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Abstract. We present a polynomial-time deterministic algorithm for
testing whether constant-read multilinear arithmetic formulae are iden-
tically zero. In such a formula each variable occurs only a constant num-
ber of times and each subformula computes a multilinear polynomial.
Our algorithm runs in time s -nko(k), where s denotes the size of the
formula, n denotes the number of variables, and & bounds the number
of occurrences of each variable. Before our work no subexponential-time
deterministic algorithm was known for this class of formulae. We also
present a deterministic algorithm that works in a blackbox fashion and
runs in time p*™"+0(klogn) i general, and time nko(kZ)JfO(kD) for depth
D. Finally, we extend our results and allow the inputs to be replaced
with sparse polynomials. Our results encompass recent deterministic
identity tests for sums of a constant number of read-once formulae, and
for multilinear depth-four formulae.
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1. Introduction

Polynomial identity testing (PIT) denotes the fundamental prob-
lem of deciding whether a given polynomial identity holds. More
precisely, we are given an arithmetic circuit or formula F' on n
inputs over a given field F, and we wish to know whether all the
coefficients of the formal polynomial P, computed by F', vanish.
Due to its basic nature, PIT shows up in many constructions in
the theory of computing. Particular problems that reduce to PIT
include integer primality testing (Agrawal & Biswas 2003) and find-
ing perfect matchings in graphs (Lovasz 1979).

PIT has a very natural randomized algorithm — pick values
for the variables uniformly at random from a small set S, and
accept iff P evaluates to zero on that input. If P = 0 then the
algorithm never errs; if P # 0 then by Schwartz-Zippel (DeMillo
& Lipton 1978; Schwartz 1980; Zippel 1979) the probability of an
error is at most d/|S|, where d denotes the total degree of P. This
results in an efficient randomized algorithm for PIT. The algorithm
works in a blackbox fashion in the sense that it does not access the
representation of the polynomial P, rather it only examines the
value of P at certain points (from F or an extension field of F).

Despite the simplicity of the above randomized algorithm and
much work over the course of thirty years, no efficient deterministic
algorithm is known when the polynomial is given as an arithmetic
formula.

Is there an efficient deterministic identity test for
arithmetic formulae?

The question is central to the pursuit of circuit lower bounds.
Efficiently derandomizing identity testing implies Boolean or arith-
metic formula/circuit lower bounds that have been elusive for half
a century (Aaronson & van Melkebeek 2011; Kabanets & Impagli-
azzo 2004; Kinne et al. 2012). In fact, an efficient deterministic
blackbox identity test for arithmetic formulae of depth three or
four already implies such lower bounds (Agrawal & Vinay 2008;
Gupta et al. 2013). Conversely, the well-known hardness vs ran-
domness tradeoffs imply that sufficiently strong Boolean circuit
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lower bounds yield efficient deterministic polynomial identity tests,
and there are a couple of similar results starting from arithmetic
circuit lower bounds as well (Dvir et al. 2009; Kabanets & Impagli-
azzo 2004).

The powerful connections with circuit lower bounds have en-
ergized much of the recent effort towards derandomizing iden-
tity testing for restricted classes of arithmetic formulae, in par-
ticular for constant-depth formulae. For depth-two formulae sev-
eral deterministic polynomial-time blackbox algorithms are known
(Agrawal 2003; Arvind & Mukhopadhyay 2010; Ben-Or & Tiwari
1988; Blaser et al. 2009; Klivans & Spielman 2001). For depth three
the state of the art is a deterministic polynomial-time blackbox al-
gorithm when the fanin of the top gate is fixed to any constant
(Saxena & Seshadhri 2012). The same is known for depth four
when the formulae are multilinear, i.e., when every gate in the for-
mula computes a polynomial of degree at most one in each variable
(Saraf & Volkovich 2011). There are also a few incomparable re-
sults for rather specialized classes of depth-four formulae (Arvind
& Mukhopadhyay 2010; Saxena 2008; Shpilka & Volkovich 2009).
We refer to the excellent survey papers (Saxena 2009; Shpilka &
Yehudayoff 2010) for more information.

Another natural restriction is to bound the number of times
each variable can occur in the formula. We call such a restricted
formula read-k, where k denotes the maximum number of times
each variable may appear. Identity testing for read-once formulae
is trivial in the non-blackbox setting as there can be no cancel-
lation of monomials. Shpilka and Volkovich considered a special
type of bounded-read formulae, namely formulae that are the sum
of k read-once formulae. For such formulae and constant k£ they
established a deterministic polynomial-time non-blackbox identity
test as well as a deterministic blackbox algorithm that runs in
quasi-polynomial time, more precisely in time s°(°8%) on formu-
lae of size s (Shpilka & Volkovich 2008, 2009). These results have
been extended to sums of k£ read-once algebraic branching pro-
grams (Jansen et al. 2009). Algebraic branching programs are a
model of computation analogous to Boolean branching programs
and lying between formulae and circuits in terms of power.
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1.1. Results. We present a deterministic polynomial-time iden-
tity test for multilinear constant-read formulae, as well as a deter-
ministic quasi-polynomial-time blackbox algorithm for these for-
mulae.

THEOREM 1.1 (Main Result).  For each constant k € N there
is a deterministic polynomial identity test for multilinear read-k
formulae of size s that runs in time poly(s). In addition, there is
a deterministic blackbox test that runs in time s©(°8)

Note that Theorem 1.1 extends the class of formulae that Shpilka
and Volkovich could handle since a sum of read-once formulae is
always multilinear. This is a strict extension; in Section 2.1.3 we
exhibit an explicit multilinear read-twice formula with n variables
that requires ©(n) terms when written as a sum of read-once for-
mulae. The separating example also shows that the efficiency of the
identity test in Theorem 1.1 cannot be obtained by first expressing
the given formula as a sum of read-once formulae and then apply-
ing the known algorithms for sums of read-once formulae (Shpilka
& Volkovich 2009) to it.

Shpilka and Volkovich actually proved their result for sums of
a somewhat more general type than read-once formulae, namely
read-once formulae in which each leaf variable is replaced by a
low-degree univariate polynomial in that variable. We can handle a
further extension in which the leaf variables are replaced by sparse
multivariate polynomials. We use the term sparse-substituted for-
mula for a formula along with substitutions for the leaf variables
by multivariate polynomials, where we assume that the substituted
polynomials are each given as a list of terms (monomials). We call
a sparse-substituted formula read-k if each variable appears in at
most k of those multivariate polynomials. The substituted polyno-
mials need not be multilinear, as long as for every multiplication
gate of the original formula the different input branches of the
gate are variable disjoint. We call such sparse-substituted formu-
lae structurally-multilinear.

THEOREM 1.2 (Extended Main Result). For each constant k €
N there is a deterministic polynomial identity test for structurally-
multilinear sparse-substituted read-k formulae that runs in time
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sOUogt) “where s denotes the size of the formula, and t the maximum
number of terms a substitution consists of. In addition, there is a
deterministic blackbox test that runs in time s®(°85%),

We observe that any multilinear depth-four alternating formula
with an addition gate of fanin k£ as the output can be written
as the sum of k£ sparse-substituted read-once formulae, where the
read-once formulae are single monomials and the substitutions cor-
respond to multilinear depth-two formulae. This implies that our
blackbox algorithm also extends the work by Karnin et al. (2013),
who established a deterministic quasi-polynomial-time blackbox al-
gorithm for multilinear formulae of depth four. Thus, our results
can be seen as unifying identity tests for sums of read-once formu-
lae (Shpilka & Volkovich 2009) with identity tests for depth-four
multilinear formulae (Karnin et al. 2013) while achieving compa-
rable running times in each of those restricted settings. It remains
an open question whether our results can be extended to test mul-
tilinear read-k algebraic branching programs in a way analogous
to the extension from Shpilka & Volkovich (2009) to Jansen et al.
(2009).

We can improve the running time of our blackbox algorithm
in the case where the formulae have small depth. In particular,
we obtain a polynomial-time blackbox algorithm for multilinear
constant-read constant-depth formulae and, for the special case of
fields with infinite characteristic, Agrawal et al. (2012) recently
showed that the multilinearity condition can be removed. We refer
to Section 6.3 for more details about those results, and to the rest
of Section 6 for more general versions and finer parameterizations
of our main result and its extensions.

1.2. Techniques. We now give an overview of our approach
with a focus on the deterministic polynomial identity tests for mul-
tilinear read-k formulae given in Theorem 1.1. Both the blackbox
and the non-blackbox algorithms are obtained by induction on £,
using known algorithms in the base case of read-once formulae. To
lift the identity tests for read-once formulae we exhibit reductions
from testing multilinear read-(k+1) formulae to testing multilinear
read-k formulae. Applying the transformation k times thus reduces
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identity testing multilinear read-(k+1) formulae to identity testing
read-once formulae. At each stage the transformation consists of
the following two steps, where the intermediate instances are sums
of two multilinear read-k formulae, which we refer to as multilinear
Y2 read-k formulae.

