that depend on at most n/2 of the n
variables, also hits some nonzero partial derivative of any nonzero multilinear read-(k + 1) formula
on n variables. Adding an independent random field element turns such a hitting set generator
into one that hits every multilinear read-(k + 1) formula on n variables. A logarithmic number
of applications of this transformation then turns a hitting set generator for n-variable

∑2-read-k
formulae into one for n-variable read-(k + 1) formulae.

The Fragmentation Lemma also plays a critical role in Step 2, both in the blackbox and in the
non-blackbox setting. This is the most involved step in our construction and entails two more
ingredients: the SV-generator and the rank bound for depth-three formulae. We first introduce
those two ingredients and then explain how they combine with the Fragmentation Lemma. At
a high level, the Fragmentation Lemma allows us to transform multilinear read-k formulae into
depth-three formulae to which the rank bound applies, and the latter enables us to apply the
SV-generator and realize Step 2.

1.2.2. The SV-Generator

Shpilka and Volkovich [SV09] defined a hitting set generator Gw that interpolates all 0-1-vectors
of weight at most w and has some additional closure properties. Their approach for sums of a
constant number of read-once formulae is based on two facts. Let Td denote the set of all terms of
degree exactly d.

Fact 1.5 ([SV09]). Gw is a hitting set generator for any class F of multilinear polynomials that
is closed under zero-substitutions and is disjoint from Td for every d > w.

Fact 1.6 ([SV09]). 1 Let F =
∑k

i=1 Fi be a nonzero formula with each Fi read-once. Let σ̄ be a
point where none of the nonzero first-order partial derivatives of the Fi’s vanish. Then F (x̄+σ̄) 6∈ Td
for any d ≥ 3k.

For a formula F as in Fact 1.6, consider applying Fact 1.5 to the class F consisting of F (x̄ + σ̄)
and all its zero-substitutions, for some fixed σ̄. The first condition of Fact 1.5, the closure under
zero-substitutions of F , holds by construction. As for the second condition, consider a formula F ′

obtained by substituting into F the components of σ̄ for some subset X of the variables. For any
variable x 6∈ X, we have that ∂F ′

∂x (σ̄) = ∂F
∂x (σ̄). Thus, if σ̄ satisfies the hypothesis of Fact 1.6 for F ,

then it also satisfies that hypothesis for any substitution F ′ of the above type. By Fact 1.6, this
shows that F ′(x̄ + σ̄) 6∈ Td for d ≥ 3k. Noting that F ′(x̄ + σ̄) coincides with F (x̄ + σ̄) where all
variables in X have been substituted by zero, this means that F satisfies the second condition of
Fact 1.5. We conclude that for any σ̄ satisfying the condition of Fact 1.6, G3k + σ̄ hits F .

Moreover, since the partial derivatives ∂xFi are read-once formulae and PIT for read-once formu-
lae is trivial, we can efficiently find a shift σ̄ satisfying the conditions of Fact 1.6 when given access
to the formula F – select values for the components of σ̄ one by one so as to maintain nonzeroness
of the nonzero partial derivatives under that setting. This is how Shpilka and Volkovich obtained
their polynomial-time non-blackbox test [SV08]. Alternately, one can use a hitting set generator
G for read-once formulae to generate a shift σ̄ satisfying the conditions of Fact 1.6. Fact 1.5 then

1Shpilka and Volkovich refer to this fact as a hardness of representation result and use the term “justifying assign-
ment” for σ̄.
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shows that G+G3k is a hitting set generator for sums of k read-once formulae. This is how Shpilka
and Volkovich obtained their quasi-polynomial-time blackbox test [SV09].

We follow the same strategy for Step 2 of our approach, i.e., to reduce PIT for multilinear
∑2-

read-k formulae to PIT for multilinear read-k formulae. We use Fact 1.5 as is, and develop the
following equivalent of Fact 1.6 for sums of (two) multilinear read-k formulae.

Lemma 1.7 (Informal Simplified Key Lemma). Let F be a
∑2-read-k formula, and σ̄ a point

where none of the nonzero partial derivatives of small order of any subformula of F vanish. Then
F (x̄ + σ̄) 6∈ Td for any d that is sufficiently large with respect to k.

Note that the condition of the Key Lemma involves higher-order derivatives, whereas the cor-
responding condition in Fact 1.6 only uses first-order derivatives. Nevertheless, the important
properties are preserved: (i) the condition implies that the conclusion holds for F (x̄ + σ̄) as well
as for all its zero-substitutions, and (ii) the condition states that σ̄ is a common nonzero of some
nonzero multilinear read-k formulae which we can easily compute from F .

Thus, given access to F and to an oracle for PIT on multilinear read-k formulae, we can efficiently
construct a shift σ̄ such that Gw hits F (x̄ + σ̄) for w sufficiently large with respect to k. This gives
our non-blackbox reduction from PIT on multilinear

∑2-read-k formulae to PIT on multilinear
read-k formulae. In the blackbox setting, we can generate the shift σ̄ we need using a hitting
set generator G for multilinear read-k formulae, resulting in G + Gw as a hitting set generator for
multilinear

∑2-read-k formulae.
In order to prove the Key Lemma, we employ our fragmentation technique to bring the rank

bound for depth-three formulae to bear on multilinear constant-read formulae.

1.2.3. The Rank Bound

For constant-depth formulae the difficult cases of PIT are those where the top gate is an addition.
In particular, for depth-three these are ΣΠΣ-formulae – sums of products of linear functions. A
relevant structural property of such formulae F is their rank, which Dvir and Shpilka [DS07] defined
as the dimension of the span of the linear functions at the bottom level of F . One way to think
about the rank is as the true number r of independent variables of F – we can efficiently transform
F into a ΣΠΣ-formula F̃ on r variables such that F is identically zero iff F̃ is. In recent years
much progress has been made on upper bounds for the rank of ΣΠΣ-formulae that are identically
zero, where the upper bounds are expressed as a function of the fanin m of the top addition gate.
In particular, Saxena and Seshadhri [SS09] showed that a zero ΣΠΣ-formula of syntactic degree d
that satisfies some relatively minor conditions can have rank at most O(m3 log d). We refer to this
structural property as the rank bound. The “relatively minor” conditions are (i) that the linear
functions at the bottom have no nontrivial factor that is common to all of them, and (ii) that no
nontrivial subset of the m branches of F sums to zero. Condition (i) is referred to as the simplicity
of F , and condition (ii) as the minimality of F .

The rank bound leads in a fairly straightforward way to a deterministic quasi-polynomial-time
non-blackbox PIT algorithm for ΣΠΣ-formulae with constant top fanin m. If the “relatively minor”
conditions are not met, we can reduce to easier cases. Otherwise, the rank bound either tells us
that F is guaranteed to be nonzero or else we can reduce F to an equivalent PIT instance F̃ on r
variables for some small r, which we can solve by brute force in time roughly (d + 1)r.
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To derive their results for multilinear depth-four formulae, Karnin et al. [KMSV10] established
the following implication of the rank bound for “split” formulae. A “split” formula is the product
of subformulae that each only depend on a fraction of the variables. We only give a qualitative
statement here; see Section 2.3 for the quantitative version.

Fact 1.8 (Informal and implicit in [KMSV10]). 2 A simple minimal sum of a constant num-
ber of sufficiently split multilinear formulae cannot be zero.

We use the rank bound via Fact 1.8, not to directly construct our PIT algorithm, but to establish
the Key Lemma. The connection between the two is as follows. Let F ′ be a sum of a constant
number of multilinear formulae. Note that F ′ ∈ Td′ iff there exists a nonzero scalar a and an index
set I of size d′ such that F ′ − a ·

∏

i∈I xi ≡ 0. Fact 1.8 shows that the latter cannot happen for
d′ > 0 if each of the summands of F ′ is (i) sufficiently split and (ii) not divisible by any variable.
For a shifted formula F ′(x̄ + σ̄) the latter condition is met if the summands do not vanish at σ̄.
Thus, in order to establish the Key Lemma, all that remains is to transform a multilinear

∑2-
read-k formula F for which F (x̄ + σ̄) ∈ Td into a sum F ′ of a constant number of sufficiently split
multilinear formulae such that F ′(x̄ + σ̄) ∈ Td′ for some d′ > 0. Moreover, the transformation
should be sufficiently simple such that the condition that none of the summands of F ′ vanish at
σ̄ translates into a simple condition about σ̄ and the original formula F . Repeated applications of
the Fragmentation Lemma allow us to do so (for d sufficiently large compared to k) in a process
we refer to as “shattering”.

1.2.4. Shattering Multilinear Formulae

Let us first consider the case k = 1, i.e., let F = F1 +F2 be the sum of two read-once formulae. The
Fragmentation Lemma applied to Fi gives a formula ∂xFi that is a product of subformulae on at
most half of the variables each. We can repeat this process on each of the resulting factors. After
O(1/α) applications, each of the remaining factors only depend on a fraction α of the variables.
If we denote by P the set of variables we used for the partial derivatives, multilinearity implies
that the product of all those factors equals ∂P Fi. Thus, the formula F ′

.
= ∂P F is the sum of two

split multilinear formulae. Moreover, if F (x̄ + σ̄) ∈ Td then F ′(x̄ + σ̄) ∈ Td′ for d′ = d − |P |,
which is positive as long as d is sufficiently large compared to 1/α. Let F ′i coincide with ∂P Fi, so
the condition that F ′i does not vanish at σ̄ is equivalent to ∂P Fi not vanishing at σ̄. This is how
higher-order derivatives come into play in the conditions of the Key Lemma.

In the cases where k ≥ 2 the shattering process becomes more complicated as it no longer holds
that all the factors produced by the Fragmentation Lemma depend on at most half the number of
variables – the one

∑2-read-(k − 1) factor may depend on more.
We handle this situation by explicitly expanding the

∑2-read-(k−1) formula into the sum of two
read-(k − 1) formulae and propagating the sum up to the top addition gate of F ′. This increases
the top fanin of F ′ and duplicates some of the variable occurrences. However, by restricting to the
variables that only appear in the

∑2-read-(k − 1) formula and further restricting to the largest
group that appear the exact same number of times in the larger of the two terms, we can ensure that
the sum of the read-values of the children of F ′ does not increase. As a result, we need to apply this
expansion operation no more than 2k times, and the top fanin of F ′ never grows above 2k. Since

2Karnin et al.[KMSV10] refer to “split” formulae as “compressed”.
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we only apply the operation when the
∑2-read-(k − 1) formula depends on many variables, the

subset of the variables to which we restrict remains large. This result of this process is qualitatively
captured in the following lemma.

Lemma 1.9 (Informal Simplified Shattering Lemma). For any
∑2-read-k formula F , there

exist disjoint sets of indices P and V , with P small and V relatively large, such that ∂P F can be
written as

∑m
j=1 F ′j where m ≤ 2k and each F ′j is split with respect to V and is the product of

subformulae of partial derivatives of F1 and F2.

Note that the formula F ′ given by the Shattering Lemma may depend on variables outside of V ,
and that the F ′j ’s are only split with respect to V , i.e., they are the products of factors that each
only depend on a fraction of the variables of V but may depend on many variables outside of V .
The formula to which we apply Fact 1.8 is obtained from F ′ by setting the variables outside of
V appropriately. If none of the projections nor any of the Fj vanish at σ̄, we can conclude that
F (x̄ + σ̄) 6∈ Td for any d larger than the number of partial derivatives we needed for the shattering.
Since the variables always appear as subformulae, the condition in the statement of the Key Lemma
suffices.

1.2.5. Extension to Sparse-Substituted Formulae

The above arguments require the formulae to be multilinear for two reasons. First, they make
heavy use of partial derivatives, and multilinear formulae are closed under the partial derivative
operation. Second, factors of multilinear formulae are variable disjoint.

We can relax the multilinearity condition somewhat. Few modifications are needed in order to
extend our results to multilinear sparse-substituted formulae, i.e., multilinear formulae in which
each leaf variable is replaced by a sparse multilinear polynomial such that all multiplication gates
of the original formula remain variable disjoint. The main extension happens in the Fragmenta-
tion Lemma. A combination of partial derivatives and zero-substitutions similar to one used in
[KMSV10] allows us to fragment the sparse substitutions. For substitutions that consist of at most
t terms, this results in an overall multiplicative increase in the number of such operations by log t.
This factor propagates to the exponent of the running time of our algorithms.

A further extension to structurally multilinear sparse-substituted formulae follows by a simple
reduction from general sparse substitutions to multilinear sparse substitutions.

1.3. Organization

In Section 2 we introduce our notation and formally define the classes of arithmetic formulae that
we study. Section 2 also reviews some preliminaries in more detail, including the SV-generator and
the rank bound for depth-three formulae. In Section 3 we develop the Fragmentation Lemma in a
step-wise fashion – for read-once formulae, read-k formulae, and sparse-substituted formulae – and
the Shattering Lemma that is based on it. The actual development of our results follows the struc-
ture from the introduction, but we prove our results right away for multilinear sparse-substituted
formulae. We develop our blackbox and non-blackbox algorithms in parallel. In Section 4 we
reduce PIT for multilinear sparse-substituted read-(k + 1) formulae to PIT for multilinear sparse-
substituted

∑2-read-k formulae. In Section 5 we reduce PIT for multilinear sparse-substituted
∑2-read-k formulae to PIT for multilinear sparse-substituted read-k formulae. In Section 6 we
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prove our two main theorems for identity testing multilinear constant-read formulae: a determin-
istic polynomial-time non-blackbox algorithm and a deterministic quasi-polynomial-time blackbox
algorithm. We end with a specialization of our approach that gives a deterministic polynomial-time
blackbox algorithm for multilinear constant-read constant-depth formulae.

2. Notation and Preliminaries

In this section we first review some basics and notation regarding polynomials and arithmetic
formulae. We then describe two ingredients we need from prior work, namely the SV-generator and
the rank bound.

2.1. Polynomials and Arithmetic Formulae

Let F denote a field. A polynomial P ∈ F[x1, ..., xn] depends on a variable xi if there are two inputs
ᾱ, β̄ differing only in the ith coordinate for which P (ᾱ) 6= P (β̄). We denote by var(P ) the set of
variables that P depends on.

For a subset of the variables X ⊆ {x1, ..., xn} and an assignment ᾱ, P |X←ᾱ denotes the poly-
nomial P with the variables in X substituted by the corresponding values in ᾱ. We often denote
variables interchangeably by their index or by their label: i versus xi, and [n]

.
= {1, 2, . . . , n} versus

{x1, ..., xn}.
An arithmetic formula is a tree where the leaves are labeled with variables or field elements and

internal nodes labeled with addition or multiplication. The singular node with no outgoing edges
is the output gate of the formula. We allow generalized input, addition, and multiplication gates,
where the result can be multiplied by and/or added to a constant. Formally, for arbitrary constants
α, β ∈ F, input and arithmetic gates produce the following output.

• Input gates: α · x + β.

• Addition gates: g = α · (
∑

i gi) + β.

• Multiplication gates: g = α · (
∏

i gi) + β.

We interchangeably use the notions of a gate and the polynomial computed by that gate. The size
of an arithmetic formula is the number of gates in the formula. The depth of an arithmetic formula
is the length of the longest path from the output gate to an input variable. Except for the constant
depth case we can assume that the fanin of multiplication and addition gates is two.

2.1.1. Restricted Types of Arithmetic Formulae

We consider several restricted classes of arithmetic formulae. An arithmetic formula is multilinear if
every gate of the formula computes a polynomial that has degree at most one in every variable. This
means that only one child of a multiplication gate may depend on a particular variable. However,
more than one child may contain occurrences of some variable.

We also consider the restriction that each variable occurs only a bounded number of times.
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Definition 2.1 (read-k formula). For k ∈ N, a read-k formula is an arithmetic formula that has
at most k occurrences of each variable. For a subset V ⊆ [n], a readV -k formula is an arithmetic
formula that has at most k occurrences of each variable in V (and an unrestricted number of
occurrences of variables outside of V ).

Observe that for V = [n] the notion of readV -k coincides with read-k.
Given a read-k formula, we can transform it in polynomial time into an equivalent formula that

has at most O(kn) gates and where constants only occur in the α and β of gates. The transformation
is straightforward and is included in Appendix A for completeness. It preserves multilinearity. In
a blackbox setting we can assume without loss of generality that the underlying read-k formula
is in standard form. Our non-blackbox algorithms will always implicitly start by running the
transformation.

We can build more complex formulae by adding several formulae together.

Definition 2.2 (
∑

m-read-k formula). For k,m ∈ N, a
∑m-read-k formula is the sum of m

read-k formulae.

Note that this class is not distinct from the class of constant-read formulae because any
∑m-read-k

formula is a read-(km) formula.
Finally, we also consider the above types of formulae in which variables can be replaced by sparse

polynomials. We call a polynomial is t-sparse if it consists of at most t terms.

Definition 2.3 (sparse-substituted formula). A sparse-substituted formula is an arithmetic
formula where each leaf is replaced by a sparse multivariate polynomial given as a list of terms.
Further,

1. if every variable occurs in at most k of the sparse polynomials, we say that the formula is
read-k, and

2. if for every multiplication gate g and every variable x there is at most one multiplicand of g
that depends on x, we say that the formula is structurally multilinear.

A sparse-substituted formula is multilinear if every gate (including the substituted input gates)
computes a multilinear function. This is equivalent to all multiplication gates in the backbone
formula being variable-disjoint, and the sparse substitutions being multilinear. The corresponding
interpretation of structural multilinearity is that the multiplication gates in the backbone formula
are variable-disjoint, but the substituted sparse polynomials do not need to be multilinear. Thus,
structural multilinearity is more general than multilinearity.

2.1.2. Partial Derivatives

Partial derivatives of polynomials can be defined formally over any field F by stipulating the
partial derivative of monomials consistent with standard calculus, and imposing linearity. The
well-known sum, product, and chain rules then carry over. For a multilinear polynomial P ∈
F[x1, ..., xn] and a variable x = xi with i ∈ [n], we can write P as P = Q · x + R, where
Q,R ∈ F[x1, x2, . . . , xi−1, xi+1, . . . , xn]. In this case the partial derivative of P with respect to
x is ∂P

∂x = Q. We often shorten this notation to ∂xP . Observe that R = P |x←0.
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Figure 1: An example of taking the partial derivative of a multilinear read-2 formula.

For a multilinear read-k formula F , ∂xF is easily obtained from F and results in a formula
with the same or a simpler structure than F . Start from the output gate and recurse through the
formula, applying at each gate the sum or product rule as appropriate. In the case of an addition
gate g = α ·

∑

i gi +β, we have that ∂xg = α ·
∑

i ∂xgi. Thus, we essentially recursively replace each
of the children by their partial derivative. The structure of the formula is maintained, except that
some children may disappear because they do not depend on x. In the case of a multiplication gate
g = α · (

∏

i gi) + β, the derivative ∂xg is a sum of products, namely ∂xg = α ·
∑

i(
∏

j 6=i gj) · ∂xgi.
However, by the multilinearity condition at most one of the terms in the sum is nonzero because
at most one gi can depend on x. Thus, we leave the branches gj for j 6= i untouched, recursively
replace gi by its partial derivative, and set β = 0. The structure of the formula is again maintained
or simplified. Overall, the resulting formula ∂xF is multilinear and read-k. See Figure 1 for an
example with each α = 1 and β = 0. Similarly, the partial derivatives of multilinear

∑m-read-k
formulae are multilinear

∑m-read-k formulae.

2.1.3. Polynomial Identity Testing and Hitting Set Generators

Arithmetic formula identity testing denotes the problem of deciding whether a given arithmetic
formula is identically zero as a formal polynomial. More precisely, let F be an arithmetic formula
on n variables over the field F. The formula F is identically zero iff all coefficients of the formal
polynomial that F defines vanish. For example, the formula (x− 1)(x + 1)− (x2 − 1) is identically
zero but the formula x2 − x is nonzero (even over the field with 2 elements).

There are two general paradigms for identity testing algorithms: blackbox and non-blackbox.
In the non-blackbox setting, the algorithm is given the description of the arithmetic formula as
input. In the blackbox setting, the algorithm is allowed only to make queries to an oracle that
evaluates the formula on a given input. Observe that non-blackbox identity testing reduces to
blackbox identity testing because the description of a formula can be used to efficiently evaluate
the formula on each query the blackbox algorithm makes. There is one caveat – in the blackbox
case the algorithm should be allowed to query inputs from a sufficiently large field. This may
be an extension field if the base field is too small. Otherwise, it is impossible to distinguish a
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polynomial that is functionally zero over F but not zero as a formal polynomial, from the formal
zero polynomial (e.g., consider the formula x2 − x restricted to the field with two elements).

Blackbox algorithms for a class of polynomials naturally produce a hitting set, i.e., a set H of
points such that each nonzero polynomial P from the class does not vanish at some point in H.
We say that H hits the class, and P in particular. To see the connection, observe that when a
blackbox algorithm queries a point that is nonzero it can immediately stop. Conversely, when the
result of every query is zero, the algorithm must conclude that the polynomial is zero; otherwise,
it fails to correctly decide the zero polynomial.

A related notion is that of a hitting set generator. Formally, a polynomial map G = (G1,G2, . . . ,Gn)
where each Gi ∈ F[y1, y2, . . . , yℓ] is a hitting set generator (or generator for short) for a class of poly-
nomials P, if for each nonzero polynomial P ∈ P, G hits P , that is P ◦ G 6≡ 0. Suppose that G
hits a class of polynomials P, then G can be used to construct a blackbox identity test for P ∈ P
by collecting all elements in the image of G when we let the input variables to G range over some
small set.

Proposition 2.4. Let P be a class of n-variate polynomials of total degree at most d. Let G ∈
(F[y1, ..., yℓ])

n be a generator for P such that the total degree of each polynomial in G is at most
dG. There is a deterministic blackbox polynomial identity testing algorithm for P that runs in time
O((d · dG)

ℓ) and queries points from an extension field of size O(d · dG).

Proof. Let P be a nonzero polynomial in P. Since G is a generator for P, the polynomial P ◦ G ∈
F[y1, y2, . . . , yℓ] is nonzero. The total degree of P ◦ G is at most d · dG . By the Schwartz-Zippel
Lemma [Sch80, Zip79, DL78] any set V ℓ ⊆ Eℓ where |V | ≥ d · dG + 1 and E is an extension field of
F, contains a point at which P ◦ G does not vanish. Note that the extension field E ⊇ F must be
sufficiently large to support the subset V of the required size. The algorithm tests P at all points
in G(V ℓ) and outputs zero iff all test points are zero. �

Note that this approach is only efficient when ℓ≪ n and the degrees are not too large.
Hitting set generators and a hitting sets are closely related. By Proposition 2.4 a hitting set

generator implies a hitting set. It is also known that a hitting set generator can be efficiently
constructed from a hitting set using polynomial interpolation [SV09].

2.2. The SV-Generator

One example of such a generator is the one Shpilka and Volkovich obtained by interpolating the
set Hn

w of all points in {0, 1}n with at most w nonzero components. The resulting generator Gw is
a polynomial map of total degree n on 2w variables. Shpilka and Volkovich [SV09] showed that it
hits

∑k-read-once formulae for w ≥ 3k + log n. Karnin et al. [KMSV10] also used it to construct
a hitting set generator for multilinear depth-four formulae with bounded top fanin.

For completeness, we include the definition of the generator Gw.

Definition 2.5 (SV-Generator [SV09]). Let a1, . . . , an denote n distinct elements from E ⊇ F,
an ui(x)

.
=
∏

j 6=i
x−aj

ai−aj
, for i ∈ [n], the corresponding Lagrange interpolants. For every w ≥ 1,

define

Gw(y1, ..., yw, z1, ..., zw)
.
=





w
∑

j=1

u1(yj)zj ,

w
∑

j=1

u2(yj)zj , ...,

w
∑

j=1

un(yj)zj



 .
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The map Gw has a number of useful properties that follow immediately from its definition. We
list the ones we need.

Proposition 2.6 ([KMSV10, Observations 4.2, 4.3]). Let w1, w2 be positive integers.

1. Gw1(ȳ, 0̄) ≡ 0.

2. Gw1 |yw1←ai
= Gw1−1 + zw1 · ēi, where ēi denotes the 0-1-vector with a single 1 in position i.

3. Gw1 + Gw2 = Gw1+w2.

The first item states that zero is in the image of G. The second item shows how to make a single
output component (and no others) depend on a particular zj. The final item shows that sums of
independent copies of G are equivalent to a single copy of G with the appropriate weight parameter
w.

Proposition 2.6 implies the following: if G is a generator that hits some partial derivative of a
multilinear polynomial then G + G1 hits the multilinear polynomial itself.

Lemma 2.7 (Implicit in [KMSV10]). Let P be a multilinear polynomial. If G hits a nonzero
∂xP for some variable x, then P ◦ (G + G1) is non-constant.

Proof. Since ∂xP 6≡ 0, both |var(P )| ≥ 1 and x ∈ var(P ). Consider P (G + G1(ax, z1)), that is,
evaluating P at G + G1(y1, z1) and selecting the seed y1 so that z1 only appears in variable x. By
the multilinearity of P , we can write P as P = x ·∂xP +P |x←0. Property 2 of Proposition 2.6 then
implies that

P (G + G1(ax, z1)) = ((G)x + z1) · ∂xP (G) + P |x←0(G).

As z1 does not occur in (G)x we know that that (G)x + z1 is nonzero and depends on z1. Because G
hits ∂xP we see that the second factor of the first term is also nonzero implying that the entire first
term is nonzero. Since the second term is independent of z1, there is no way that the z1 dependence
of the first term can be canceled out by the second term. This implies that P ◦ (G + G1) depends
on z1 and hence is non-constant as claimed. �

We require one further property of G that is implicit in [SV08, SV09], namely Fact 1.5 from the
introduction.

Lemma 2.8 (Implicit in [SV08, Theorem 8.2]). For d ∈ N, let Td denote the class of all terms
of degree d, i.e., all monomials of degree d multiplied by an arbitrary nonzero coefficient. The map
Gw is a hitting set generator for any class P of multilinear polynomials that is closed under zero-
substitutions and is disjoint from Td for every d > w.

Proof. Define the set

Hn
w

.
= {x̄ ∈ {0, 1}n |

n
∑

i=1

xi ≤ w}.

The set Hn
w is the set of vectors in {0, 1}n ⊆ Fn with at most w nonzero components. The set Hn

w

is in the image of Gw. To see this, consider x̄ ∈ Hn
w. Let {ci}

r
i=1 be the index set of at most w

nonzero components of x̄. We can set the seed to Gw so that Gw evaluates to x̄: For i ∈ [r], set
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yi ← aci
(that is, the constant selecting the cth

i component) and zi ← 1; set yi = zi ← 0 for i > r.
Then Gw(ȳ, z̄) = x̄.

Fix P ∈ F[x1, . . . , xn] in P. Since the image of Gw contains Hn
w, it is sufficient to prove that if

P |Hn
w
≡ 0 then P ≡ 0.

We prove the lemma by induction on n. If n ≤ w, then Hn
w is all of {0, 1}n. Since P is multilinear,

it is uniquely defined by its values on {0, 1}n. Therefore, P |Hn
w
≡ 0 implies P ≡ 0, completing the

base case.
Now, consider n > w and suppose that P |Hn

w
≡ 0. For some j ∈ [n], let P ′

.
= P |xj←0. By the

closure under zero-substitutions of P, P ′ ∈ P. Since Hn−1
w is a projection of Hn

w∩{x̄ ∈ {0, 1}
n|xj =

0}, we have that P ′|Hn−1
w
≡ 0. By the induction hypothesis P |xj←0 = P ′ ≡ 0. By Gauss’ Lemma

this implies that xj|P .
The above argument works for any j ∈ [n], so xj|P for all j ∈ [n]. Hence, (

∏n
i=1 xi)|P . Since P

is multilinear we have that P = a ·
∏n

i=1 xi for some constant a. Since P ∈ P and P ∩ Tn = ∅ for
n > w, we conclude that a = 0. Thus P ≡ 0, completing the proof. �

2.3. The Rank Bound

The rank bound is a property that allows us to witness that certain formulae are nonzero without
exhibiting a point where they do not vanish. It was incepted for depth-three formulae in [DS07]
and later also applied to multilinear depth-four formulae in [KMSV10].

Let us start with some terminology. An additive top fanin m, formula F =
∑m

i=1 Fi is said to
be simple if the greatest common divisor of the Fi’s is in F. F is said to be minimal if for all
non-trivial subsets S ( [m],

∑

i∈S Fi 6≡ 0. If F has depth three, each of the Fi’s are products of
linear functions. The rank of such a formula F is the dimension of the linear space spanned by all
those linear functions. A line of research initiated by [DS07] studies the connection between the
rank of depth-three formulae and whether it can be zero. For multilinear depth-three formulae, the
following represents the state of the art.