Step 1: Reduce multilinear read-(k+1) formulae PIT to multilinear
Y2-read-k formulae PIT.

Step 2: Reduce multilinear X2-read-%k formulae PIT to multilinear
read-k formulae PIT.

We first explain the blackbox reductions, then discuss the more
efficient but non-blackbox variant, and finally sketch the extension
given by Theorem 1.2.

1.2.1. Blackbox setting. A deterministic blackbox polynomial
identity test for a class F of formulae is known to be equivalent to
a so-called hitting set generator for F (see, e.g., Shpilka & Yehu-
dayoff (2010, Lemma 4.1)). The latter is a uniform collection of
polynomial maps G, : F{™ — F”, one for every positive integer
n, such that G, hits all formulae from F on n variables, i.e., for
every non-zero formula F' in F on n variables, F'(G,) is a non-zero
polynomial. We only need one direction of the equivalence, which
follows from the Schwartz-Zippel lemma: Given a hitting set gen-
erator G, of total degree dg, for F, we can deterministically test
whether a formula F' in F of total degree dr on n variables is iden-
tically zero by picking an arbitrary subset S of size dp - dg, + 1
from F (or an extension field of F) and checking that F/(G,(z)) =0
for every x € S/, For a multilinear formula F, the total degree
dr is at most n, and the running time of the resulting blackbox
identity test is n°“(™) as long as the generator is computable in
that amount of time, and has total degree dg, that is polynomially
bounded.

Base case and generalization. For read-once formulae, Shpilka &
Volkovich (2009) defined a polynomial-time computable polyno-
mial map G, : F? — F" of total degree n over a field F, and
showed that G, [10g n)+1 hits read-once formulae on n variables. We
refer to G, , as the SV-generator. By the above connection, the
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SV-generator yields a deterministic blackbox identity test for read-
once formulae that runs in time n®Uos™,

Using various additional properties of the SV-generator, we
argue by induction on k that, for some function f : N — N,
G, f(k)+k[ogn] hits multilinear read-k formulae on n variables. By
the same token, this yields a blackbox identity test for multilinear
read-k formulae that runs in time n?0°¢™ for every fixed k. We

now explain the two inductive steps in this setting.

Step 1. We show that if G, ,, hits multilinear 32-read-k formu-
lae on n variables, then G, u4f0gn) hits multilinear read-(k + 1)
formulae on n variables. In order to do so, we exploit the prop-
erty of the SV-generator that if G, ,, hits a non-zero first-order
partial derivative of a formula, then G, ,,+1 hits the formula itself.
We show that for every non-constant multilinear read-(k + 1) for-
mula F'| there exists a variable x such that the partial derivative
0, F of F with respect to x is non-zero and can be written as the
product of (i) subformulae of F' each depending on at most half
of the variables, and (ii) a multilinear ¥:?-read-k formula which is
the partial derivative of a subformula of F'. We call this process of
breaking up a formula via a well-chosen partial derivative fragmen-
tation (this generalizes a technique of Karnin et al. (2013)). Note
that the factors of type (i) are multilinear read-(k + 1) formulae
themselves. By recursively fragmenting those factors [logn]| times,
they become constant and are hit by G, ,, for trivial reasons. The
factors of type (ii) are hit by G, by assumption. Since a hit-
ting set generator for a class of formulae also hits all products of
formulae from that class (because polynomial rings over fields are
integral domains), inductively applying the above property of the
SV-generator shows that G, .1[l0gn) hits the original multilinear
read-(k + 1) formula F'.

Step 2. We show that, for some function h : N = N, if G, ,, hits
multilinear read-% formulae on n variables, then G, 44k hits mul-
tilinear ¥2-read-k formulae on n variables. In order to do so, we ex-
ploit another property of the SV-generator. By a zero-substitution
of a polynomial ) we mean the polynomial obtained from ) by
setting some (possibly all or none) of the variables to zero. The
SV-generator G, has the property that it hits every non-zero
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polynomial ) on n variables that satisfies the following condition:
no zero-substitution of () equals a monomial of more than w’ vari-
ables. The intuition for applying this property is that, no matter
what the non-zero formula F' looks like, for a random assignment
o the shifted formula F'(z + o) satisfies the condition, and is there-
fore hit by G, .. Moreover, the following key lemma shows that
in the case of a multilinear X%-read-k formula F, the only way the
condition can fail is if & happens to be a zero of one of the non-zero
partial derivatives of small order of a nontrivial subformula of F'.

LeEMMA 1.3 (Simplified Key Lemma).  There is a function h :
N — N such that for every multilinear ¥:%-read-k formula F' with
variables x, and variable assignment o where none of the non-zero
partial derivatives of order h(k) of any nontrivial subformula of F
vanish, the zero-substitutions of F(x + o) are not monomials of
more than h(k) variables.

Observe that all nontrivial subformulae of a multilinear -
read-k formula F' are multilinear and read-k, as are their partial
derivatives, because multilinear read-k formulae are closed under
derivatives. Now, we assumed that G, ,, hits multilinear read-k for-
mulae on n variables, and therefore also products of such formulae.
Thus, a common non-zero of the non-zero partial derivatives of or-
der h(k) of the nontrivial subformulae of F' appears in the image of
G- By Lemma 1.3 and the above property of the SV-generator,
this means that for some o in the image of G, ,,, the SV-generator
G with w' = h(k) hits the shifted formula F(x + o). This
implies that F'(Gpw + Gnw) Z 0, where G, v + Gy, denotes the
component-wise sum of the polynomial maps G, ., and G, ,, on dis-
joint sets of variables. Yet another property of the SV-generator is
its additivity: Gpuw + Gnw = Gpuw+w- We conclude that G, 40
with w’ = h(k) hits F.

By combining the two steps, we conclude that if G,, ,, hits mul-
tilinear read-k formulae on n variables, then Gy, win(k)+[0gn] hits
multilinear read-(k + 1) formulae on n variables. When we ap-
ply this combination £ — 1 times starting from the SV-generator
for read-once formulae, and simplify using the additivity property
of the SV-generator, we obtain that G, ¢(x)+k[0gn] hits multilin-
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ear read-k formulae on n variables, where f(k) = Zf:_ol h(i). This
yields our hitting set generator for multilinear read-k formulae.

Proving the Key Lemma. Let us briefly sketch the proof of
Lemma 1.3. Let F be a multilinear Y?-read-k formula and let
o be an assignment for F' of the type specified in the statement
of the lemma. Ignoring zero substitutions for simplicity, suppose
F(x 4 o) is identical to a monomial My = [],.,, #;. The identity
F(x + 0) = My must hold with respect to partial derivatives Op
for any set P C V. Moreover, (0pF)(x + 0) = 0p(F(z + 0)) =
OpMy = My\p. We argue that provided |V| is at least a suffi-
ciently large function h(k), there exists a set P C V witnessing
that (OpF)(x + o) — My\p is not identically zero. Similar to the
approach of Karnin et al. (2013), our witness for non-identity is
a structural one: We show that dpf’ can be rewritten in such a
way that its structure alone indicates that (0pF)(z + o) is not a
monomial. The selection of P and the rewriting of 0p F' are compo-
nents of the most intricate technical transformation in our paper.
We call it shattering as it is accomplished, in part, by repeatedly
fragmenting the summands of F'. (Recall that fragmenting is our
process of breaking up a formula via a well-chosen partial deriva-
tive.) We refer to Section 3.4 for more intuition about this key
part of our paper.

1.2.2. Non-Blackbox Setting. When we are given access to
the input formula itself, we can improve the running time for
our deterministic identity test for multilinear read-k formulae from
quasi-polynomial to polynomial.

In the non-blackbox setting, the case of read-once formulae is
trivial. Since every variable occurs at most once, there is no cancel-
lation of monomials at addition gates, and the only way a monomial
can vanish is if it gets multiplied by a zero polynomial at a multi-
plication gate. If we iterate over the subformulae in a bottom-up
fashion, this allows us to determine for each subformula whether
it is zero. This yields a simple polynomial-time identity test for
read-once formulae, which forms the base case for our inductive
construction. We now explain how the two inductive steps men-
tioned above work in the non-blackbox setting.
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Step 1. This reduction follows from a generalization of the simple
algorithm for read-once formulae, based on the following intuition:
Given a multilinear read-(k + 1) formula F, if an addition gate
has an input g that contains all £+ 1 occurrences of some variable
x, and g depends on x, then g cannot be cancelled at this gate.
This implies that g can be replaced by a fresh variable without
changing whether the overall polynomial is zero. For k > 1 this
allows us to transform the formula in a bottom-up fashion into
one where each addition gate is a multilinear X?-read-k formula
without affecting zeroness. During the process, we just need to be
able to determine for each transformed addition gate whether it is
zero, and if not, what variables it depends on. Both of these tasks
reduce to PIT for multilinear ¥2-read-k formulae. This yields a
polynomial-time reduction from PIT for multilinear read-(k + 1)
formulae to PIT for multilinear ¥2-read-k formulae. This consti-
tutes an improvement over the corresponding blackbox reduction
which adds a logarithmic term to the seed length of the generator,
and therefore a quasi-polynomial factor to the running time of the
identity test.

Step 2. The blackbox version of this step is already efficient as each
application adds only a constant amount to the seed length of the
generator and therefore only a polynomial factor to the running
time of the identity test. Thus, it suffices to simulate the behav-
ior of the blackbox reduction on a multilinear ¥.2-read-k formula
F with n variables. To this end we explicitly compute a com-
mon non-zero o of the at most n* non-zero partial derivatives
of the subformulae of F' up to order h(k), using the assumed non-
blackbox identity test for multilinear read-£ formulae combined
with the standard search-to-decision reduction for PIT. We con-
clude by testing F' on Gy, (k) + 0 over a domain of size polynomial
in n. By the analysis of the blackbox case and Schwartz-Zippel,
this is an identity test for F.

1.2.3. Extensions. To extend our results to multilinear sparse-
substituted formulae, only a few modifications are needed. The
most substantial change occurs in the fragmentation process, where
we additionally use zero-substitutions to break up the sparse inputs
to the formulae.
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Our arguments hinge on multilinearity because (i) partial
derivatives do not increase multilinear formula size, and (ii) the
factors of multilinear formulae are variable disjoint. The relax-
ation to structurally-multilinear sparse-substituted formulae essen-
tially maintains both of these properties. The effort in this exten-
sion comes in showing that an analog of the Key Lemma holds;
we achieve this by carefully transforming structurally-multilinear
sparse-substituted formulae into multilinear sparse-substituted for-
mulae and then applying the original Key Lemma.

1.3. Organization. In Section 2 we introduce our notation and
formally define the classes of arithmetic formulae that we study.
Section 2 also reviews some preliminaries in more detail, includ-
ing the SV-generator and our structural witnesses for non-zeroness
akin to Karnin et al. (2013). In Section 3 we develop the Frag-
mentation Lemma in a step-wise fashion — for read-once for-
mulae, read-k£ formulae, and sparse-substituted formulae — and
the Shattering Lemma that is based on it. We develop our
blackbox and non-blackbox identity tests in parallel. In Section
4 we reduce PIT for structurally-multilinear sparse-substituted
read-(k + 1) formulae to PIT for structurally-multilinear sparse-
substituted Y2-read-k formulae. In Section 5 we reduce PIT for
structurally-multilinear sparse-substituted X2-read-k formulae to
PIT for structurally-multilinear sparse-substituted read-k formu-
lae. Section 6 establishes identity tests for structurally-multilinear
sparse-substituted read-£ formulae and proves Theorems 1.1 and
1.2. We end with a specialization of our approach that gives a
deterministic polynomial-time blackbox algorithm for multilinear
constant-read constant-depth formulae.

2. Notation and Preliminaries

Let F denote a field, finite or otherwise, and let F denote its al-
gebraic closure. We assume that elements of F are represented
in binary using some standard encoding. Moreover, we assume
that there is an algorithm that given an integer r outputs in time
poly(r) a set of r distinct elements in F (or an extension field of F)
each of which is represented in this encoding using O(logr) bits.
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2.1. Polynomials and Arithmetic Formulae. A polynomial
P € Flzy,...,z,] depends on a variable x; if there are two inputs
@, 3 € F" differing only in the i coordinate for which P(a) #
P(B). We denote by var(P) the set of variables that P depends
on.

For a subset of the variables X C {z1,...,2,} and an assign-
ment @, P|x. s denotes the polynomial P with the variables in
X substituted by the corresponding values in &. We often denote
variables interchangeably by their index or by their label: i versus
z;, and [n] = {1,2,...,n} versus {z1,...,2,}; we often drop the
index and refer to x € X.

An arithmetic formula is a tree where the leaves are labeled
with variables or field elements and internal nodes (or gates) la-
beled with addition or multiplication. The singular gate with no
outgoing wires is the output gate of the formula. We interchange-
ably use the notions of a gate and the polynomial computed by
that gate.

The size of an arithmetic formula is the number of wires in
the formula plus the total number of bits required to represent the
constants. We assume that the encoding of the constants is such
that size-s formulae containing no variables can be evaluated in
time poly(s). The depth of an arithmetic formula is the length of a
longest path from the output gate to an input variable. Except for
the constant depth case we assume that the fanin of multiplication
and addition gates is two.

2.1.1. Restricted Types of Arithmetic Formulae. An
arithmetic formula is multilinear if every gate of the formula com-
putes a polynomial that has degree at most one in every variable.
This means that only one child of a multiplication gate may de-
pend on a particular variable. However, more than one child may
contain occurrences of some variable. For example, the formula

(x1 — x2) - ((21 + 23) — 21)

is multilinear, and although the second factor has occurrences of
x1 it does not depend on ;.

We also consider the restriction that each variable occurs only
a bounded number of times.
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DEFINITION 2.1 (Read-k Formula). For k € N, a read-k formula
is an arithmetic formula that has at most k occurrences of each
variable. For a subset V' C [n], a ready-k formula is an arithmetic
formula that has at most k occurrences of each variable in V' (and
an unrestricted number of occurrences of variables outside of V).

Observe that for V' = [n] the notion of ready-k coincides with
read-k. One can build more complex formulae by adding several
formulae together.

DEFINITION 2.2 (X™-Read-k Formula). For k,m € N, a ¥-read-
k formula is the sum of m read-k formulae.

Note that any ¥X"-read-k formula is a read-(km) formula.

Bounded-read formulae can be generalized by replacing vari-
ables with sparse polynomials. We call a polynomial ¢-sparse if it
consists of at most ¢ terms.

DEFINITION 2.3 (Sparse-Substituted Formula). Let B €
Flyi,...,y.] be a read-once formula, and for 1 < i < r let
pi € Flxy,...,xz,] be a multivariate polynomial given as a list of

terms. We call F = B(py,...,p,) a sparse-substituted formula
with backbone B. A subformula of F is a formula of the form
f(p1,...,pr) where f(y1,...,y.) is an input or internal gate of B,
or a variable x; occurring in F'. Further,

(i) for a subset V' C [n] if every variable x; € V occurs in at
most k of the p;’s, we say that I is ready-k,and

(ii) if for every multiplication gate g in F' and every variable x;
there is at most one multiplicand of g that depends on x;,
we say that F' is structurally multilinear.

Note that for the notion of a subformula of a sparse-substituted
formula F'; we consider the sparse substitutions as atomic on the
inputs z;; we do not consider the individual terms of the sparse
substitutions as subformulae of F'. The individual terms do matter
for the size of the sparse-substituted formula F', which is the size
of the backbone formula B plus the size required to represent each
sparse polynomial as a sum of at most ¢ terms.



14 Anderson, van Melkebeek & Volkovich

Note that a sparse-substituted formula F' is multilinear if every
gate, including the substituted input gates, computes a multilin-
ear polynomial. This is equivalent to all multiplication gates in
F' having variable-disjoint children, and the sparse substitutions
being multilinear. The corresponding interpretation of structural
multilinearity is that the multiplication gates in F' have variable-
disjoint children, but the substituted sparse polynomials may not
be multilinear. Thus, structural multilinearity is more general than
multilinearity. For brevity we often drop the quantifier “sparse-
substituted” when discussing structurally-multilinear formulae.

2.1.2. Partial Derivatives. Partial derivatives of multilinear
polynomials can be defined formally over any field F by stipulat-
ing the partial derivative of monomials consistent with standard
calculus, and imposing linearity. The well-known sum, product,
and chain rules then carry over. For a multilinear polynomial
P € Flzy,...,z,] and a variable x;, we can write P uniquely as
P=Q z;+ R, where Q,R € Flxy,z9,...,2i 1,Tis1,...,%,]. In
this case the partial derivative of P with respect to z; is g—fi =Q.
We often shorten this notation to d,, P. Observe that R = P/, 0.

For a multilinear read-k formula F', 0, F is easily obtained from
F, and results in a formula with a structure no more complex than
F. Start from the output gate and recurse through the formula,
applying at each gate the sum or product rule as appropriate. In
the case of an addition gate g = ), g;, we have that 0,9 = >, 0,9:.
Thus, we recursively replace each of the children by their partial
derivative. The structure of the formula is maintained, except
that some children may disappear because they do not depend
on z. In the case of a multiplication gate ¢ = []; g;, we have
9.9 = 3;0:9i - [ 1,4 9;- However, by the multilinearity condition
at most one of the terms in the sum is non-zero because at most
one g; can depend on x. Thus, we leave the branches g, for j # i
untouched, recursively replace g; by its partial derivative. The
structure of the formula is again maintained or simplified. Overall,
the resulting formula 0, F is multilinear and read-k. See Figure 2.1
for an example. Similarly, the partial derivatives of multilinear >-
read-k formulae are multilinear ¥"-read-k formulae. This leads to
the following proposition.
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PROPOSITION 2.4. Let F' be a multilinear read-k formula, let x be
a variable, and f a gate of F' containing all occurrences of x in F.
Then 0, F is a multilinear read-k formula that can be written as
0. F = &cf‘ngUF(f) g, where Up(f) denotes the unvisited children
of the multiplication gates along the path from the output of F' to
f, i.e., those children that are not on the path themselves.