Lemma 2.9 (Rank Bound for Multilinear Depth-Three Formulae [SS09]). 3 There is an
increasing function R′(m), bounded above by O(m3 log m), such that the following holds for any
multilinear depth-three formula with additive top fanin m: If F is simple and minimal and has
rank at least R′(m) then F 6≡ 0.

For their application to multilinear depth-four formulae, [KMSV10] consider multilinear formulae
of the form F =

∑m
i=1 Fi where the Fi’s factor into subformulae each depending only on a fraction

α of the variables. In such a case we call the formula F α-split.

Definition 2.10 (α-split). Let F =
∑m

i=1 Fi ∈ F[x1, . . . , xn], α ∈ [0, 1], and V ⊆ [n]. F is α-
split if each Fi is of the form

∏

j Fi,j where |var(Fi,j)| ≤ αn. F is α-split with respect to V (in
shorthand, α-splitV ) if |var(Fi,j) ∩ V | ≤ α|V | for all i, j.

For V = [n], the two definitions coincide. Note in the definition of split we do not require that
var(F ) = [n].

3[SS09] only discusses the case of linear forms, i.e., linear functions without constant terms. The more general result
follows by homogenization. See Appendix B for the details.
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Karnin et al. [KMSV10] show how to transform a split simple minimal multilinear formula F =
∑m

i=1 Fi into a simple minimal depth-three formula F ′ =
∑m

i=1 F ′i and then apply the rank bound
for F ′ in order to show that F 6≡ 0. The following formalization quantifies Fact 1.8 from the
introduction. We include a proof for completeness.

Lemma 2.11 (Rank Bound for Split Multilinear Formulae [KMSV10, Lemma 4.5]). For
R(m) = m ·R′(m), where R is the function given by Lemma 2.9, the following holds for any multi-
linear formula F =

∑m
i=1 Fi on n ≥ 1 variables with ∪i∈[m]var(Fi) = [n]. If F is simple, minimal,

and α-split for α = (R(m))−1, then F 6≡ 0.

Proof. We show that R(m) = m · R′(m) does the job, where R′(m) is the function from the rank
bound for multilinear depth-three formulae (Lemma 2.9).

Without loss of generality write: F =
∑m

i=1

∏

j Fi,j , where the Fi,j are irreducible. We can

construct a set U ⊆ [n] of size |U | ≥ 1
α·m = R′(m) such that for all i, j, |U ∩var(Fij)| ≤ 1. A greedy

construction works (see [KMSV10, Lemma 3.2] for the details).
Assigning all variables outside of U linearizes each Fij – in fact, each Fij becomes a univariate

linear function – and turns F into a depth-three formula F ′ with an addition gate on top of fanin
m. Moreover, as we will argue, a typical assignment (chosen from a sufficiently large extension field
E ⊇ F ) to the variables outside of U keeps F ′ simple and minimal, and ensures that its rank is at
least the number |U | of remaining variables. Since |U | ≥ R′(m), the rank bound for multilinear
depth-three formulae then implies that F ′ 6≡ 0, and therefore that F 6≡ 0.

All that remains is to establish the above claim about a typical assignment β̄ to the variables in
[n] \ U .

To argue simplicity, we make use of the following property of multilinear polynomials P and Q:
If P is irreducible and depends on a variable x, then P |Q iff P |x←0 ·Q−P ·Q|x←0 ≡ 0. Since F is
simple, for every irreducible subformula Fij that depends on some u ∈ U , there is branch, say Fi′ ,
such that Fij does not divide Fi′ . Thus, by the above property, D

.
= Fij |U←0 ·Fi′−Fij ·Fi′ |U←0 6≡ 0.

Let F ′ij be the result of applying β̄ to Fij , and define F ′i′ and F ′ similarly. A typical assignment β̄
keeps D nonzero and F ′ij dependent on u. Since F ′ij remains irreducible as a univariate polynomial,
the above property implies that F ′ij does not divide F ′i′ . Therefore, F ′ is simple.

Minimality is maintained by a typical assignment since if
∑

i∈S Fi is a nonzero polynomial for
all ∅ ( S ( [m], then the same holds after a typical partial assignment β̄.

Finally, for any u ∈ U there exists at least one Fij for which u ∈ var(Fij). A typical assignment
to the variables in Fij other than u turns Fij into a non-constant linear function of u. Since distinct
u ∈ U are independent, this means that the rank under a typical assignment β̄ is at least |U |. �

3. Fragmenting and Shattering Multilinear Formulae

In this section we describe a means of splitting up or fragmenting multilinear sparse-substituted
formulae. We build up towards this goal by first fragmenting read-once formulae, and then multi-
linear read-k formulae. We conclude by extending our fragmentation technique to work for sparse-
substituted formulae, proving our final Fragmentation Lemma (Lemma 3.3).

We view the Fragmentation Lemma as an atomic operation that breaks a read-k formula into
a product of easier formulae, at the cost of some partial derivatives and zero-substitutions. By
greedily applying the Fragmentation Lemma and using some other ideas we are able to shatter
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Figure 2: An example of fragmenting a read-once formula.

multilinear sparse-substituted
∑m-read-k formulae, that is, simultaneously split all the top-level

branches so that they are the product of factors that each only depend on a fraction of the variables.
The Shattering Lemma (Lemma 3.4) is the main result of this section and formalizes Lemma 1.9
from the introduction.

3.1. Fragmenting Read-Once Formulae

Let F be a read-once formula. Consider a traversal of the variables of F in leaf order. For the
median variable x in this traversal, ∂xF is 1

2 -split. This is because the path from the root of F
to x partitions the formula into halves that can only combine at the top multiplication gate of
∂xF . Moreover, by only considering variables on which F depends, we can make sure that ∂xF 6≡ 0
assuming F is non-constant. We make this intuition more formal in the following lemma and refer
to Figure 2 for an example. For generality, we state the lemma with respect to a restricted variable
set V ⊆ [n]. Recall that a formula F is α-splitV if it is the product of formulae each depending on
fewer than α|V | variables from V (and possibly more variables outside of V ).

Lemma 3.1 (Fragmenting Read-Once Formulae). Let ∅ ( V ⊆ [n] and let F be an n-variable
multilinear readV -once formula that depends on at least one variable in V . There exists a variable
x ∈ V such that ∂xF is nonzero and is the product of subformulae of F that each depend on at
most |V |2 variables from V (and possibly more variables outside of V ).

Proof. Without loss of generality, it can be assumed that V only contains variables on which F
depends. Let S be a sequence of the variables in V produced by an in-order traversal of F . Select
the variable x

.
= S⌊|V |/2⌋, which has no more than |V |/2 of the variables in V to the left or right

of it in the traversal. Then ∂xF is nonzero (since F depends on x) and can be written in the
required form. To see the latter, follow the procedure for computing ∂xF described in Section 2.1.2
by tracing the path in F from the root to the leaf labeled x. By the sum rule, ∂x eliminates the
diverging addition branches along this path as those branches to not depend on x. Multiplicative
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branches that do not depend on x are split off as factors. None of those factors of ∂xF can depend
on more than |V |/2 variables from V . This is because the variables within each factor cannot span
both sides of the formula around the path from the output gate to x. �

3.2. Fragmenting Multilinear Read-k Formulae

While illustrating the basic idea of fragmenting, Lemma 3.1 is insufficient for our purposes. A
key reason the proof of Lemma 3.1 goes through is that in read-once formulae each addition gate
has children that are variable disjoint. This property allows the argument to recurse into a single
addition branch. In read-k formulae this is no longer the case. Our solution is to follow the largest
branch that depends on a variable that is only present within that branch. This allows us to mimic
the behavior of the read-once approach as long as such a branch exists. Once no such branch exists,
each child of the current gate cannot contain all the occurrences of any variable x. This means that
these children are read-(k− 1) formulae. Taking a partial derivative with respect to a variable that
only occurs within the current gate eliminates all diverging addition branches above the gate. This
makes the resulting formula multiplicative in all the unvisited (and small) multiplication branches.
This intuition can be formalized in the following lemma, which generalizes Lemma 1.4 from the
introduction.

Lemma 3.2 (Fragmenting Multilinear Read-k Formulae). Let ∅ ( V ⊆ [n], k ≥ 2, and let
F be an n-variable multilinear readV -k formula that depends on at least one variable in V . There
exists a variable x ∈ V such that ∂xF is nonzero and is the product of

1. subformulae of F each depending on at most |V |2 variables from V (and possibly more variables
outside of V ), and

2. at most one
∑2-readV -(k − 1) formula, which is the derivative with respect to x of some

subformula of F .

Proof. Assume without loss of generality that V only contains variables on which F depends, and
that the children of multiplication gates are variable disjoint with respect to V .

If none of the variables in V occur k times in F , any choice of variable x ∈ V does the job. So,
let us assume that is at least one variable in V occurs k times. We use Algorithm 1 to select the
variable x, where we assume without loss of generality that F has fanin 2.

The algorithm recurses through the structure of F , maintaining the following invariant: The
current gate g being visited contains below it k occurrences of some variable in V . Setting g to be
the output gate of F satisfies this invariant initially.

If g is a multiplication gate (steps (1)-(3)), recurse to the child of g that depends on more than
|V |
2 of the variables in V and contains k occurrences of some variable in V . If no such child exists,

return a variable from V that occurs k times in g. Such a variable must exist by the invariant.
If g is an addition gate (steps (4)-(6)), and at least one of its children, gi, has a variable in V

that occurs k times in gi, recurse to gi. Otherwise, both children of g are readV -(k − 1) formulae.
Select a variable x ∈ V that occurs k times in g ending the recursion.

In the partial derivative ∂xF , all unvisited addition branches along the path from the output
gate of F to the final g have been eliminated. Also, all unvisited multiplication branches along the
path become factors of ∂xF together with ∂xg. More formally, ∂xF = (∂xg) ·

∏

i Fi, where the Fi
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Algorithm 1 SPLIT(g, k, V ) - A readV -k fragmenting algorithm

Input: k ≥ 2, n ∈ N, ∅ ( V ⊆ [n] and g is an n-variate, multilinear readV -k formula that depends
on all variables in V . There exists a variable in V that occurs k times in g.

Output: x ∈ V , such that ∂xg meets the conditions of Lemma 3.2
1: case g = α(g1 · g2) + β

2: if ∃i ∈ {1, 2}, x ∈ V where x occurs k times in gi and |var(gi) ∩ V | > |V |
2 then

3: return SPLIT(gi, k, V )
4: case g = α(g1 + g2) + β
5: if ∃i ∈ {1, 2}, x ∈ V where x occurs k times in gi then
6: return SPLIT(gi, k, V )
{Otherwise}

7: return x ∈ V that occurs k times in g.

are the unvisited multiplication branches. The Fi are readV -k formulae that depend on at most
|V |
2 variables from V , because the largest branch is always taken at multiplication gates. When the

process stops at a multiplication gate, no large child contains all occurrences of some variable in
V . In this case, there is at most one factor of ∂xg that depends on more than |V |2 variables from

V . If this factor exists it is a readV -(k − 1) formula (and thus also a
∑2-readV -(k − 1) formula).

The remaining factors are readV -k formulae depending on at most |V |2 variables from V . When the

process stops at an addition gate, ∂xg is a
∑2-readV -(k − 1) formula that may depend on many

variables from V . In either case, the resulting ∂xF meets the requirements of the lemma. Note
that since we assumed F depends on all variables in V , ∂xF 6≡ 0. �

Lemma 3.1 can be viewed as a simplified version of Lemma 3.2 for the case k = 1.

3.3. Fragmenting Multilinear Sparse-Substituted Formulae

In this subsection we extend our fragmenting arguments to work for sparse-substituted formulae.
First consider a multilinear sparse-substituted read-once formula F . The idea is to apply the

argument from Lemma 3.1 and the chain rule to locate a variable x such that ∂xF is almost
fragmented. By this we mean that each of the factors of ∂xF depends on at most half of the
variables except the factor that was originally a sparse polynomial that depends on x. The sparse
polynomial, say f , may depend on too many variables. In that case we perform further operations
so that f factors into small pieces. Through a sequence of partial derivatives and zero-substitutions
we eliminate all but one term in f . This implies that the sparse polynomial and hence the overall
resulting formula F ′ is 1

2 -split. To perform the additional step, observe that for any variable x,
either at most half of the terms in f depend on x or at most half do not. In the former case,
taking the partial derivative with respect to x eliminates at least half of the terms; setting x to 0
has the same effect in the latter case. Repeating this process a number of times logarithmic in the
maximum number of terms eliminates all but one of the terms, resulting in a trivially split formula.

This is the intuition behind the sparse-substituted extension of Lemma 3.1 and corresponds to
the first part of the next lemma. The second part is the sparse-substituted extension of Lemma
3.2 and follows from that lemma by a simple observation.
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Lemma 3.3 (Fragmentation Lemma). Let ∅ ( V ⊆ [n], k ≥ 1, and let F be an n-variable
multilinear sparse-substituted readV -k formula that depends on at least one variable in V . Let t
denote the maximum number of terms in each substituted polynomial.

1. If k = 1 there exist disjoint sets of variables P,Z ⊆ V with |P ∪ Z| ≤ (log(t) + 1) such that

∂P F |Z←0 is nonzero and is a product of factors that each depend on at most |V |2 variables
from V (and possibly more variables outside of V ). Moreover, the factors are subformulae of
F and at most one formula of the form ∂P f |Z←0 where f is one of the sparse substitutions.

2. Otherwise, there exists a variable x ∈ V such that ∂xF is nonzero and is the product of

a) subformulae of F each depending on at most |V |2 variables from V (and possibly more
variables outside of V ), and

b) at most one multilinear sparse-substituted
∑2-readV -(k−1) formula, which is the deriva-

tive with respect to x of some subformula of F .

Proof. Part 1. Assume without loss of generality that F has fanin 2, depends on all variables in
V , and that the children of multiplication gates are variable disjoint with respect to V .

Use Lemma 3.1 to select a variable, x, such that ∂xF is the product of multilinear sparse-
substituted readV -once formulae on at most |V |2 variables from V and possibly a single sparse

polynomial on more than |V |2 variables from V (which originally depended on x). If the large sparse
factor is not present, the lemma is complete with P = {x} and Z = ∅. Therefore, assume otherwise.

Let f be the large sparse polynomial factor of ∂xF . A sparse polynomial can be thought of as a
sparse sum of terms over the variables in V where the coefficients are sparse polynomials in F[[n]\V ]
(the constant term counts). If the number of terms in f is less than two, f can be represented as a
product of multilinear sparse-substituted readV -once formulae, each depending on a single variable
from V . Also, for each variable in V that f depends on, we can assume that variable is present
in at least one term, but not all of them. Otherwise, that variable can be pulled out as a factor
multilinear sparse-substituted readV -once formula. Therefore, we can assume that the number of
terms in f is at least two and every variable in V that f depends on is present in at least one term
but not in every term. Thus, for each variable y ∈ var(f) ∩ V , at least one of f |y←0 or ∂yf has at
most half as many terms as f . Since f has at most t terms, at most log t many partial derivatives
and zero-substitutions are sufficient to eliminate all but one of the terms in f . Therefore, there are
choices for disjoint sets P ′ and Z such that ∂P ′f |Z←0 becomes a term over V (which is the product
of univariate readV -once formulae). Choosing P

.
= {x} ∪ P ′ and Z, lifts the required property to

∂P F |Z←0. Since F is multilinear, the operations we perform ensure that ∂P F |Z←0 6≡ 0.

Part 2. Here the proof is essentially the same as the proof of Lemma 3.2. Since k ≥ 2, the
argument always halts at an internal gate and never reaches a sparse-substituted input. Only the
number of occurrences of each variable is relevant to the decisions the argument makes. This implies
that the argument does not change when sparse-substituted formulae are considered (and is even
independent of the sparsity parameter). Thus, this part of the proof is immediate as a corollary to
the proof of Lemma 3.2. �

Observe that the cost of applying the Fragmentation Lemma to a read-once formula is log(t)+ 1
partial derivatives and zero-substitutions, whereas applying it to a formula that is not read-once
requires only a single partial derivative (though the promised result is weaker in this case).
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3.4. Shattering Multilinear Formulae

The previous subsections establish a method for fragmenting multilinear sparse-substituted read-
k formulae. We now apply the Fragmentation Lemma to shatter multilinear sparse-substituted
∑m-read-k formulae. Recall that shattering is the act of simultaneously splitting all branches of a
∑m-read-k formula. When k = 1, that is, in the case of multilinear sparse-substituted

∑m-read-
once formulae, applying the Fragmentation Lemma greedily to a factor that depends on the largest
number of variables suffices to shatter a multilinear sparse-substituted

∑m-read-once formula to an

arbitrary level. To obtain an α-split formula in the end, we need O(m (log(t)+1)
α ) partial derivatives

and zero-substitutions.
In the case of arbitrary read-value k > 1 the Fragmentation Lemma is not immediately sufficient

for the task. As in the read-once case, we can apply the lemma greedily to a largest factor of a
read-k branch to α-split the branch within at most 2

α applications. However, this is assuming that

case 2b of the Fragmentation Lemma never occurs where the
∑2-read-(k − 1) factor depends on

more than half (possibly all) of the variables. When this case occurs the fragmentation process fails
to split the formula into pieces each depending on few variables. To resolve the issue, we leverage
the fact that the blocking factor is both large and a

∑2-read-(k − 1) formula.
Consider a specific read-k formula F on n variables. Apply the Fragmentation Lemma to F .

Suppose that case 2b of the lemma occurs, producing a variable x, and that the corresponding
∑2-read-(k−1) factor of ∂xF depends on more than n

2 of the variables. Without loss of generality,
∂xF = H · (H1 + H2), where H is a product of read-k formulae each depending on at most n

2
variables, and both H1 and H2 are read-(k − 1) formulae. Rewrite F by distributing the top level
multiplication over addition:

F ′
.
= (H ·H1) + (H ·H2) ≡ H · (H1 + H2) = ∂xF.

Let V
.
= var(H1+H2). F ′ is explicitly a

∑2-readV -(k−1) formula and a readV -k formula. However,
F ′ is almost certainly not a read-k formula. By further restricting to the largest set of variables
that appear the exact same number of times in the larger of the two subformulae H1 and H2, we
can argue the existence of a subset V ′ ⊆ V that contains at least a 1

2k fraction of the variables in
V such that the read of H1 and H2 with respect to V ′ sum to at most k. Note that prior to this
restriction the upper bound on this sum is 2(k − 1). This action effectively breaks up the original
formula F into two branches without increasing the sum of the read values of the branches. Since
|V | ≥ n

2 , the set V ′ is at most a factor 4k smaller than n, and the number of branches increased
by one.

This operation can be performed at most k − 1 times on a read-k formula before either: (i)
the attempted greedy splitting is successful, or (ii) the formula becomes the sum of k read-once
formulae with respect to some subset V of [n]. In the latter case we are effectively in the situation
we first described with k = 1, and all subsequent splittings will succeed. In either case we obtain a
formula that is shattered with respect to a subset V that is at most a factor kO(k) smaller than n.

In summary, the Shattering Lemma splits multilinear sparse-substituted
∑m-read-k formulae

to arbitrary degree, albeit with some restriction of the variable set and an increase in top fanin.
Moreover, each of the branches in the shattered formula are present in the original input formula,
either as such or after taking some partial derivatives and zero-substitutions. This technical prop-
erty follows from the properties of the Fragmentation Lemma and will be needed in the eventual
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application.

Lemma 3.4 (Shattering Lemma). Let α : N → (0, 1] be a non-increasing function. Let F ∈
F[x1, . . . , xn] be a formula of the form F =

∑m
i=1 Fi, where each Fi is a non-constant multilinear

sparse-substituted read-ki formula. Let t denote the maximum number of terms in each substituted
polynomial. There exist disjoint subsets P,Z, V ⊆ [n] such that ∂P F |Z←0 can be written as

∑m′

i=1 F ′i ,
where

• m′ ≤ k
.
=
∑m

i=1 ki,

• each F ′i is multilinear and α(m′ + 1)-splitV ,

• |P ∪ Z| ≤ (k −m + 1) · 4k
α(k+1) · (log(t) + 1), and

• |V | ≥
(

α(k+1)
8k

)k−m
· n− 8k

α(k+1) · (log(t) + 1).

Moreover, the factors of each of the F ′i ’s are of the form ∂P̃ f |Z←0 where f is some subformula of

some Fj and P̃ ⊆ P .

Proof. We iteratively construct disjoint subsets P,Z, V ⊆ [n], maintaining the invariant that

∂P F |Z←0 can be written as F ′
.
=
∑m′

i=1 F ′i where (1) each F ′i is a readV -k′i formula, (2) m′ ≤ k,

(3)
∑m′

i=1 k′i
.
= k′ ≤ k, and (4) each F ′i is the product of factors of the form ∂P̃ f |Z←0 where f is

some subformula of some Fj and P̃ ⊆ P . Setting P ← ∅, Z ← ∅, V ← [n] and F ′ ← F realizes the
invariant initially. The fact that m′ ≤ k follows because each Fi is non-constant.

The goal of our algorithm is to α(m′ + 1)-splitV the formula F ′. Each iteration (but the last)
consists of two phases: a splitting phase, and a rewriting phase. In the splitting phase we attempt
to split F ′ by greedily applying the Fragmentation Lemma (Lemma 3.3) on each of the branches F ′i .
The splitting phase may get stuck because of a

∑2-readV -(k′i − 1) subformula that blocks further
splitting. If not and the resulting F ′ is sufficiently split, the algorithm halts. Otherwise, the algo-
rithm enters the rewriting phase where it expands the subformula that blocked the Fragmentation
Lemma and reasserts the invariant, after which the next iteration starts. A potential argument
shows that the number of iterations until a successful splitting phase is bounded by k − m. We
first describe the splitting and rewriting phases in more detail, then argue termination and analyze
what bounds we obtain for the sizes of the sets P , Z, and V .

Splitting. Assume that F ′ is not α(m′+1)
2 -splitV , otherwise halt. Let F ′ij be a subformula of F ′ that

depends on the most variables in V out of all the factors of the F ′i ’s. Apply the Fragmentation
Lemma (Lemma 3.3) with respect to the set V ∩ var(F ′ij) to produce sets P ′, Z ′ ⊆ [n]. By the
Fragmentation Lemma exactly one of the following holds: (i) the factors of ∂P ′F ′ij |Z′←0 depend

on at most
|V ∩var(F ′

ij)|

2 variables in V , or (ii) ∂P ′F ′ij |Z′←0 has one multilinear sparse-substituted
∑2-readV -(k′i − 1) factor which depends on more than

|V ∩var(F ′
ij)|

2 variables in V .
Repeatedly perform this greedy application, adding elements to the sets P ′ and Z ′ until either

case (ii) above occurs or ∂P ′F ′|Z′←0 is α(m′+1)
2 -splitV . In the former case we start a rewriting phase

and modify ∂P ′F ′|Z′←0 before we re-attempt to split. In the latter case our goal has been achieved

provided that |P ′ ∪ Z ′| ≤ |V |
2 : We can add P ′ to the set P we already had, similarly add Z ′ to
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Z, and replace V by V ′
.
= V \ (P ′ ∪ Z ′). The assumption that |P ′ ∪ Z ′| ≤ |V |

2 guarantees that

|V ′| ≥ |V |2 . Since ∂P F |Z←0 (which equals ∂P ′F ′|Z′←0) is α(m′+1)
2 -splitV , the latter inequality implies

that the formula is α(m′ + 1)-splitV ′ . If the assumption that |P ′ ∪ Z ′| ≤ |V |
2 does not hold, then

outputting V ′ = ∅ will meet the size bound for that set and trivially make the formula ∂P F |Z←0

α(m′ + 1)-splitV ′ .
The splitting phase maintains the invariant. Regarding part (4) of the invariant, observe that the

factors produced by the Fragmentation Lemma are subformulae of the input to the Fragmentation
Lemma (for which the invariant initially held).

Rewriting. We now describe the rewriting phase. Let V refer to the situation at the start of the
preceding splitting phase. Let F ′ij be the subformula the splitting phase blocked on, and let H1 and

H2 denote the two branches of the multilinear sparse-substituted
∑2-readV -(k′i − 1) subformula

of ∂xF ′i that caused the blocking case 2b of the Fragmentation Lemma to happen. We have that
∂P ′F ′ij |Z′←0 = H ·(H1 +H2), where H is some readV -k′i formula that is independent of the variables
in V ∩ var(H1 + H2). Let V ′

.
= V ∩ var(H1 + H2). Partition V ′ into sets {V ′0 , ..., V ′k′

i−1} based on

the exact number of occurrences of each variable in H1. Let V ′′ be any set from this partitioning
excluding the set V ′0 (we will restrict the choice of V ′′ later). This implies that H1 is readV ′′-k′i1
and H2 is readV ′′-k′i2 for some integers k′i1 and k′i2 such that k′i1, k

′
i2 < k′i and k′i1 + k′i2 ≤ k′i.

Rewrite ∂P ′F ′|Z′←0 as a top fanin m′+ 1 formula by distributing multiplication over addition in
the term ∂P ′F ′i |Z′←0:

∂P ′F ′|Z′←0 ≡ (H ·H1) + (H ·H2) +
∑

j 6=i

∂P ′F ′j |Z′←0. (1)

Observe that
∑

j 6=i ∂P ′F ′j |Z′←0 is a readV ′′-(
∑

j 6=i k
′
j) formula as partial derivatives and substi-

tutions do not increase the read-value, and V ′′ ⊆ V . The term (H · H1) + (H · H2) may not be
a readV -k′i formula, but it must be a readV ′-k′i formula. It is explicitly the sum of a readV ′′-k′i1
formula and a readV ′′-k′i2 formula for some k′i1, k

′
i2 < k′i with k′i1 + k′i2 ≤ k′i. The representation of

∂P ′F ′|Z′←0 in Equation (1) is therefore a readV ′′-k′ formula with top fanin m′ + 1.
Set F ′ to be this representation of ∂P ′F ′|Z′←0. Merge branches that have become constant into

non-constant branches. This maintains the invariant that m′ ≤ k′ ≤ k. Setting V ← V ′′ makes
F ′ a top fanin m′ readV -k′ formula. As for part (4) of the invariant, note that the subformula F ′ij
which blocked the Fragmentation Lemma originally satisfied it during the splitting phase. This
means that with respect to the additional partial derivatives and zero-substitutions performed for
the attempted split, H1 and H2 as well as H satisfy the invariant as new factors of the branches
F ′i . Thus, the new F ′ satisfies the full invariant. This completes the rewriting phase and one full
iteration of the algorithm.

Correctness. We repeat the sequence of splitting and rewriting phases until a splitting phase runs
till completion. In that case the algorithm produces disjoint sets P,Z, V ⊆ [n] such that ∂P F |Z←0

can be written as a α(m′ + 1)-splitV formula with top fanin m′ ≤ k.
Apart from the size bounds on the sets P , Z, and V , all that remains to establish correctness

is termination. To argue the latter we use the following potential argument. Consider the sum
∑m′

i=1 k′i and view it as m′ blocks of integer size, where k′i is the size of the ith block. Over the
course of the algorithm blocks can only stay the same, shrink, or be split in a nontrivial way. The
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latter is what happens in a rewriting phase. As soon as all blocks are of size at most 1, the splitting
phase is guaranteed to run successfully because case 2b of the Fragmentation Lemma cannot occur
for read-once formulae, and the algorithm terminates. As we start out with m nontrivial blocks
and a value of k for the sum, there can be no more than k −m nontrivial splits. Therefore, there
are no more than k −m rewriting phases and k −m + 1 splitting phases.

Analysis. We now bound the size of P ∪ Z. We first analyze how many times the Fragmentation

Lemma is applied in each splitting phase. The goal is to α(m′+1)
2 -splitV each of the m′ branches.

To α(m′+1)
2 -splitV one branch, 4

α(m′+1) applications of the Fragmentation Lemma are sufficient,
since each application reduces the intersection of the factors with V to at most half the original
amount. Since the invariant maintains m′ ≤ k and α is non-increasing, we can upper bound the
number of applications of the Fragmentation Lemma during an arbitrary iteration by 4m′

α(m′+1) ≤
4k

α(k+1) . Each single application of the Fragmentation Lemma adds at most (log(t) + 1) variables

to P ′ and Z ′. Since there are at most k − m + 1 splitting phases, across all iterations at most
(k −m + 1)(log(t) + 1) 4k

α(k+1) variables are added to P ∪ Z.