PrRoOOF. That 0,F is a multilinear read-k£ formula follows from
the preceding discussion. To show that d,F can be written in the
stated form, we proceed by induction on the length of the path
from the output of F' to f. In the base case, f = F' and the claim
trivially holds. We now argue the induction step.

Suppose that F' =) . F; and, without loss of generality, that f
is a descendant of Fj. By the sum rule and the fact that « ¢ var(F;)
for © > 2 we have that 0,F = 0,F;. The claim follows by the
induction hypothesis since

01 =0:0- [[ 9

geUFl (f)

and the fact that Ug, (f) = Up(f).

Now, suppose that F' = [], F; and, without loss of generality,
that f is a descendant of Fy. By the product rule and the fact
that © & var(F;) for i > 2 we have that 0,F = 0,F - [[;5, Fi-
By the induction hypothesis 0, F; = 0,.f - HgGUF1 9 Noting that
Ur(f) = Ur (f) U{F;},>, completes the claim. O

To handle the case of structurally-multilinear formulae we ex-
tend the notion of partial derivative: 0, oF = Flyq — Floco for
some o € F. Provided the size of F is more than the degree of x
in the formula F', there exists some o € F such that 0, ,F # 0 iff
F depends on x. For this more general definition the analogs of
the sum and product rules follow for structurally-multilinear for-
mulae. Given a structurally-multilinear formula F', 9, ,F can be
computed by a structurally-multilinear formula with no larger size
or read.

Partial derivatives have seen many applications in the study of
arithmetic circuits. For example, they have been used to exhibit
lower bounds (Baur & Strassen 1983; Mignon & Ressayre 2004;
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2 z3

Figure 2.1: An example of taking the partial derivative of a multi-
linear read-twice formula.

Nisan & Wigderson 1996; Shpilka & Wigderson 2001), learn arith-
metic circuits (Klivans & Shpilka 2006), and produce polynomial
identity tests (Karnin et al. 2013; Shpilka & Volkovich 2008, 2009).
In our setting, partial derivatives give us a handle on the structure
of constant-read formulae, which we in turn exploit to develop our
identity tests.

2.1.3. Linear Separation of Read-Twice and »-Read-Once
Formulae. In this section we use partial derivatives to show a
linear separation between read-twice and Y-read-once formulae.
We exhibit an explicit multilinear read-twice formula with n vari-
ables that requires 2(n) terms when written as a sum of read-once
formulae. In order to do so we follow an approach similar to that
which Shpilka & Volkovich (2008, 2009) use to show “hardness of
representation” results for sums of read-once formulae.

Consider some multilinear read-twice polynomial Hj which is
purportedly computable by the sum of less than k read-once formu-
lae, i.e., H, = Zi.:ll F;. We argue that for an appropriate choice
of Hj, some combination of partial derivatives and substitutions
is sufficient to zero at least one of the branches F; while not de-
grading the hardness of Hy by too much. Since H stays hard we
can complete the argument by induction. In the base case H; is
non-zero, so it requires at least one read-once formula to compute.
This intuition is formalized in the following lemma.
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LEMMA 2.5. For any non-trivial field F and each k € N define

2k—1

Hy, = H (@1,@2,03,; + T1,; + Toi + T34).
i=1

Hy is a multilinear read-twice formula which depends on 6k — 3
variables and is not computable by the sum of less than k read-
once formulae.

PROOF.  Observe that for all i € N, (z1,;20,03,; + 21, + T2+ 3,)
is a multilinear read-twice formula. Therefore for all k € N, H}, is
a multilinear read-twice formula. We prove the second half of the
claim by induction. When k£ = 1, H; is non-zero and hence the
claim holds trivially. Now consider the induction step. Suppose
the contrary: There exists a sequence of at most k£ — 1 read-once
formulae {F;} such that Hy = Z;:ll F;.

Consider Fj,_1. Suppose there exists a pair of variables y, z such
that 0, .Fk—1 = 0. These operations modify at most two factors
of Hy but do not zero them. Therefore 0, .H, = H' - Hy_, for
some non-zero multilinear read-twice formula H’ that depends on
four variables and is variable disjoint from Hj_; (abusing nota-
tion to relabel the variables). Since H' # 0 and multilinear, there
exists 5 € {0,1}* C F* such that H'(3) = ¢ # 0. This means
that 8y,sz‘var(H’)eB = ¢+ H;_;. Hence H,_; can be written as
Zf:f ¢ 0y,2 Filvar(srry3, which contradicts the induction hypoth-
esis. Therefore we can assume that for all pairs of variables y and
zZ, 8yszk_1 7_é 0.

This together with the read-once property of Fy_; implies the
that least common ancestor of any pair of variables in Fj_; must
exist and must be a multiplication gate. This also implies that
F_1 depends on all variables in Hj. Consider some variable .
Now, since k£ > 1 there must exist a variable z such that the least
common ancestor of y and z in Fj_; is the first multiplication gate
above y which depends on a variable other than y. Because Fj,_; is
a read-once formula we can write 0,F;,_1 = (y — a) - F}_, for some
a € F and a read-once formula Fj_, which is independent of y and
z. Therefore (0,Fk_1)|y«a = 0. By inspection we see that for all
variables y, z and a € F, (0, Hy,)|y«q = H'- Hy—; for some non-zero
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multilinear read-twice formula H’ which is variable disjoint from
Hy 1. By the argument in the previous paragraph we may again
conclude by contradicting the induction hypothesis. 0

This implies the following corollary.

COROLLARY 2.6. There exists a multilinear read-twice formula in
n variables such that all k sums of read-once formula computing it
require k = Q(n).

2.1.4. From Structurally-Multilinear to Multilinear
Sparse-Substituted. In this subsection we exhibit an
efficiently-computable transformation £ from folklore that
takes a structurally-multilinear formula and produces a multi-
linear sparse-substituted formula while preserving non-zeroness.
We will use it in Section 4, Section 5, and Section 6 to ex-
tend our results for multilinear sparse-substituted formulae to
structurally-multilinear sparse-substituted formulae.

For set of variables X = {zy,...,z,} we define X =
{x? | 7,d > 1} to be the set of all positive powers of the variables
in X. Consider a new set of variables Y = {y;4 | j,d > 1}, and
observe that there is a bijection between X and Y. The trans-
formation £ maps elements of X into variables of Y in a natural
way.

DEFINITION 2.7 (The transformation £). Let X = {xy,...,2,}
and Y = {y;a|j,d>1}. Let f € F[X] be a sparse-substituted
formula.

o For j,d > 1, let E{I;i}(f) be the result of replacing every

occurrence of exactly x;?l in each term of a sparse-substituted
input of f by the variable y; 4.

o Let A be a set of positive powers of variables in X. Let
L4(f) be the result of applying E{x?} to f for all :1:? e A
Furthermore, let L(f) denote the result of taking A to be
the set of all positive powers of every variable in X, e.g., the
result of replacing all positive powers of x;-variables by the
corresponding y; q4’s.
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o Foranyset P CY, let X(P) = {a4]y;q € P} be the preim-
ages of the y; 4’s under L.

For concreteness we give a few examples of the transformation
L being applied to structurally-multilinear formulae:

ﬁ(x%l":%) = Y1,2Y3,1,
L ((23zs + 2123) - (2334 + 3)) = (Y12y31 + Y11Y36) - (Y2,39a,1 + 3).

The following lemma demonstrates the connection between
a formula f and its transformation £(f). The lemma exploits
the fact that in a structurally-multilinear formula variables are
never multiplied with themselves outside a sparse-substituted in-
put. This implies that we can treat each degree of x; as if it were
a distinct variable. Additionally, we observe that setting z; < a
in f, for some a € F, is equivalent to setting {yM —ald> 1}

in L(f).

LEMMA 2.8. Let f € F[X] be a structurally-multilinear sparse-
substituted read-k formula. Let P,Z C'Y be two disjoint subsets
of variables and let ¢ € F™ be an assignment. Then the following
holds:

(i) L(f) is a multilinear sparse-substituted read-k formula.
(ii)) f =0 if and only if L(f) = 0.
(iii) Op(Lxpuz)(f))|z~0o does not depend on any y; .
(i) Or (LN 2e0) |y, pent i)
= (Op(Lxpuz)(F))]ze0) l{a,c0; 15213

Proor. We first demonstrate a useful property of £, and then
show that it implies the properties stated in the lemma. Consider
aterm T = c- H;”Zl x;lj in the expansion of f. Each such term is
produced by the sum of various products of terms from the sparse-
substituted inputs:

r= el = 1%
j=1 i

7
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where each T}, is a term from a sparse-substituted input. We can
assume that for each 7, the terms T;, are all from different sparse-
substituted inputs. Since f is structurally multilinear, for each 1,
the terms T;,. are variable disjoint, and hence each variable may
occur in at most one factor Tj,.