We finish by lower bounding the size of V . Consider the change in |V | over one combined

splitting/rewriting iteration. We have that |V ′| ≥ α(m′+1)
4 |V |, because F ′ was not α(m′+1)

2 -splitV
before attempting to split F ′ij (so the largest number of variables in V that a factor depends on

is at least α(m′+1)
2 · |V |), F ′ij was chosen for its maximal dependence on variables from V , and

|var(H1 + H2) ∩ V | ≥ |var(F ′ij) ∩ V |/2. If we pick V ′′ to be the largest set from the partitioning
{V ′0 , V ′1 , ..., V ′k′

i
−1} excluding V ′0 , and we assume without loss of generality that |var(H1)| ≥ |var(H2)|,

we have that |V ′′| ≥ 1
2(k′

i−1)
|V ′|. Combining these inequalities and using the facts that α is non-

increasing and k ≥ k′i,m
′ gives:

|V ′′| ≥
1

2(k′i − 1)
|V ′| ≥

α(m′ + 1)

8(k′i − 1)
|V | ≥

α(k + 1)

8k
|V |.

This means that |V | decreases by a factor of at most 8k
α(k+1) in each combined splitting/rewriting

iteration. At the end of the final splitting phase |V ′| ≥ |V | − 2|P ′ ∪ Z ′| because V ′ is set to the

empty set when |P ′ ∪ Z ′| ≥ |V |2 . Recall that |P ′ ∪ Z ′| ≤ 4k
α(k+1) (log(t) + 1). Since there are at most

k −m combined splitting/rewriting iterations, this gives the following lower bound at the end:

|V | ≥

(

α(k + 1)

8k

)k−m

· n−
8k

α(k + 1)
· (log(t) + 1). �

4. Reducing Testing Multilinear Read-(k + 1) Formulae to Testing

Multilinear
∑2

-Read-k Formulae

In this section we describe two methods of reducing identity testing multilinear sparse-substituted
read-(k + 1) formulae to identity testing multilinear sparse-substituted

∑2-read-k formulae. The
first reduction is non-blackbox and is entirely self-contained. The second reduction is blackbox and
makes use of the Fragmentation Lemma of the preceding section.
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4.1. A Non-Blackbox Reduction

The intuition for this reduction is somewhat similar to that for the Fragmentation Lemma. Consider
a subformula g of a multilinear sparse-substituted read-(k + 1) formula F where g is of the form
g = g1 + g2 and g1 is read-(k + 1) but not read-k. There must be some variable x that appears
k + 1 times in g1 and nowhere else in F . If g1 actually depends on x, then g is nonzero. This is
irrespective of whether g2 is nonzero, because it is not possible for g2 to cancel out the contribution
of x present in g1. In general, if all occurrences of a variable x are contained in an addition branch
and that branch depends on x, the addition gate must be nonzero. The polynomials computed by
gates above g can only be zero if the zero polynomial is multiplied in. Now, consider replacing g1

with a fresh variable. The above reasoning shows that this transformation does not change whether
the overall formula is nonzero. If a branch contains all occurrences of x but does not depend on
x, setting x to 0 does not affect the value computed by the formula. This observation allows us to
eliminate variables that are read k+1 times, and thereby transform a multilinear sparse-substituted
read-(k + 1) formula into a multilinear sparse-substituted read-k formula without affecting the
(non)zeroness of the formula.

In order to execute the transformation, we need to be able to decide whether the subformula g1

depends on the variable x. If we apply the transformation in a bottom-up fashion, by the time
we need to make that decision the formula g1 is multilinear sparse-substituted

∑2-read-k, and we
can use a polynomial identity test for such formulae to check whether ∂xg1 ≡ 0. This is the idea
behind the non-blackbox reduction from identity testing multilinear sparse-substituted read-(k+1)
formulae to identity testing multilinear sparse-substituted

∑2-read-k formulae.

Lemma 4.1 (Read-(k + 1) PIT ≤
∑

2-Read-k PIT – Non-Blackbox). For an integer k ≥
1, given a deterministic identity testing algorithm for n-variate size-s multilinear sparse-substituted
∑2-read-k formulae that runs in time T (k, n, s, t), where t denotes the maximum number of terms in
each substituted polynomial, there is a deterministic algorithm that tests n-variate size-s multilinear
sparse-substituted read-(k + 1) formulae that runs in time O(kn2 · T (k, n, s, t) + poly(k, n, s, t)).

Proof. Let F be a multilinear sparse-substituted read-(k + 1) formula. The goal of the algorithm
is to transform the gates of F in a bottom-up fashion into read-k formulae while preserving the
(non)zeroness of F . The transformation also eliminates variables which gates do not depend on.
Because F is multilinear, this second property ensures that multiplication gates are explicitly
variable disjoint. Once F is transformed in this way, the identity test is immediate from the
assumed identity testing algorithm.

As a first step we argue that the following transformation preserves the (non)zeroness of F .
Consider a gate g in F that contains all occurrences of some variable x in F and depends on x.
Define F−g(x̄, y) as the formula where the gate g has been replaced by a new variable y (note,
F−g(x̄, g) = F ). F−g does not depend on x because all occurrences of x are in g. Then, because
F−g is a formula and y occurs only once, without loss of generality, write:

F ≡ F−g(x̄, g) ≡ P (x̄) + Q(x̄) · g,

for two polynomials P and Q that do not depend on x. If Q ≡ 0, then F is independent of g, so
F−g ≡ F . If Q 6≡ 0, then F is nonzero because g depends on x, but P does not depend on x, so
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Algorithm 2 Transforming a read-(k + 1) gate into an “equivalent” read-k gate

Input: k ≥ 1, F is a multilinear sparse-substituted read-(k + 1) formula, g is a multilinear sparse-
substituted read-(k + 1) subformula of F whose children are read-k formulae that depend on
all variables that appear within them, and A is a deterministic identity testing algorithm for
multilinear sparse-substituted

∑2-read-k formulae.
Output: g is a read-k formula that depends on all variables that appear within it. Except for

variables that do not appear in F−g, the number of occurrences of a variable in g does not
increase. The (non)zeroness of F is unchanged with respect to the transformation of g.

1: case g = α(g1 + g2) + β
2: for all x ∈ var(g)
3: if ∂x(g1 + g2) ≡ 0 {Invoking the subroutine A} then
4: Replace g by g|x←0

5: else if x occurs k + 1 times in g then
6: Replace g by a new variable y
7: case g = α(g1 · g2) + β
8: if g1 ≡ 0 OR g2 ≡ 0 {Invoking the subroutine A} then
9: Replace g by β

10: case g is a sparse-substituted input
11: Simplify the list of terms

the x component cannot be canceled. By definition, F 6≡ 0 implies F−g 6≡ 0. Therefore we can
conclude that for such gates g, F ≡ 0 iff F−g ≡ 0.

Now, process the gates g of F in a bottom-up fashion. Note that the algorithm realizes the
following properties: (1) the (non)zeroness of F does not change, (2) g is a multilinear sparse-
substituted read-k formula, (3) except for variables that only appear in g, the number of occurrences
of a variable in g does not increase, and (4) g depends on all variables that appear in it. There are
three possible cases for g.

1. Case g = α(g1 + g2) + β. We first go over all original variables x that appear in g. Let x
be such a variable. Since the children g1 and g2 of g are read-k, g is a multilinear sparse-
substituted

∑2-read-k formula. Compute ∂xg as a multilinear sparse-substituted
∑2-read-k

formula. This is easy because the multiplication gates within g1 and g2 are variable disjoint.
Now, test whether ∂xg ≡ 0 using the hypothesized identity testing algorithm. If ∂xg ≡ 0,
replace g by g|x←0; otherwise, if x occurs k + 1 times in g, replace g by a fresh variable y, if
not, do nothing.

2. Case g = α(g1 · g2)+ β. Because property (4) holds for the children of g, and g is multilinear,
g is a read-k formula. Check whether g1 or g2 are identically zero, using the identity test for
read-k formulae. If either formula is zero, replace g with β. Otherwise, do nothing.

3. Case g is a sparse-substituted input. In order to realize properties (1-4), all we need to do
is to simplify the list of terms by collecting duplicate monomials and dropping them if the
coefficient is zero.

For clarity, the algorithm is described in Algorithm 2. Overall, it transforms F from a multilinear
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sparse-substituted read-(k+1) formula into a multilinear sparse-substituted read-k formula without
affecting the (non)zeroness. The

∑2-read-k formula identity test is applied at most n times at each
gate to determine the dependence on the original variables. Since F is in standard form, this takes
at most O(kn2) identity tests overall. Adding polynomial-time for computing the standard form,
traversing F , computing the partial derivatives, and doing the field arithmetic gives the running
time claimed. �

4.2. A Blackbox Reduction

Let F be a multilinear sparse-substituted read-(k + 1) formula. We construct a generator for
F using a generator G for multilinear sparse-substituted

∑2-read-k formulae. If F is a read-k
formula, the assumed generator alone suffices. Otherwise, we apply the Fragmentation Lemma
(Lemma 3.3 to show that there is a partial derivative of F that has mostly small factors and,
possibly, one factor that is a large multilinear sparse-substituted

∑2-read-k formula. In the former
case the factors are small enough to be hit recursively and in the latter case the factor is hit by
the assumed generator for multilinear sparse-substituted

∑2-read-k formulae. The properties of
the SV-generator G (Proposition 2.6 and Lemma 2.7) imply that if G is a generator for the partial
derivative of a polynomial, then G + G1 is a generator for the original polynomial.

Lemma 4.2 (Read-(k + 1) PIT ≤
∑

2-Read-k PIT – Blackbox). For an integer k ≥ 1, let
G be a generator for n-variate multilinear sparse-substituted

∑2-read-k formulae, and let F be a
nonzero n-variable multilinear sparse-substituted read-(k + 1) formula. Then G + Glog |var(F )| hits
F .

Proof. First observe that if F is read-k, we are immediately done because F ◦G 6≡ 0 and 0̄ is in the
range of G (by the first item of Proposition 2.6).

The proof goes by induction on |var(F )|. If |var(F )| = 0, the lemma holds trivially as F is
constant. If |var(F )| = 1, F is a read-once formula, which is covered by the above observation. For
the induction step, by the above observation we can assume that F is read-(k + 1) and not read-k.
Therefore, F meets the conditions to apply the second part of the Fragmentation Lemma (Lemma

3.3). The lemma produces a variable x ∈ var(F ). The factors of ∂xF all depend on at most |var(F )|
2

variables and are read-(k + 1) formulae, except for at most one which is a
∑2-read-k formula. The

induction hypothesis gives that the former factors of ∂xF are all hit by G + Glog(|var(F )|/2). The
latter factor (if it occurs) is hit by G. Applying Lemma 2.7 gives that G + Glog(|var(F )|/2) + G1 hits
F . Recalling Proposition 2.6 implies that G + Glog |var(F )| hits F . �

5. Reducing Testing Multilinear
∑2

-Read-k Formulae to Testing

Multilinear Read-k Formulae

In this section we present two methods of reducing identity testing multilinear sparse-substituted
∑2-read-k formulae to identity testing multilinear sparse-substituted read-k formulae. Both re-
ductions rely on a common theorem (Theorem 5.4) proved in the next subsection. Informally, that
theorem says that for a nonzero multilinear sparse-substituted

∑2-read-k formula F and a shift
σ̄ satisfying some simple conditions, the shifted formula F (x̄ + σ̄) is hit by the SV-generator Gw
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with w = kO(k)(log(t) + 1), where t denotes the maximum number of terms in each substituted
polynomial.

Note that, since F is a nonzero polynomial, such a theorem is trivially true for a typical shift σ̄,
even with w = 0. The interesting part of the theorem is the simplicity of the conditions on σ̄ that
guarantee the hitting property. In particular, the properties needed of σ̄ allow it to be computed
efficiently either by an identity test for multilinear sparse-substituted read-k formulae, or as an
element in the range of a hitting set generator for such formulae, where the efficiency of the former
is better than the latter.

5.1. A Generator for Shifted Formulae

In this subsection we show that the SV-generator hits small sums of specially shifted multilinear
sparse-substituted constant-read formulae. Our argument critically relies on the property given
in Lemma 2.8 – that the SV-generator hits any class of polynomials that is closed under zero-
substitutions and such that no term of high degree belongs to the class. Thus, we first argue
that small sums of specially shifted multilinear sparse-substituted constant-read formulae cannot
compute a term of high degree. The latter is a formalization and generalization of Lemma 1.7 from
the introduction.

In order to prove that key lemma, we first establish a similar lemma for split multilinear sparse-
substituted formulae, and then apply the Shattering Lemma to lift the result to the constant-read
setting.

Let F =
∑m

i=1 Fi be a sufficiently split multilinear sparse-substituted formula on n variables. By
applying the rank bound for split formulae (Lemma 2.11) we can argue that if none of the Fi’s are
divisible by any variable then F cannot compute a term of the form a ·Mn, where a is a nonzero
constant and Mn denotes the monomial

∏n
i=1 xi. The idea is to consider the formula F − a ·Mn

and apply the rank bound to it in order to show that it is nonzero. The non-divisibility condition
and the natural properties of Mn immediately give simplicity. Minimality essentially comes for
free because we are working in the blackbox setting. The splitting required by the rank bound
immediately follows from the splitting of F . Formalizing this idea yields the following lemma.

Lemma 5.1. Let F =
∑m

i=1 Fi be a multilinear sparse-substituted α(m+1)-split formula on n ≥ 1
variables, where α

.
= 1

R and R is the function given by Lemma 2.11. If no Fi is divisible by any
variable, then F 6≡ a ·

∏n
i=1 xi for any nonzero constant a.

Note that for a non-constant formula F on n variables to be α(m + 1)-split, n needs to be at
least 1/α(m + 1).

Proof. Suppose for the sake of contradiction that F ≡ a ·Mn for some nonzero constant a, where
Mn

.
=
∏n

i=1 xi.
If there is some subsum of the branches of F that equals 0, eliminate all those branches. Not all

branches of F may be eliminated in this way as this contradicts a ·Mn 6≡ 0. Let 0 < m′ ≤ m be the
remaining number of branches, and let F ′ denote the remaining branches. The formula F ′− a ·Mn

is minimal and has top fanin m′ + 1.
Now, suppose that there is some non-constant polynomial D that divides every remaining Fi.

Since F ′ ≡ a ·Mn, then D also divides Mn. Because D is non-constant, some variable x divides D
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and hence divides each remaining Fi. This contradicts the hypothesized non-divisibility property
of the Fi. Therefore F ′ − a ·Mn is simple as a formula with top fanin m′ + 1.

The previous two paragraphs establish that the top fanin m′+1 formula F ′−a ·Mn is simple and
minimal. Further, for every variable, there is some branch that depends on it – the Mn branch does.
Observe that the Mn branch is trivially α(m′+1)-split and every other branch is also α(m′+1)-split
as m′ ≤ m and α

.
= 1

R is decreasing. The rank bound for split formulae (Lemma 2.11) then implies
that F ′ − a ·Mn 6≡ 0, and thus that F 6≡ a ·Mn. This contradicts the initial assumption and
concludes the proof. �

The property that the branches Fi are not divisible by any variable can be easily established by
shifting the formula by a point σ̄ that is a common nonzero of all the branches Fi. Indeed, if we
pick σ̄ such that Fi(σ̄) 6= 0 then no variable can divide Fi(x̄ + σ̄). This reasoning is formalized in
the following corollary.

Corollary 5.2. Let F =
∑m

i=1 Fi be a multilinear sparse-substituted α(m + 1)-split formula on
n ≥ 1 variables, where α

.
= 1

R and R is the function given by Lemma 2.11. If no Fi vanishes at σ̄,
then F (x̄ + σ̄) 6≡ a ·

∏n
i=1 xi for any nonzero constant a.

Proof. Since the branches of F are α(m+1)-split, the branches of F (x̄+σ̄) are also α(m+1)-split. By
assumption, Fi(σ̄) 6= 0. Therefore, for each branch i ∈ [m] and variable x ∈ [n], Fi(x̄ + σ̄)|x←0 6≡ 0.
This implies that no variables divide any branch Fi(x̄ + σ̄). With this property established, apply
Lemma 5.1 on F (x̄ + σ̄) to conclude the proof. �

We now show how to lift Corollary 5.2 from split multilinear sparse-substituted formulae to sums
of multilinear sparse-substituted constant-read formulae. This yields our key lemma – that for such
formulae F and a “good” shift σ̄, F (x̄ + σ̄) cannot compute a term of large degree.

For the sake of contradiction suppose the opposite, i.e., that F (x̄ + σ̄) ≡ a ·Mn for some nonzero
constant a and large n. Shatter F into F ′ = ∂P F |Z←0 using the Shattering Lemma (Lemma 3.4),
and apply the same operations that shatter F to Mn. Observe that zero-substitutions are shifted
into substitutions by σ̄, and that ∂P Mn|Z←(−σ̄) is a nonzero term of degree n − |P ∪ Z| provided
that no component of σ̄ vanishes. After an appropriate substitution for variables outside of the set
V from the Shattering Lemma, we obtain that F ′(x̄ + σ̄) ≡ a′ ·MV for some nonzero constant a′

and V ⊆ [n], where MV denotes the product of the variables in V .
At this point we would like to apply Corollary 5.2 to derive a contradiction. However, we need

to have that |V | > 0 and that σ̄ is a common nonzero of all the branches of F ′. The former follows
from the bounds in the Shattering Lemma provided n is sufficiently large. To achieve the latter
condition we impose a stronger requirement on the shift σ̄ prior to shattering so that afterward σ̄
is a common nonzero of the shattered branches. The Shattering Lemma tells us that the factors of
the branches of the shattered formula are of the form ∂P̃ f |Z←0 where f is some subformula of the

Fi’s and P̃ ⊆ P . Therefore, we require that σ̄ is a common nonzero for all such subformulae that
are nonzero. This is what we mean by a “good” shift.

One additional technical detail is that we must apply a substitution to the variables outside of
V that preserves the properties of σ̄ and does not zero Mn. This step is in the same spirit as the
argument in the proof of the rank bound for split formulae (Lemma 2.11), namely that a typical
assignment suffices.

With these ideas in mind, the key lemma is as follows.
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Lemma 5.3 (Key Lemma). Let F =
∑m

i=1 Fi, where each Fi is a non-constant multilinear
sparse-substituted read-ki formula. If σ̄ is a common nonzero of the nonzero formulae of the form
∂P f |Z←0 where f is a subformula of the Fi’s and |P ∪Z| ≤ b

.
= (k−m+1) ·4k ·R(k+1) ·(log(t)+1),

then
F (x̄ + σ̄) 6∈ Tn,

for n > w
.
= (8k ·R(k + 1))k−m+1(log(t) + 1), where k

.
=
∑m

i=1 ki, t denotes the maximum number
of terms in each substituted polynomial, and R is the function given by Lemma 2.11.

Proof. Assume the contrary, without loss of generality, that F (x̄ + σ̄) ≡ a ·Mn for some nonzero
constant a and n > w.

We first argue that, without loss of generality, var(Fi) ⊆ [n] for all i ∈ [m]. Suppose that some
Fi depends on variables outside [n]. Let W

.
= (∪m

i=1var(Fi))\[n]. Replace F with F |W←σ̄. Then
Mn|W←σ̄ = Mn. σ̄ remains a common nonzero assignment of the stated type of formulae, now with
Fi replaced by Fi|W←σ̄. The substitution may make some branches Fi constant. If this is the case
combine those branches into some non-constant branch (if no non-constant branches exist we have
already derived a contradiction). Since all branches are non-constant, the quantity k −m has not
increased.

Define α
.
= 1

R . Shatter F using Lemma 3.4. This produces the sets P,Z and V . Let F ′
.
=

∂P F |Z←0. By the Shattering Lemma F ′ =
∑m′

i=1 F ′i is a multilinear sparse-substituted formula that
has top fanin m′ ≤ k, is α(m′ + 1)-splitV , and each F ′i is a product of factors of formulae of the
form ∂P̃ f |Z←0 where f is a subformula of an Fi and P̃ ⊆ P . Assume without loss of generality
that each F ′i is nonzero. By the lemma, |P ∪ Z| ≤ b. By hypothesis, the subformulae of the above
form do not vanish at σ̄. These properties imply that F ′i (σ̄) 6= 0 for each i ∈ [m′].

There is an assignment to the variables in [n]\V that: (1) preserves σ̄ as a nonzero of the F ′i ’s on
the remaining variables V , and (2) differs in every component from σ̄. In fact, a typical assignment
suffices. To see this, consider the polynomial:

Φ
.
=

(

m′
∏

i=1

F ′i |V←σ̄

)

·
∏

j∈([n]\V )

(xj − σj).

The polynomial Φ is nonzero because the F ′i ’s do not vanish at σ̄. Thus, a nonzero assignment for
Φ satisfies the requirements above. Pick β̄ to be any such assignment.

Let F ′′
.
= F ′|([n]\V )←β̄, where the F ′′i are defined similarly. By the first property of β̄, F ′′i (σ̄) 6= 0.

By the second property of β̄, Mn|([n]\V )←(β̄−σ̄) is a nonzero term over the variables V . Then using
the initial assumption write

F ′′(x̄ + σ̄) ≡ F ′(x̄ + σ̄)|([n]\V )←(β̄−σ̄) ≡ a ·Mn|([n]\V )←(β̄−σ̄) ≡ a′ ·MV ,

for some nonzero constant a′. Now, F ′′ ∈ F[V ] is a multilinear sparse-substituted top α(m′ + 1)-
splitV formula with top fanin m′, where no branch vanishes at σ̄. Thus, we obtain a contradiction
with Corollary 5.2 as long as |V | > 0. By the bound on |V | given in the Shattering Lemma and
then condition that n > w, the latter is the case for w ≥ (8k ·R(k + 1))k−m+1(log(t) + 1). �

In order to prove a usable theorem for our applications, we need to massage Lemma 5.3 to apply
Lemma 2.8. Let F be a formula and σ̄ be a shift as in the statement of Lemma 5.3. The property
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F (x̄ + σ̄) 6∈ Tn holds for arbitrary zero substitutions of F (x̄ + σ̄) as well, because if the required
properties of σ̄ hold for the formula itself then they also hold for all zero-substitutions. The set of
polynomials corresponding to all zero-substituted versions of F (x̄ + σ̄) serves as the set P in the
application of Lemma 2.8. This, in turn, implies that Gw hits F (x̄ + σ̄), since it is a member of
this set of polynomials, where the seed length w is bounded as in Lemma 5.3.

Theorem 5.4. Let F =
∑m

i=1 Fi, where each Fi is a non-constant multilinear sparse-substituted
read-ki formula. If σ̄ is a common nonzero of the nonzero formulae of the form ∂P f |Z←0 where f
is a subformula of the Fi’s and |P ∪ Z| ≤ b

.
= (k −m + 1) · 4k · R(k + 1) · (log(t) + 1), then

F 6≡ 0⇒ F (Gw + σ̄) 6≡ 0,

for w > (8k · R(k + 1))k−m+1(log(t) + 1), where k
.
=
∑m

i=1 ki, t denotes the maximum number of
terms in each substituted polynomial, and R is the function given by Lemma 2.11.

Proof. Define the class of formulae

F
.
= {(F |S←σ̄) | S ⊆ [n]}.

Without loss of generality each non-constant f ∈ F only has top level branches that are non-
constant, since constant branches can be collected into some non-constant branch without changing
the read of that branch. Observe that for each f ∈ F , the non-vanishing property with respect
to σ̄ is maintained because σ̄ is being used as the partial assignment. Lemma 5.3 then implies
that f(x̄ + σ̄) 6∈ Tn for n > w. Shifting all subformulae in F by σ̄ gives a class P of multilinear
polynomials that is closed under zero-substitutions and does not intersect Tn for n > w. Lemma
2.8 then says that Gw hits P, and F (x̄ + σ̄) in particular. �

5.2. A Non-Blackbox Reduction

We now give a non-blackbox reduction using Theorem 5.4. The first step of the reduction is to
compute an appropriate shift σ̄ using an identity testing algorithm for multilinear sparse-substituted
read-k formulae. A technical complication is to ensure that the formula has gates that are explicitly
multilinear, so that partial derivatives can be computed efficiently. This can also be done using
an identity test for multilinear sparse-substituted read-k formulae. Once we have σ̄, we simply
evaluate F (Gw + σ̄) on sufficiently many points and see whether we obtain a nonzero value.

Lemma 5.5 (
∑

m-Read-k PIT ≤ Read-k PIT – Non-Blackbox). For any integer k ≥ 1,
given a deterministic identity testing algorithm for n-variate size-s multilinear sparse-substituted
read-k formulae that runs in time T (k, n, s, t), where t denotes the maximum number of terms in
each substituted polynomial, there is a deterministic algorithm that tests n-variate size-s multilinear
sparse-substituted

∑m-read-k formulae that runs in time

k2m2nO(b) · T (k, n, s, t) + nO(wm,k·(log(t)+1)) poly(k, n, s, t),

where b
.
= ((k − 1)m + 1) · 4km ·R(km + 1) · (log(t) + 1), wm,k

.
= (8km ·R(km + 1))(k−1)m+1, and

R is the function given by Lemma 2.11.
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Proof. Let F
.
=
∑m

i=1 Fi, where each Fi is a multilinear sparse-substituted read-k formula. Let b
be sufficient to apply Lemma 5.3 with the parameters ki = k, m, and n.

Process each of the Fi from the bottom up, making the children of multiplication gates variable
disjoint. To do this, at each gate g compute the set of variables that g depends on. This can be
done using the hypothesized identity test on the first order partial derivatives of g with respect
to each variable. These partial derivatives can be efficiently computed as the children have been
previously processed to have variable disjoint multiplication gates. Set variables that g does not
depend on to 0, though only within the subformula g. Note, this does not affect the polynomial
computed at each gate of Fi, it merely removes extraneous variable occurrences. As we can assume
F to be in standard form, each Fi has at most O(kn) gates and this step uses at most O(kmn2)
applications of the identity test.

Let F be the set of all nonzero formulae of the form ∂P f |Z←0 where f is a subformula of one of
the Fi’s and |P ∪ Z| ≤ b. Notice that the elements of F are multilinear sparse-substituted read-k
formulae because the latter class of formulae is closed under partial derivatives and substitutions.

There are at most O(kmn) gates in F , thus |F| = O(kmnb+1). The formulae in F can be
efficiently enumerated. To see this, observe that for a choice of a gate g in Fi, and sets P and Z, the
formula ∂P g|Z←0 can be computed in time polynomial in the size of F , because we preprocessed the
multiplication gates of F to be variable disjoint. Further, we can determine efficiently whether each
of these formulae is nonzero using the hypothesized identity test for multilinear sparse-substituted
read-k formulae.

Define the polynomial, Φ
.
=
∏

f∈F f . Since Φ 6≡ 0, there is a point in a finite extension En ⊇ Fn

that witnesses the nonzeroness of Φ. We can use trial substitution to determine a point, σ̄ ∈ En

where Φ is nonzero. F is multilinear and all the formulae in F are multilinear as well. This
means that Φ has total degree at most O(kmnb+2). By the Schwartz-Zippel Lemma we only need
to test elements from a subset W ⊆ E of size at most the degree of Φ plus one (i.e., a set of
size O(kmnb+2)). For each variable, in turn, determine a value from W that keeps Φ nonzero.
Fix the variable to this value then move on to consider the next variable. This uses O(kmnb+3)
identity tests on a partially substituted version of Φ. Each of these identity tests uses O(kmnb+1)
identity tests on the component read-k formulae. In total, our algorithm uses O(k2m2n2b+4) identity
tests on multilinear sparse-substituted read-k formulae to compute σ̄. This can be completed in
O(k2m2n2b+4T (k, n, s, t)) time, using the assumed identity test.