Consider L,4(T). If af | T, but zdth t T, then L,a(T) =
Yja - T/z}. Otherwise Lx?(T) = T. This is a 1-1 mapping on
terms, and linearly extends to the sum of terms forming the ex-
pansion of a structurally-multilinear sparse-substituted formula f.
Moreover, for any set of variable powers A, £, maps the terms of
a structurally-multilinear sparse-substituted formula in a 1-1 way.

We now prove the properties claimed by the lemma.

Part 1. L(f) is multilinear, because for each term and variable
power in the expansion of f, the exact variable power x“f is replaced
by a y;q4. L(f) is a multilinear sparse-substituted formula because
the transformation is performed on each sparse-substituted input
individually. £(f) is read-k because each y;4 occurs in no more

sparse-substituted inputs of £(f) than z; does in f.

Part 2. We demonstrated that £ induces a 1-1 correspondence
between the terms of f and L£(f). Moreover, non-zero terms are
mapped to non-zero terms. Hence f =0 iff L(f) =0.

Part 3. By definition the y variables in Lx(puz)(f) are in P U Z.
The conclusion follows because partial derivatives and substitu-
tions eliminate all dependence on the variables they act on.

Part 4. This property follows from two claims, which hold for any
structurally-multilinear sparse-substituted formula g:

(i) E(g)|{yjyd<—o';i \j,le} = g|{:z:jeaj | i>1} and

(ii) OpL(9)|z0 = L(OrLx(Puz)(9)|z0)-

Claim (i) follows immediately from the 1-1 mapping between terms
of g and L(g) established above. To see claim (ii) we argue that
for all constants c:

(2.9) L9y, at-c = LILza(9)]y; a-c)-
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This essentially says that substitutions for y variables can be moved

ahead of most of the transformation done by £. Consider a term

T in the expansion of g. If 24 | T, but a:?“ 1T, then L,4(T) =
J

Yja - T/x$ and

T T T
LTy aee = Wi+ L) e = ¢+ L) = £lew —5)
J J J

T
= ‘C((ijd ' F)|yj,d<_c> = [’(‘Cac? (T)|yj,d<—0)'

J

Otherwise, L(T') does not depend on y; 4, then L(T,, ) = L(T),
and therefore T" contributes equally to both sides of Equation (2.9).
By linearity we have Equation (2.9). Claim (ii) follows by perform-
ing similar analysis for partial derivatives. This completes the proof
of Part 4 and the lemma. O

2.1.5. Polynomial Identity Testing and Hitting Set Gener-
ators. Arithmetic formula identity testing denotes the problem
of deciding whether a given arithmetic formula is identically zero
as a formal polynomial. More precisely, let F' be an arithmetic for-
mula on n variables over the field F. The formula F' is identically
zero iff all coefficients of the formal polynomial that F' defines van-
ish. For example, the formula (z —1)(z+1) — (22 —1) is identically
zero but the formula z? — z is non-zero (even over the field with
two elements).

There are two general paradigms for identity testing algorithms:
blackbox and non-blackbox. In the non-blackbox setting, the algo-
rithm is given the description of the arithmetic formula as input.
In the blackbox setting, the algorithm is allowed only to make
queries to an oracle that evaluates the formula on a given input.
Observe that non-blackbox identity testing reduces to blackbox
identity testing because the description of a formula can be used
to efficiently evaluate the formula on each query the blackbox al-
gorithm makes. There is one caveat — in the blackbox case the
algorithm should be allowed to query inputs from a sufficiently
large field. This may be an extension field if the base field is too
small. Otherwise, it is impossible to distinguish a polynomial that
is functionally zero over F but not zero as a formal polynomial,
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from the formal zero polynomial (e.g., 22 — x over the field with
two elements).

Blackbox algorithms for a class P of polynomials naturally pro-
duce a hitting set, i.e., a set H of points such that each non-zero
polynomial P € P from the class does not vanish at some point
in H. In this case we say that H hits the class P, and each P in
particular. To see the connection, observe that when a blackbox
algorithm queries a point that is non-zero it can immediately stop.
Conversely, when the result of every query is zero, the algorithm
must conclude that the polynomial is zero; otherwise, it fails to
correctly decide the zero polynomial.

A related notion is that of a hitting set generator. For-
mally, a polynomial map G = (Gi,Gs,...,G,) where each G; €
Flyi, 9o, - .., ye is a hitting set generator (or generator for short)
for a class P of polynomials on n variables, if for each non-zero
polynomial P € P, G hits P, that is the composition of P with G
(denoted P(G)) is non-zero. Suppose that G hits a class of polyno-
mials P, then G can be used to construct a blackbox identity test
for P € P by collecting all elements in the image of G when we let
the input variables to G range over some small set.

ProPoOSITION 2.10. Let P be a class of n-variate polynomials of
total degree at most d. Let G € (F[y1,...,y¢])" be a generator for
P such that the total degree of each polynomial in G is at most dg
and G can be evaluated on elements of representation size q in time
T(q). There is a deterministic blackbox polynomial identity test
for P that runs in time (d - dg)°® - T(log(O(d - dg))) and queries
points from an extension field of size O(d - dg).

PrROOF. Let P be a non-zero polynomial in P. Since G is a
generator for P, the polynomial P(G) € F[y1, ya, - . ., ye| is non-zero.
The total degree of P(G) is at most d-dg. By the Schwartz-Zippel
Lemma (DeMillo & Lipton 1978; Schwartz 1980; Zippel 1979) any
set V¢ C Ef, where |V| > d-dg + 1, and E is an extension field
of IF, contains a point at which P(G) does not vanish. Note that
the extension field E D F must be sufficiently large to support the
subset V' of the required size. The algorithm tests P at all points
in G(V*) and outputs zero iff all test points are zero. O
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Note that this approach is only efficient when ¢ < n, the degrees
are not too large, and G can be efficiently evaluated.

Hitting set generators and hitting sets are closely related. By
Proposition 2.10 a hitting set generator implies a hitting set. It
is also known that a hitting set generator can be efficiently con-
structed from a hitting set using polynomial interpolation (Shpilka
& Volkovich 2009).

2.2. SV-Generator. One example of such a generator is the
one Shpilka and Volkovich obtained by interpolating (i.e., passing
a low-degree curve through) the set of all points in {0,1}" with
at most w non-zero components. The resulting generator G, .,
is a polynomial map of total degree n on 2w variables. Shpilka
& Volkovich (2009) showed that it hits ¥*-read-once formulae for
w > 3k + logn. Karnin et al. (2013) also used it to construct
a hitting set generator for multilinear depth-four formulae with
bounded top fanin.

For completeness, we include the definition of the generator

Grw-
DEFINITION 2.11 (SV-Generator Shpilka & Volkovich 2009). Let

ai,...,a, denote n distinct elements from a field F, and for i € [n]
let Li(x) =[] i =4 denote the corresponding Lagrange inter-
1y

polant. For every w € N, define G, (Y1, - - -, Y, 21, - - -, Zw) S

(Z Ly (y))z), Z Lo(yj)z, -0 Y Ln(yj)zj> :

J=1

Let (G,,.,); denote the i component of G, ,,; we refer to a; as the
Lagrange constant associated with this i*" component.

For intuition, when w = 1 we can view G, 1(y1,21) as hashing z;
into one of n buckets, where the bucket is determined by ;. For
general w, Gpuw(Y1,- .., Yw, 21, -, 2w) can be regarded as hash-
ing variables zi,..., 2z, into n buckets determined by y1,..., Y.
The value assigned to a bucket is the sum of the variables that
are hashed into it. Note that this interpretation is only accurate
when the values of the y;’s are all among the Lagrange constants
A1y .oy Oy
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For two polynomial maps G; and G5 with the same output
length, it is natural to consider their component-wise sum. We de-
note this sum by G; 4+ G, where we implicitly assume the variables
of G; and G, have been relabelled so as to be disjoint. In probabilis-
tic terms this corresponds to taking independent samples from G,
and Gy, and adding them component-wise. With this convention
in mind, the SV-generator has a number of useful properties that
follow immediately from its definition.

PROPOSITION 2.12 (Karnin et al. 2013, Observations 4.2, 4.3).
Let w,w’" be positive integers.

(i) Every ji € F* with at most w non-zero components is in the
image of G, .

(11) Gn,w(yla s Ywy RLy - :Zw)’yweai
= Gn,wfl(yb ey Y1, 215 - 7Zw71) + 2w - €,
where e; is the 0-1-vector with a single 1 in position i and a;
the i*" Lagrange constant.

Gn,w(yla vy Ywy RB1y e ey Z’w)
(111) + Gn,w’(yw—l—la s Yutw' Fwtly - - 7Zw+w’)
- Gn,w—}—w’(yla ey Ywy o Ywtw s By - ey Ry - e 7Zw+’w/)

The first item formalizes the property that the SV-generator inter-
polates the set of all points with at most w non-zero components.
The second item shows how to make a single output component
(and no others) depend on a particular z;. The final item shows
that sums of independent copies of the SV-generator are equiv-
alent to a single copy of the SV-generator with the appropriate
parameter w. Proposition 2.12 implies the following.