Using Theorem 5.4 gives that Gwm,k(log t+1) hits F (x̄ + σ̄). Therefore, F ≡ 0 iff F (Gw + σ̄) ≡ 0.
By multilinearity, the formula F has degree at most n and, by definition, Gw has degree at most n.
Applying Proposition 2.4 gives a test for F (Gw+σ̄) that runs in time O((n2)2w). This completes the
identity test. The cost of performing this part of the algorithm is at most nO(w) · poly(k,m, s, t).
Combining this with the preprocessing and the computation of σ̄ gives the total running time
claimed. �

5.3. A Blackbox Reduction

We now describe a blackbox version of Lemma 5.5. The overall approach is the same, though the
details are somewhat simpler. With Theorem 5.4 in hand, all that remains is to leverage a generator
G for multilinear sparse-substituted read-k formulae to generate an appropriate shift σ̄ and then
apply the theorem to complete the reduction.
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Let F =
∑m

i=1 Fi be a multilinear sparse-substituted
∑m-read-k formula. Let F be the set of all

nonzero formulae of the form ∂P f |Z←0 where f is a subformula of one of the Fi’s and |P ∪ Z| ≤ b.
F is composed of nonzero multilinear sparse-substituted read-k formulae. Therefore, G hits the
product

∏

f∈F f , and a suitable shift σ̄ is in the image of G. Applying Theorem 5.4 then gives that
G + Gw is a generator for multilinear sparse-substituted

∑m-read-k formulae, where w is bounded
as in the theorem.

Lemma 5.6 (
∑

m-Read-k PIT ≤ Read-k PIT – Blackbox). For an integer k ≥ 1, let G be
a generator for n-variate multilinear sparse-substituted read-k formulae. Then G+Gwm,k·(log(t)+1) is
a generator for n-variate multilinear sparse-substituted

∑m-read-k formulae, where wm,k
.
= (8km ·

R(km + 1))(k−1)m+1, t denotes the maximum number of terms in each substituted polynomial, and
R is the function given by Lemma 2.11.

Proof. Let F be a multilinear sparse-substituted
∑m-read-k formula. Write F

.
=
∑m

i=1 Fi, where
each Fi is a multilinear sparse-substituted read-k formula. Let b

.
= ((k−1)m+1) ·4km ·R(km+1) ·

(log(t) + 1) and w
.
= wm,k · (log(t) + 1); in other words, sufficient parameters for applying Lemma

5.3 with m and ki = k.
Let F be the same set of formulae as in the proof of Lemma 5.5 with respect to the current

version of F , and consider the polynomial Φ
.
=
∏

f∈F f . Note that Φ 6≡ 0.
Since G is a generator for multilinear sparse-substituted read-k formulae and Φ is the product

of multilinear sparse-substituted read-k formula, G hits Φ. There is a point with components in a
finite extension E ⊇ F that witnesses the nonzeroness of Φ ◦ G. Let β̄ be such a point and define
σ̄

.
= G(β̄). Thus Φ(σ̄) 6= 0. This implies that all nonzero formulae of the form ∂P f |Z←0 where f is a

subformula of one of the Fi’s and |P ∪Z| ≤ b, do not vanish at σ̄. By Theorem 5.4, Gwm,k ·(log(t)+1)

hits F (x̄ + σ̄). Finally, since σ̄ is in the image of G, G + Gwm,k ·(log(t)+1) hits F , completing the
reduction. �

6. Identity Testing Multilinear Read-k Formulae

Before moving on to prove our main theorems, we briefly stop to recall the overall approach. For
clarity we only state the non-blackbox approach; the blackbox approach follows the same pattern.
We construct an identity test for multilinear sparse-substituted read-k formulae using three tools.

Lemma 4.1 – a reduction from identity testing multilinear sparse-substituted read-(k+1) formulae
to identity testing multilinear sparse-substituted

∑2-read-k formulae.

Lemma 5.5 – a reduction from identity testing multilinear sparse-substituted
∑2-read-k formulae

to identity testing multilinear sparse-substituted read-k formulae.

Lemma 6.1 – an identity test for multilinear sparse-substituted read-once formulae.

Observe that combining the first two reductions reduces identity testing multilinear sparse-
substituted read-(k+1) formulae to identity testing multilinear sparse-substituted read-k formulae.
Applying this observation recursively and combining it with Lemma 6.1 as the base case k = 1,
establishes our main theorem – an identity test for multilinear sparse-substituted read-k for arbi-
trary k. Lemma 6.1 and its corresponding blackbox version are proved in the following subsections
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immediately before the corresponding main theorem. In the last subsection we develop a specialized
blackbox identity test for multilinear sparse-substituted read-k formulae of constant depth.

6.1. A Non-Blackbox Identity Test

We begin by describing a simple identity test for multilinear sparse-substituted read-once formula.
Note that here multilinear is not a redundant qualifier because the sparse substitutions could make
the read-once formula non-multilinear.

Lemma 6.1. There is a deterministic algorithm for identity testing multilinear sparse-substituted
read-once formulae that runs in time poly(n, s, t), where s denotes the size of the formula, n the
number of variables, and t the maximum number of terms in each substituted polynomial.

Proof. First, consider how to identity test sparse polynomials. Examine the list of terms and merge
duplicate monomials. The sparse polynomial is nonzero iff any term remains (with a nonzero
coefficient). Notice that the same procedure can be used to determine whether a sparse polynomial
is constant. This process takes time polynomial in the number of variables and the bound on the
sparsity of the substitutions.

To identity test multilinear sparse-substituted read-once formulae, first apply the above procedure
to each sparse substitution. If a sparse substitution is non-constant, replace it with a unique new
variable; otherwise, replace it with the constant value. The resulting formula is read-once because
each variable only occurs in one sparse input. This procedure does not affect the (non)zeroness of
the formula. Moreover, the procedure runs in time polynomial in the size of the formula and reduces
the problem to testing read-once formulae. There can be no additive cancellation of variables in
read-once formulae, therefore the only way for such a formula to be zero is if it is multiplied by the
constant zero. Thus, (non)zeroness can be determined by traversing the read-once formula from
the bottom up, simplifying gates over constants and eliminating gates that have a multiplication
by zero. �

Combining Lemmas 4.1, 5.5, and 6.1 in the way suggested above proves the following main result.

Theorem 6.2. There exists a deterministic polynomial identity testing algorithm for multilinear
sparse-substituted formulae that runs in time sO(1) · nkO(k)(log(t)+1), where s denotes the size of the
formula, n the number of variables, k the maximum number of substitutions in which a variable
appears, and t the maximum number of terms a substitution consists of.

Proof. We proceed by induction on k. The base case is k = 1, which is handled by the identity test
from Lemma 6.1. Consider the induction step for arbitrary k + 1. Assume there is an identity test
for multilinear sparse-substituted read-k formulae that runs in time T (k, n, s, t). Lemma 5.5 implies
there is a deterministic algorithm that runs in time k2nb ·T (k, n, s, t)+nw ·poly(k, n, s, t)) that tests
multilinear sparse-substituted

∑2-read-k formulae. The lemma bounds b = O(k6 log k ·(log(t)+1))
and w = kO(k)(log(t) + 1). Given this identity test for multilinear sparse-substituted

∑2-read-
k formulae, Lemma 4.1 results in an identity test for multilinear sparse-substituted read-(k + 1)
formulae that runs in time T (k + 1, n, s, t) = O(kn2(k2nb · T (k, n, s, t) + nw · poly(k, n, s, t)) +
poly(k, n, s, t)). Solving this recurrence results in the bound claimed. �
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In the non-blackbox setting we can take things one step further, and identity test structurally-
multilinear sparse-substituted constant-read formulae. This follows from the next lemma, which
reduces the case of non-multilinear sparse substitutions to multilinear sparse substitutions. The
argument is based on the following observation: since the multiplication gates in the backbone
formula are variable disjoint, the only way to achieve a factor xd with d > 1 in a term is for xd to
be present within one of the sparse substitutions. This allows high-degree terms to be rewritten as
multilinear terms over new variables without changing the (non)zeroness of the formula.

Lemma 6.3. Polynomial identity testing structurally-multilinear sparse-substituted formulae poly-
nomial-time mapping reduces to polynomial identity testing multilinear sparse-substituted formulae
such that an n-variable sparse-substituted read-k formula is mapped to an O(n log(knt))-variable
sparse-substituted read-k formula, where t denotes the maximum number of terms in each substituted
polynomial.

Proof. Let F be a n-variable structurally-multilinear sparse-substituted read-k formula. Write
F = B(f1, ..., fr), where each of the fi are sparse polynomials with at most t terms and B is the

backbone. Each fi can be written formally as fi =
∑t

j=1 αij
∏n

ℓ=1 x
dijℓ

ℓ , where αij ∈ F is the

coefficient of the jth term in fi and dijℓ is the degree of xℓ in the jth term of fi. Let τ be the total
number of terms that occur within all fi. Note that τ = O(knt) as we can assume that F is in
standard form. The quantity τ also bounds the number of distinct degrees of xℓ occurring in F ;

label these distinct degrees {djℓ}
≤τ
j=1. Introduce a new set of variables {yℓq}

⌈log τ⌉
q=1 . Within each fi

replace the occurrence of x
djℓ

ℓ with
∏⌈log τ⌉

q=1 y
b(j,q)
ℓq , forming f ′i , where b(j, q) ∈ {0, 1} is the qth bit in

the binary expansion of j. This process replaces the original n variables with n⌈log τ⌉ new variables.
Since τ = O(knt), there are at most O(n log(knt)) new variables. Define F ′

.
= B(f ′1, ..., f

′
r). We

argue that F ≡ 0 iff F ′ ≡ 0.
Observe that F ′ is multilinear because F is structurally-multilinear. Also, each yℓq occurs at

most as many times in the f ′i ’s as xℓ does in the fi’s, so F ′ is a sparse-substituted read-k formula.
There is a one-to-one mapping between monomials in the formal expansions F and F ′. This

follows because the only way the product xd
ℓ for d > 1 appears in a monomial of F is if it comes

from a single fi, since the xℓ are never multiplied outside of fi. Moreover, the coefficients of the
corresponding monomials are also the same. Therefore F ≡ 0 iff F ′ ≡ 0. �

The combination of Lemma 6.3 and Theorem 6.2 proves the non-blackbox part of Theorem 1.2.
It yields the following corollary for constant k.

Corollary 6.4. There exists a deterministic polynomial identity testing algorithm for structurally-
multilinear sparse-substituted constant-read formulae that runs in time sO(1) · (n log t)O(log t), where
s denotes the size of the formula, n the number of variables, and t the maximum number of terms
a substitution consists of.

When t is constant the algorithm is runs in polynomial time. In particular, we obtain the
following corollary.

Corollary 6.5. There exists a deterministic polynomial-time algorithm for identity testing multi-
linear constant-read formulae.
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6.2. A Blackbox Identity Test

We proceed analogously to the previous subsection. We first argue that the SV-generator G works
for multilinear sparse-substituted read-once formulae – this extends the argument in [SV09], which
worked for read-once formulae. Additionally, the argument is stated with respect to a depth
parameter to make a later specialization to constant-depth more concise.

The idea is the following. We recurse on the structure of the multilinear sparse-substituted
read-once formula F and argue that the SV-generator takes non-constant subformulae to non-
constant subformulae. There are three generic cases, based on the top gate of F : (i) addition, (ii)
multiplication, and (iii) a sparse-substituted input.

In case (i), the fact that F is read-once implies that addition branches are variable disjoint.
This means that there is a variable whose partial derivative eliminates at least half of the formula
and reduces the depth by one. Combining this fact with Lemma 2.7 completes the case. In case
(ii), the fact that the SV-generator takes non-constant subformulae to non-constant subformulae
immediately implies that if G hits the children of a multiplication gate it also hits the gate itself.
In case (iii) we can use a similar idea as in the first part of Lemma 3.3. For any variable x, either
at least half of the terms of the sparse-substituted input depend on x, or at least half of the terms
the do not. In the former situation setting x to zero eliminates at least half of the terms in the
sparse-substituted input; in the latter situation taking ∂x has the same effect. Combining this with
an argument similar to Lemma 2.7 completes the case.

Lemma 6.6. Let F be a nonzero multilinear sparse-substituted depth-d read-once formula. Then
Gw hits F for w

.
= min {⌈log |var(F )|⌉, d} + ⌈log t⌉ + 1, where t denotes the maximum number of

terms in each substituted polynomial. Moreover, if F is non-constant then so is F ◦Gw.

Proof. We proceed by structural induction on F . When |var(F )| = 0, F ◦Gw = F and the lemma
trivially holds. In the induction step |var(F )| ≥ 1, hence F is non-constant. There are three
induction cases.

1. The top gate of F is an addition gate. Say F = α ·
∑m

i=1 Fi + β, where the Fi are multilinear
sparse-substituted depth-(d − 1) read-once formulae. Because F is in standard form, it has

at least two non-constant branches F1 and F2. Without loss of generality |var(F1)| ≤
|var(F )|

2 .
Then, because F is read-once: F1 and F2 are variable disjoint, and for any x ∈ var(F1),
∂xF = ∂x(α ·

∑m
i=1 Fi + β) = α · ∂xF1 6≡ 0. Thus, ∂xF has depth at most d− 1 and depends

on at most |var(F )|
2 variables. Observe that

min

{⌈

log
|var(F )|

2

⌉

, d− 1

}

+ ⌈log t⌉+ 1 = w − 1.

The induction hypothesis immediately gives that the ∂xF 6≡ 0 is hit by Gw−1. Applying
Lemma 2.7 implies that F ◦(Gw−1+G1) is non-constant. By the Proposition 2.6, Gw−1+G1 =
Gw, completing this case.

2. The top gate of F is a multiplication gate. Say F = α·
∏m

i=1 Fi+β, where the Fi are multilinear
sparse-substituted depth-(d − 1) read-once formulae. The fact that F is in standard form
implies that each Fi is non-constant. The induction hypothesis immediately implies that Gw′

hits each Fi, where w′ = min{⌈log |var(F )|⌉, d − 1} + ⌈log t⌉ + 1. Further, each Fi ◦ Gw′ is
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non-constant. Combining this with the fact that w ≥ w′ implies that α · (
∏m

i=1 Fi) ◦Gw + β
is non-constant, completing this case.

3. F is a sparse-substituted input. Assume, without loss of generality, that there are no duplicate
monomials. Let ℓ ≤ t be the number of terms in g.

Suppose there exists a variable x ∈ var(F ) for which F |x←0 is non-constant. For such an x
write F = x · ∂xF + F |x←0 – this is possible because F is multilinear. If (∂xF ) ◦Gw−1 6≡ 0,
applying Lemma 2.7 gives that F ◦ (Gw−1 + G1) is non-constant and we are done. Otherwise
(∂xF ) ◦ Gw−1 ≡ 0. This implies that ∂xF has more than ℓ/2 terms, otherwise Gw−1 would
have hit ∂xF by the induction hypothesis. Therefore F |x←0 has at most ℓ/2 terms. Since
F |x←0 is non-constant, the induction hypothesis implies that F |x←0 ◦ Gw−1 is non-constant,
hence is F ◦Gw is non-constant.