PROPOSITION 2.13. Let P = Y, P, where each P; €
Flxy, ..., 21, %1, - . ., Ty Is @ polynomial independent of the vari-
able z;. Suppose the polynomial map G hits P, for some d > 0,
then P(G + G,1) Is non-constant.

Proor. Consider G + G, 1. Without loss of generality, the vari-
ables in G,,; are y; and z;, and by convention are disjoint from
the variables in G. Set the seed variable y; to the Lagrange
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constant a; associated with z;. By Proposition 2.12, Part (ii),

Gni(Y1, 21) |y 0 = 21 - €.
Now, consider P composed with G + G, 1(a;, zl) and write:

P<g+Gn,l)|y1<—ai - (g+Gnl azazl Zpd +21)d-

By hypothesis P;(G) # 0 for some d > 0, fix j to be the maximum
such index. Since G is independent of 2z, P;(G) # 0, and j is
maximal: P(G + Gy, 1(a;, 21)) has a monomial which depends on
z{ that cannot be canceled. Therefore P(G + G,.1(ai, 21)) is non-
constant and hence P(G + G,1) is as well. O

This proposition implies the following connection between the
SV-generator and partial derivatives.

LEMMA 2.14. Let P be a polynomial, x be a variable, and o € IF.
If G hits a non-zero 0, P, then P(G + G, 1) is non-constant.

Proor. Write P as a univariate polynomial in x:

d
P=Y Pu
=0

where the polynomials P; do not depend on x. By definition
d
8&:,04P - P|xea - P|a:<—0 - Z Pfiaz-

Our hypothesis (0, ,P)(G) # 0 then implies that there is a j > 0
such that Pj(G) # 0. Applying Proposition 2.13 completes the
proof. O

We now use this lemma to argue that the SV-generator hits
sparse polynomials. Consider a sparse polynomial F. For any
variable z that does not divide F', either at least half of the terms
of the sparse polynomial depend on x, or at least half of the terms
do not. In the former situation setting x to zero eliminates at least
half of the terms in F’; in the latter situation taking the partial
derivative with respect to x has the same effect. Combining this
with Lemma 2.14 and the properties of the SV-generator completes
the argument.
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LEMMA 2.15. Let F' be a non-constant sparse polynomial on n
variables with t terms. F(Gh, fiog#]4+1) is non-constant.

PROOF.  Assume, without loss of generality, that there are no
duplicate monomials present in F'. We proceed by induction on ¢.
Suppose t = 1. By hypothesis F' consists of a single non-constant
monomial. Because the components of G,,; are non-constant we
can conclude that F/(G,, 1) is non-constant. Now consider the in-
duction step for ¢ > 1. Let w = [log £] + 1.

Case 1: Suppose there exists a variable x; € var(F') such that at
most half of the terms depend on ;. Then there is an o € F
such that 0, oF # 0 and has at most % terms. By induction
(02,0 F)(Gnw) # 0. By Lemma 2.14, F(G,,, + Gp1) is non-
constant. Applying Proposition 2.12, Part (iii), completes the
case.

Case 2: Otherwise, for each variable z; € var(F) more than half
the terms in F' depend on z;. There are two cases.

A. Suppose there exists a variable z; € var(F') such that
Fl;,<0 is non-constant. =~ We argue that F(G,,41) =
F(Gn,w<y17 s Ywy Rl -y Zw) + Gn,l(yw+17 szrl)) Is non-
constant. To see this, consider setting 1,1 to the i La-
grange constant a; and z,41 = —(G,1);. Because F is a
sparse polynomial it may be written as F' = F, - x; + F|,, o,
for some sparse polynomial F;,, which may depend on z;. By
Proposition 2.12, Part (ii):

F(Gn,w+1)|yw+1<—ai, Zw14—(Gn,w)i
= F(Gpw+ Gni(a;, —(Ghw)i))
ineo(Gn,w)
+Fmi(Gn,w + Gn,l(‘l’i’ _(Gn,w)i)) S(an)z - (Gnyw)il

= F

mﬁ—O(Gn,w) .

By induction, the RHS of the above equation is non-constant,
and hence F(G,, 4+1) is non-constant.
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B. Otherwise, for all x; € var(F'), F|,,«o is a constant. We can
assume without loss of generality that F' is not divisible by
any variable because such a variable can be factored out and
independently hit by G, ,11. Therefore, for each x; € var(F)
at least one term of F' does not depend on x;. Combining
this fact with the hypothesis of the case implies, without loss
of generality, that F' has a non-zero constant term c. We can
write F' = F’ + ¢ for a non-constant sparse polynomial F”
with t — 1 terms. By induction F'(G,, ,+1) is non-constant.
Hence F(Gyp+1) is non-constant.

This completes the proof. l

Before arguing the last necessary property of the SV-generator,
we state one additional definition.

DEFINITION 2.16. For ¢ € N, let D, denote the class of non-zero
polynomials that are divisible by a multilinear monomial on ¢ vari-
ables, i.e., the product of ¢ distinct variables. We use M, to denote
the monomial Hle T

We require a property of the SV-generator that is implicit in
Shpilka & Volkovich (2008, 2009). Informally it states: If a class
of polynomials is disjoint from Dy, and is closed under zero substi-
tution, then the SV-generator hits this class of polynomials.

LEMMA 2.17 (Implicit in Shpilka & Volkovich 2009, Theorem
6.2). Let P be a class of polynomials on n variables that is closed
under zero-substitutions. If P is disjoint from D, for every { > w,
the map G, is a hitting set generator for P.

Proor. Fix P in P, and let d denote the maximum degree of
individual variables in P. Let S C F with |S| =d+1and 0 € S.
Define the set H], to be the set of vectors in S™ with at most w
non-zero components. By Proposition 2.12, Part (i) the set H is
in the image of G, 4.

Since the image of G,,,, contains H;, it is sufficient to prove
that P|g» = 0 implies P = 0. For the given value of d, we prove
the latter statement by induction on n. If n < w, then H)) is all
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of S™. Since P has individual degree at most d, there is point in
S™ which witnesses the non-zeroness of P. Therefore, P|gn = 0
implies P = 0, completing the base case.

Now, consider n > w and suppose that P|g» = 0. For some
i € [n], let P" = P|;,0. By the closure under zero-substitutions
of P, P' € P. Since H"™! is a projection of H" N {j € S™|u; =
0}, we have that P'[yn-1 = 0. The individual degree of P’ is
at most d, and P’ depends on at most n — 1 variables. By the
induction hypothesis P|,,.o = P’ = 0 and therefore z;|P. The
above argument works for any i € [n], so z;| P for all i € [n]. Hence,
(IT-, )| P. We have that P = Q-] «; for some polynomial Q.
Since P € P and PN D, = () for n > w, we conclude that ) = 0.
Thus P = 0, completing the proof. 0

2.3. Structural Witnesses. Derandomizing polynomial iden-
tity testing means coming up with deterministic procedures that
exhibit witnesses for non-zero circuits. The most obvious type of
witness consists of a point where the polynomial assumes a non-
zero value; such witnesses are used in blackbox tests. For restricted
classes of circuits one may hope to exploit their structure and come
up with other types of witnesses. The prior deterministic identity
tests we mentioned (Karnin et al. 2013; Karnin & Shpilka 2008;
Kayal & Saraf 2009; Saraf & Volkovich 2011; Saxena & Seshadhri
2009; Shpilka & Volkovich 2008, 2009) follow the latter general
outline. More specifically, they exhibit a measure for the com-
plexity of the restricted circuit that can be efficiently computed
when given the circuit as input, and prove that (i) restricted cir-
cuits that are zero have low complexity, and (ii) restricted circuits
of low complexity are easy to test. This framework immediately
yields a non-blackbox identity test for the restricted class of cir-
cuits, and in several cases also forms the basis for a blackbox al-
gorithm. Complexity measures that have been successfully used
within this framework are the rank of depth-three circuits (Dvir
& Shpilka 2007; Karnin et al. 2013; Karnin & Shpilka 2008) and
the sparsity of multilinear depth-four circuits (Saraf & Volkovich
2011).

For their application to multilinear depth-four formulae Karnin
et al. (2013) consider multilinear formulae of the form F = > F;
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where the F}’s factor into subformulae each depending only on a
fraction « of the variables. In such a case we call the formula F
a-split 1. For technical reasons we present a more general defi-
nition that requires “splitness” with respect to a restricted set of
variables.

DEFINITION 2.18 (a-Split). Let F = > F, € Flaq,...,x,],
a € [0,1], and V' C [n]. We say that F' is a-split if each F; is of
the form [[; F;; where |var(F; ;)| < an. F is a-split with respect
to V' (in shorthand, a-splity ) if |var(F; ;) N V| < «a|V| for all i, j.

For V' = [n], the two definitions coincide. Note that in the defini-
tion of split we do not require that var(F) = [n].

To state the structural result Karnin et al. use, we also need
the following terminology. An additive top-fanin-m formula F =
Yo, F; is said to be simple if the greatest common divisor (ged)
of the F;’s is in F. F' is said to be minimal if for all non-trivial

subsets S C [m], >, o Fi Z 0.

LEMMA 2.19 (Structural Witness for Split Multilinear Formulae).
For R(m) = (m—1)? the following holds for any multilinear formula
F =73%"",F,onn > 1 variables with U,y var(F;) = [n]. If F' is
simple, minimal, and «a-split for « = (R(m))™!, then F # 0.

Although not critical for our results, we point out that Lemma 2.19
shaves off a logarithmic factor in the bound for R(m) obtained by
Karnin et al. They show how to transform a split, simple and min-
imal, multilinear formula F' =Y " F; into a simple and minimal
depth-three formula F’ = )" F/, and then apply the so-called
rank bound (Dvir & Shpilka 2007; Saxena & Seshadhri 2009, 2010)
to F’ in order to show that F' #£ 0. We follow the same outline,
but use a new structural witness for the special type of multilinear
depth-three formulae F” that arise in the proof, rather than the
rank bound.

The special type of multilinear depth-three formulae we con-
sider are of the form F'= %", F; where each F; is the product of
univariate linear polynomials. Along the lines of Saraf & Volkovich

'Karnin et al. (2013) refer to “split” formulae as “compressed”.
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(2011), we show that such formulae that are simple, minimal, and
have a branch that depends on more than m — 2 variables, cannot
be zero. More generally we show that if the greatest common di-
visor of a non-trivial subset H of the branches depends on more
than m — |H|— 1 variables, then F' # 0 (this reduces to the simpler
instantiation we use when |H| = 1).

LEMMA 2.20 (Structural Witness for Univariate Multilinear
Depth-Three Formulae). Let m > 2 and F = Y " F, =
o H;lzl L;; be a multilinear depth-three formula where each L;;
is a univariate polynomial. If F' is simple, minimal, and there is a
nonempty H C {Fi,..., F,} with |var(ged(H))| > m — |H| — 1,
then F # 0.

We defer the proof of Lemma 2.20 to Section 2.3.1, and now show
how it implies Lemma 2.19.

PrROOF (of Lemma 2.19). Without loss of generality write F' =
Y FE =300 H?Zl P,;, where the P;; are irreducible. We can
construct a set U C [n] such that for all ¢, j, |UNvar(P;;)| <1 and
there exists ¢ € [m] for which |U Nvar(Fy)| > == > m — 2.
Construct U greedily as follows. Begin with U empty. While
there is a variable z such that all the Pj;’s that depend on x depend
on no variables currently in U, add x to U. Each added variable
x excludes at most (an) - b, variables from consideration, where b,
is the number of branches of F' that depend on x. This procedure
can continue as long as ) ., anb, < n. This implies that we
can achieve b = ZmeU b, > é Observe that we may also write
b=>",|Unvar(F;)|. By averaging we see that there exists an
( € [m] such that |U Nvar(Fy)| > == > m — 2, as claimed.
Fixing all variables outside of U linearizes each F;; — in fact,
each P;; becomes a univariate linear function — and turns F' into
a depth-three formula F’ with an addition gate on top of fanin
m. Moreover, as we will argue, a typical assignment 3 from F
to the variables outside of U keeps F’ (1) simple, (2) minimal,
and (3) ensures that |var(F))| > m — 2. The structural witness

for univariate multilinear depth-three formulae (Lemma 2.20) with
H = {F}} implies that F’ # 0, and therefore that F* # 0.
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All that remains is to establish the above claims about a typical
assignment [ to the variables in [n] \ U:

1. To argue simplicity, we make use of the following property
of multilinear polynomials P and @Q: If P is irreducible and
depends on a variable z, then P|Q iff Pl ¢ Q—P-Q|po =
0. The property holds because if P|Q, then @ = P - Q'
where ()" does not depend on z by multilinearity and hence
does not divide (), then since P is irreducible and depends on
x, P does not divide P|,.o-Q, and we conclude the required
identity cannot hold.

Since [ is simple, for every irreducible subformula F;; that
depends on some uw € U, there is branch, say Fj,, such
that Pj; does not divide Fy. Thus, by the above property,
Pijlueo - Fir — Pij - Fylyco # 0. Let Pj; be the result of ap-
plying 8 to P;;, and define F, and F’ similarly. A typical
assignment 3 keeps Pyl Fy — Pij - Fy|yeo non-zero and
P/; dependent on u. Since Fj; remains irreducible as a uni-
variate polynomial, the above property implies that P;; does
not divide FJ,. Therefore, F”’ is simple.

2. Minimality is maintained by a typical assignment since if
> ics Fi is a non-zero polynomial for all ) C S C [m], then
the same holds after a typical partial assignment /.

3. Finally, for any u € U there exists at least one F;; for which
u € var(P;;). Since a typical assignment to the variables in
P;; other than u turns F;; into a non-constant linear function
of w and |U Nvar(Fy)| > m — 2, we conclude that F; depends
on more than m — 2 variables under a typical assignment /3.

O

2.3.1. Proof of the Structural Witness Lemma for Split
Multilinear Formulae. We now return to the proof of
Lemma 2.20, whose outline we briefly sketch. We argue by in-
duction on m. In the base case m = 2 we only need to consider
singletons H. If F' is zero, then the simplicity of F' implies that
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both branches are constants, and thus ged(H) does not depend on
more than m — |H| — 1 = 0 variables. Thus, F' has to be zero.

For m > 3, first assume h = |H| > 1. We argue that a typical
assignment to the variables outside of var(ged(H)) reduces the top
fanin of F' while maintaining simplicity and minimality (as in the
proof of Lemma 2.19) and hence the induction hypothesis implies
the required bound on |var(ged(H))|. For h = 1, we argue by
contradiction. Suppose that some branch, say F),, depends on
more than m — 2 variables but that F' is zero. Using the induction
hypothesis and the case for A > 1 we argue that the branches other
than F;,, depend on at most m—2 variables. Thus, there exists a set
of variables V' C var(F,,) that is not contained in any other branch.
The partial derivative of F' with respect to V' zeroes all branches
except Fj,. This means that Oy F = 0y F,, #Z 0, contradicting the
fact that F is zero, and completing the proof.

PROOF (of Lemma 2.20). Consider the base case of m = 2. Here
H must be a singleton set. If F'is simple and zero, since the ring
of polynomials over a field is a unique factorization domain, we
observe that F; and F, are constants. Hence each branch depends
on at most m—|H|—1=2—1—1 = 0 variables, which contradicts
our assumption. Thus F' is non-zero.

Consider the induction step for m > 3. We first assume
that h = |H| > 1 and without loss of generality let H =
{F\,Fs,...,F,}. Factor F; = gcd(H) - f; for i € [h]. We can
write

F=ged(H) (fi+ fot ...+ fu)+ Foyr+ ...+ Fp.

As F is multilinear var(ged(H)) N var(f;) = 0 for all i € [h].
As in the proof of Lemma 2.19, we can fix the variables out-
side var(ged(H)) to a typical assignment such that the result-
ing formula F' = gcd(H) - o + Fj,, + ... + F], remains sim-
ple, minimal, and zero, and has a # 0. Since F’ has top fanin
m’ =m —h+1 < m — 1, the induction hypothesis (with h = 1)
implies that |var(ged(H))| < m’—2=m — h — 1. Thus the induc-
tion step goes through for h > 1.

Now assume that h = 1. Suppose without loss of generality
that F),, depends on more than m — 2 variables. Assume by way of
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contradiction that F'is zero. We first show that for all ¢ € [m — 1],
[var(F;)| < m — 2. Without loss of generality consider Fj.

Since the induction step holds for sets containing at least two
branches, |var(ged(Fy, F,))| < m — 3. Thus there is a univariate
factor (x — a) of F,,, for some variable x and constant « € F,
which does not divide Fj. Since F' = 0, Fl|,. o = 0. Observe
that Fi,|zea = 0, but Fi|, o # 0. Hence there exists a minimal
zero subformula F” of F|,., that contains the summand F}|,. 4.
Without loss of generality we write

h h
’ - /
= E F’Z: E Fwi‘xeom
i=1 i=1

for some 2 < b’ < m — 1. Multilinearity implies that

|var(F1)| = 1+ |var(F))| = 1+

var (gc f(fF,)) ‘ + [var(ged(F"))] .

We bound the latter two terms. For the first term, observe that the

formula gch(},) is simple by construction; in addition, it is minimal

because F’ is minimal. Consequently, by the induction hypothesis
F/

on ngL(F,) we get that |var (gcd—&m,)ﬂ <h -2

Now consider the second term. We have that

/

|var(ged(F"))| < |var (ged(Fy, Fy, ..., Fyp))| <m — 1 —1,

where the former inequality follows because the F; are products of
univariate polynomials, and the latter inequality follows because
h’ > 1 and the induction step holds for sets containing more than
one branch (but not all branches).