We are left with the case where for all variables x ∈ var(F ), F |x←0 is constant. The facts
that F is non-constant and multilinear imply that F contains exactly one term which is
non-constant. Therefore F ◦ Gw is non-constant for w ≥ 1, because each coordinate of Gw

computes a non-constant polynomial. �

We formally conclude using Lemmas 4.2, 5.6, and 6.6 to prove the following main result.

Theorem 6.7. For some function wk = kO(k), the polynomial map Gwk·(log(t)+1)+k log n is a hit-
ting set generator for n-variate multilinear sparse-substituted read-k formulae, where t denotes the
maximum number of terms a substitution consists of.

Proof. We proceed by induction on k and argue that we can set wk equal to the value w2,k from
Lemma 5.6. The base case is immediate from Lemma 6.6. Consider the induction step for arbitrary
k. Assume that G

.
= Gwk ·(log(t)+1)+k log n is a generator for multilinear sparse-substituted read-k

formulae. Lemma 5.6 with m = 2 implies that G + Gwk ·(log(t)+1) is a generator for multilinear

sparse-substituted
∑2-read-k formulae. Apply Lemma 4.2 to G′

.
= G + Gwk·(log(t)+1). This gives

that Gwk·(log(t)+1)+k log n + Gwk·(log(t)+1) + Glog n is a generator for multilinear sparse-substituted
read-(k+1) formulae. Apply the basic properties of G from Proposition 2.6 to get that a total seed
length of 2wk · (log(t) + 1) + (k + 1) log n suffices to hit multilinear sparse-substituted read-(k + 1)
formulae. As we can assume without loss of generality that 2wk ≤ wk+1, the theorem follows. �

A multilinear polynomial F on n variables has degree at most n. The SV-generator Gw with
output length n has total degree at most n. Combining these facts and Proposition 2.4 with the
previous theorem establishes the blackbox part of Theorem 1.2. In particular, it gives a quasi-
polynomial-time blackbox algorithm for identity testing multilinear sparse-substituted constant-
read formulae.

Corollary 6.8. There exists a deterministic blackbox polynomial identity testing algorithm for
multilinear sparse-substituted constant-read formulae that runs in time nO(log(n)+log(t)) and queries
points from an extension field of size O(n2), where n denotes the number of variables and t the
maximum number of terms a substitution consists of.
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6.3. The Special Case of Constant-Depth

We can improve the running time of our blackbox constant-read identity test by further restricting
formulae to be constant-depth. We consider only the blackbox case because that is where we can
get a substantial improvement. In the constant-depth setting we allow addition and multiplication
gates that have arbitrary fanin. In order to specialize our previous argument to the constant depth
case, we first give a version of the Fragmentation Lemma (Lemma 3.3) parameterized with respect
to the depth. We then carry through the different parameterization in Lemma 4.2 and Theorem
6.7.

Lemma 6.9 (Bounded-Depth Fragmentation Lemma). Let ∅ ( V ⊆ [n], k ≥ 1, and let F
be an n-variable multilinear sparse-substituted depth-d readV -k formula that depends on at least one
variable in V . Let t denote the maximum number of terms in each substituted polynomial.

1. If k = 1 there exist disjoint sets of variables P,Z ⊆ V with |P ∪ Z| ≤ (log(t) + 1) such that

∂P F |Z←0 is nonzero and is a product of factors that each depend on at most |V |2 variables
from V (and possibly more variables outside of V ). Moreover, the factors are subformulae of
F and at most one formula of the form ∂P f |Z←0 where f is one of the sparse substitutions.

2. Otherwise, there exists a variable x ∈ V such that ∂xF is nonzero and is the product of

a) subformulae of F that have depth at most d− 1, and

b) at most one multilinear sparse-substituted
∑k-readV -(k−1) formula, which is the deriva-

tive with respect to x of some subformula of F .

Observe that the read-once case of this lemma is identical to that of the original Fragmentation
Lemma. This is because regardless of the depth it takes one derivative to reach a product of smaller
formula with at most one large substituted polynomial that needs to reduced. The second half of
the lemma is quite similar to the original, however, we make some different choices based on the
depth.

Proof. Given the original Fragmentation Lemma, we only need to argue the second part. Assume
without loss of generality that V only contains variables on which F depends, and that the children
of multiplication gates are variable disjoint with respect to V .

If none of the variables in V occur k times in F , any choice of variable x ∈ V does the job. So,
let us assume that at least one variable in V occurs k times.

The algorithm recurses through the structure of F , maintaining the following invariant: The
current gate being g visited, g, contains below it k occurrences of some variable in V . Setting g to
be the output gate of F satisfies this invariant initially.

If g is a multiplication gate, recurse on a child of g that depends on a variable from V that occurs
k times in g. Such a child must exist by the invariant and because F is multilinear.

If g is an addition gate, and at least one of its children, gi, has a variable in V that occurs k times
in gi, recurse to gi. Otherwise, select a variable x ∈ V that occurs k times in g ending the recursion.
In this case all of the children of g are multilinear sparse-substituted readV -(k− 1) formulae. Since
g has at most k children that contain x, ∂xg can be represented as a

∑k-readV -(k − 1) formula.
In the partial derivative ∂xF , all unvisited addition branches along the path from the output

gate of F to the final g have been eliminated. Also, all unvisited multiplication branches along
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the path become factors of ∂xF together with ∂xg. More formally, ∂xF = (∂xg)
∏

i Fi, where the
Fi are the unvisited multiplication branches. The Fi’s are multilinear sparse-substituted readV -k
formulae that have depth at most d− 1, because they are the children of some multiplication gate
in F . When the process stops at an addition gate, ∂xg is a multilinear sparse-substituted

∑k-
readV -(k− 1) formula that may depend on many variables from V . Note that since we assumed F
depends on all variables in V , ∂xF 6≡ 0. �

Lemma 6.9 leads to the following variant of Lemma 4.2 in the bounded-depth setting.

Lemma 6.10. For an integer k ≥ 1, let G be a generator for n-variate multilinear sparse-substituted
depth-d

∑k+1-read-k formulae and let F be a nonzero n-variable multilinear sparse-substituted
depth-d read-(k + 1) formula. Then G + Gd hits F .

Proof. First observe that if F is read-k, we are immediately done because F ◦G 6≡ 0 and 0̄ is in the
range of G (by the first item of Proposition 2.6).

The proof goes by induction on d. If d = 0, the lemma holds trivially as F is constant. If d = 1,
F is a read-once formula, which is covered by the above observation. For the induction step, by
the above observation we can assume that F is read-(k + 1) and not read-k. Therefore, F meets
the conditions to apply the second part of the Fragmentation Lemma for bounded depth formulae
(Lemma 6.9). The lemma produces a variable x ∈ var(F ). The factors of ∂xF all have depth at
most d − 1 and are multilinear sparse-substituted read-(k + 1) formulae, except for at most one
which is a

∑k+1-read-k formula. The induction hypothesis gives that the former factors of ∂xF
are all hit by G+ Gd−1. The latter factor (if it occurs) is hit by G. Applying Lemma 2.7 gives that
G + Gd−1 + G1 hits F . Recalling Proposition 2.6 implies that G + Gd hits F . �

We can use the previous lemma with Lemmas 5.6 and 6.6 to construct a hitting set generator
specialized to bounded depth. The proof is almost identical to Theorem 6.7, except that fanin of
the reduced instance increases to k + 1 from 2. This weakens the parameterization of the seed
length with respect to k.

Theorem 6.11. For some function wk = kO(k2), the polynomial map Gwk·(log(t)+1)+kd is a hitting
set generator for n-variate multilinear sparse-substituted depth-d read-k formulae, where t denotes
the maximum number of terms a substitution consists of.

Proof. We proceed by induction on k and argue that we can set wk equal to the value wk+1,k from
Lemma 5.6. The base case is immediate from Lemma 6.6. Consider the induction step for arbitrary
k. Assume that G

.
= Gwk·(log(t)+1)+kd is a generator for multilinear sparse-substituted depth-d read-

k formulae. Lemma 5.6 with m = k + 1 implies that G+ Gwk·(log(t)+1) is a generator for multilinear

sparse-substituted depth-d
∑k+1-read-k formulae. Apply Lemma 6.10 to G′

.
= G + Gwk·(log(t)+1).

This gives that Gwk·(log(t)+1)+kd+Gwk·(log(t)+1)+Gd is a generator for multilinear sparse-substituted
depth-d read-(k + 1) formulae. Apply the basic properties of G from Proposition 2.6 to get that
a total seed length of 2wk+1 · (log(t) + 1) + (k + 1)d suffices to hit multilinear sparse-substituted
depth-d read-(k + 1) formulae. As we can assume without loss of generality that 2wk ≤ wk+1, the
theorem follows. �

Analogous to the unbounded depth setting, combining Theorem 6.11 with Proposition 2.4 estab-
lishes Theorem 1.3 and the following corollary for constant-read constant-depth formulae.
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Corollary 6.12. There exists a deterministic blackbox polynomial identity testing algorithm for
multilinear sparse-substituted constant-depth constant-read formulae that runs in time nO(log t) and
queries points from an extension field of size O(n2), where n denotes the number of variables and
t the maximum number of terms a substitution consists of.

The important difference between the above corollary and Corollary 6.8 is that the exponent
no longer depends on n. Additionally, if the sparsity of substituted polynomials is constant the
algorithm becomes polynomial-time. In particular, we obtain the following corollary.

Corollary 6.13. There is a deterministic polynomial-time blackbox algorithm for identity testing
multilinear constant-depth constant-read formulae.
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A. Standard Form of Read-k Formulae

Given a read-k formula, it can be transformed into a standard form read-k formula where constants
only occur in the α and β of gates and the formula has at most O(kn) gates.

Proposition A.1. There is an algorithm that transforms a given read-k formula F on n variables
into an equivalent read-k formula F ′, such that F ′ has at most kn gates. Moreover, the algorithm
preserves multilinearity and runs in time polynomial in the size of F .

Proof. Without loss of generality assume has F fanin at most 2. Consider the following simplifica-
tion rules for a gate g in F .

1. Suppose g has one child. Then g = α · g′ + β. If g′ is a constant, replace g with the constant
α · g′ + β. If g′ is an input variable do nothing. If g′ is another gate, where g′ = α′ · g′′ + β′,
replace g with (αα′) · g′′ + (αβ′ + β), explicitly computing the new constants.

2. Suppose g has two children. Then g = α · (g1 op g2)+β. If both children are constant replace
g with the constant it computes. If one child is constant (wlog g1), and op = +, replace g
with α · g2 + (αg1 + β); if op = ×, replace g with (αg1) · g2 + β; otherwise do nothing.

Note that the simplification rules preserve multilinearity. Repeatedly apply these rules until a
fixed point is reached, call this F ′. Inspection of the rules gives that g is always replaced by an
equivalent formula, therefore F ′ ≡ F . Since non-constant parts of the formula are never duplicated
F ′ is read-k. If g is an internal gate with only one child, it is eliminated; if g is an internal gate
with two children at least one of which is a constant, g is changed by these rules. Thus, if a fixed
point is reached, all internal gates must have two children that are not constants.

This implies that all the original constants have been moved into the α’s and β’s of the gates
and inputs. Therefore F ′ can be viewed as a binary tree where the at most kn inputs are leaves.
Thus, the total number of gates in F ′ is at most kn. This means that there are at most 2kn gates
and input pairs (α, β).

Since the total number of gates and constants decreases with each step, this process can repeat
at most the size of F many times before the fixed point is reached. �

The previous lemma only bounds the number of gates in the resulting formula. The constants α
and β at each gate and inputs in F ′ are bounded in bit-length by the size of the original formula
F . This means that evaluating the formula F ′ still incurs cost polynomial in the size of F .

The standard form can be easily generalized to sparse-substituted formulae, because the internal
gate structure is the same where the sparse polynomials are treated as inputs. The standard form
can also be specialized to bounded depth formulae where the gate fanin is unbounded.
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B. Homogeneous Rank Bound to Inhomogeneous Rank Bound

In Section 3 we briefly discussed the rank bound of [SS09]. Formally, they show the following
theorem.

Lemma B.1 ([SS09, Theorem 2]). The rank of a homogeneous, simple, and minimal depth-
three formula that is zero has rank at most O(m3 log d), where m denotes the top fanin of the
formula and d the degree.

The previous lemma requires that the formula be homogeneous. This means that the bottom
level addition gates compute linear forms (which contain no constant terms) rather than more
general linear functions. In the paper originating the rank bound, Dvir and Shpilka [DS07] prove
the following homogenization lemma. For completeness, we state and prove the lemma (almost
verbatim) and then argue that the version of the rank bound we use (Lemma 2.9) follows.

Lemma B.2 ([DS07, Lemma 3.5]). There exists a polynomial-time algorithm that transforms a
depth-three formula F into a homogeneous depth-three formula F ′ such that F ≡ 0 iff F ′ ≡ 0. The
algorithm preserves simplicity, minimality, and rank, and does not increase the top fanin or degree

Proof. Let F =
∑m

i=1

∏d
j=1 Lij(X), where

Lij(x) = L0
ij +

n
∑

ℓ=1

Lℓ
ij · xℓ

are the linear functions appearing in F over the input variables X = {x1, ..., xn}. Introduce a new
variable y. Over the input variables x1, ..., xn, y define

L′ij(x, y)
.
= L0

ij · y +

n
∑

ℓ=1

Lℓ
ij · xℓ,

and

F ′(x, y)
.
=

m
∑

i=1

yd−di

di
∏

j=1

L′ij.

Clearly, F ′ is a homogeneous depth-three degree-d formula with top fanin m. Further, F ′ can be
computed in time polynomial in the size of F . Write

F (x) ≡
d
∑

i=0

Pi(x),

where Pi(x) denotes the homogeneous part of degree i of F (x), then

F ′(x, y) ≡
d
∑

i=0

Pi(x)yd−i.

Therefore F ≡ 0 iff F ′ ≡ 0.
The preservation properties follow from the construction. �
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Applying Lemma B.2 to Theorem B.1 generalizes the latter to inhomogeneous formulae (using
the property that simplicity, minimality, and rank are preserved). To get the version specialized to
multilinear formulae that we use (Lemma 2.9), one observes that for multilinear formulae the rank
is at least the degree. This implies that the rank r satisfies r = O(m3 log r), from which an upper
bound of O(m3 log m) on r follows.
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