By putting everything together we conclude that

lvar(F1)| <1+ (h' =2)+(m—h' —1)=m — 2,

and hence that |var(F;)| < m — 2 for all i € [m — 1].

Let V' = Uicpn—1var(F,)\var(F;). Because F,, is a multilinear
product of linear univariate polynomials, 0y F,, % 0. However,
Oy F; =0 for all i € [m — 1], because var(F,,)\var(F;) # (). Hence
Oy F = 0y F,, # 0, contradicting our hypothesis that F' = 0. This
completes the case for A = 1 and the proof. O
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3. Fragmenting and Shattering Formulae

In this section we describe a means of splitting up or fragment-
ing multilinear sparse-substituted formulae. We build up towards
this goal by first fragmenting read-once formulae, and then mul-
tilinear read-k formulae. We conclude by extending our fragmen-
tation technique to work for sparse-substituted formulae, proving
our Fragmentation Lemma (Lemma 3.4).

We view the Fragmentation Lemma as an atomic operation
that breaks a read-k formula into a product of easier formulae.
It does so via a set of carefully chosen partial derivatives and
zero-substitutions of the formula; the more such operations are
performed the longer the seed length of the eventual generator
will be. By greedily applying the Fragmentation Lemma and us-
ing some other ideas we are able to shatter multilinear sparse-
substituted »"-read-k formulae, that is, simultaneously split all
the top-level branches so that they are the product of factors that
each only depend on a fraction of the variables. The Shattering
Lemma (Lemma 3.7) is the main result of this section.

3.1. Fragmenting Read-Once Formulae. We begin by show-
ing that for a non-constant read-once formula F' there is a variable
x € var(F) such that 0, F is the product of subformulae of F' which
each depend on at most half of the variables. Since F' is read-once,
all gates of I’ have variable disjoint children, and it suffices to pick
x such that the path from the output of F' to x bisects F. For
technical reasons, we state a more general version of the lemma,
namely with respect to a restricted variable set with weights.

LEMMA 3.1 (Fragmenting Read-Once Formulae).  Let V be a
non-empty set of variables and let F' be a multilinear ready -once
formula such that V' C var(F). Let w : V — N be a weight
function and W = Y _, w(x). There exists a variable x € V
such that 0, F is the product of subformulae g of F' each of which

satisfies 35y nua(g W) < 5

PROOF.  Assume without loss of generality that F' has fanin two.
Let S be a sequence of the variables in V' produced by an in-order
tree traversal of the formula F'. Such a sequence exists because F
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is a ready-once formula. For x € V| let L(x) denote the variables
in V' occurring before z in S, and R(z) be the variables in V
occurring after  in S. Observe that L(z) and R(z) partition
V\{z}. Naturally associate weights with these parts: Wi (z) =
> yen@ W) and Wg(z) =37 gy w(y). There exists an z € V
that is a weighted median of the sequence S, i.e., an x € V such
that Wy (z), Wg(z) < %. Fix such an z, and note that 0,F # 0,
because V' C var(F).

Since F'is ready-once, the input gate f labeled x contains all
occurrences of x in F'. By Proposition 2.4, 9, F = 8wf'ngUF(f) g=
[,cv,(r) 9 where Ur(f) denotes the unvisited children of the mul-
tiplication gates along the path from the output of F' to f. Note
that for every subformula g of F, the set of variables in V' that
appear in g form a contiguous subsequence of S because S is an
in-order tree traversal. For g € Up(f), since F' is ready-once and
x €V, x does not appear in g and all the variables in V' that occur
in g must appear entirely on one side of x in the sequence S. Thus
var(g) € L(x) or var(g) C R(z). In either case we conclude that

Zy€var(g)ﬂvw(y> < % O

3.2. Fragmenting Multilinear Read-k Formulae. While il-
lustrating the basic idea of fragmenting, Lemma 3.1 is insufficient
for our purposes. A key reason the proof of Lemma 3.1 goes
through is that in read-once formulae the children of addition gates
are variable disjoint. This property implies that there is a unique
path from the output gate to any variable. In multilinear read-
k formulae this is no longer the case. Our solution is to follow
the largest branch that depends on a variable that is only present
within that branch. This allows us to mimic the behavior of the
read-once approach as long as such a branch exists. Once no such
branch exists, each child of the current gate cannot contain all the
occurrences of any variable. This means that these children are
read-(k — 1) formulae. Taking a partial derivative with respect
to a variable that only occurs within the current gate eliminates
all diverging addition branches above the gate. This makes the
resulting formula multiplicative in all the unvisited (and small)
multiplication branches. This intuition can be formalized in the
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Algorithm 1 — FRAGMENT(g, k, V) — An algorithm fragmenting

a ready-k formula g.

. if g is ready-(k — 1) then

return arbitrary z € V

3: if g = g1 - g2, and 3 (i, z) € {1,2} x V where x occurs k times
in g; and |var(g;) N V| > ‘—g' then

. return FRAGMENT(g;, k,V)

5. if g = g1+ g2, and 3 (4, ) € {1,2} x V where x occurs k times
in g; then

6: return FRAGMENT(g;, k, V)

7: return x € V that occurs k times in g

N =

following lemma.

LEMMA 3.2 (Fragmenting Multilinear Read-k Formulae). Let V
be a non-empty set of variables, k > 2, and F be a multilinear
ready-k formula such that V' C var(F'). There exists a variable
x € V such that 0, F is the product of

i) formulae f for which |var(f)NV] < M, and
(i) 2
(i) at most one X*-ready-(k — 1) formula.

Moreover, each of these factors is of the form g or 0,9 where g is
a subformula of F.

PROOF. Assume without loss of generality that F' has fanin two.
For clarity we outline our procedure for selecting an appropriate x
in Algorithm 1.

If no variable in V occurs k£ times in F, then F' is a
Y:2ready-(k — 1) formula (indeed, it is a ready-(k — 1) formula).
Hence for any variable x € V' 9, F is explicitly a ¥%-ready-(k — 1)
formula and the single factor 0, F satisfies the required properties.
Therefore assume that at least one variable in V' occurs k times.

To locate an appropriate variable x € V' we recurse through the
structure of F, maintaining the following invariant: There exists
a variable x € V such that the current subformula g being visited
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contains all k£ occurrences of x in F. Setting g to be F' satisfies
this invariant initially.

If the top gate of ¢ is a multiplication gate, recurse on the child
that depends on more than |2ﬂ of the variables in V' and contains
k occurrences of some variable in V. If no such child exists, end
the recursion at g and select a variable from V' that occurs k times
in g. Such a variable must exist by the invariant.

If the top gate of g is an addition gate, g = g1 + go, and at least
one of its children, g;, has a variable in V' that occurs k times in
gi, recurse on g;. Otherwise, both children of ¢g are ready-(k — 1)
formulae. Select a variable from V' that occurs k times in g ending
the recursion. Again, such a variable must exist by the invariant.

Let x € V be the variable selected by the procedure. We argue
that 0,F can be written in the desired form. Denote by f the
subformula where the recursion ended. Since f contains all the
occurrences of x in F, Proposition 2.4 tells us that 0, F = 0,f -
I geUn() 9» Where U r(f) denotes the unvisited multiplication gates
on the path from the root of F' to f. By the selection rule for
multiplication gates, all the gates g € Up(f) each depend on at
most |21| variables from V. All that remains is to analyze 0, f.
There are two cases depending on the top gate of f.

Suppose the top gate of f is a multiplication gate: f = fi - fa.
Without loss of generality assume that x € var(f;). Since F is
multilinear, we can write

(3.3) Orf = (0uf1) - fo

The stopping rule and multilinearity together imply that f; (and
hence 0, f; depends on at most % of the variables in V', and that
fo either:

(i) depends on at most |21| of the variables in V', or

(ii) does not contain k occurrences of any variable in V and there-
fore is a X2-ready-(k — 1) formula.

In either case, the resulting factoring of 0, F satisfies the properties
in the statement of the lemma.
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Suppose the top gate of f is an addition gate: f = f; + f.
According to the stopping rule both children of f are ready-(k — 1)
formulae, making f a Y?ready-(k — 1) formula, and so is 9,f.
The resulting factoring of 0,F" again satisfies the properties in the
statement of the lemma. O

For the case k = 1 the proof of Lemma 3.2 yields the unweighted
version of Lemma 3.1.

3.3. Fragmenting Sparse-Substituted Formulae. In this
subsection we extend our fragmenting arguments to work for
sparse-substituted formulae.

First consider a multilinear sparse-substituted read-once for-
mula F'. The idea is to apply the argument from Lemma 3.1 and
the chain rule to locate a variable x such that 0,F is almost frag-
mented. By this we mean that each of the factors of 9, F depends
on at most half of the variables except the factor that was originally
a sparse polynomial that depends on x. The sparse polynomial,
say f, may depend on too many variables. In that case we perform
further operations so that f factors into smaller pieces. Through a
sequence of partial derivatives and zero-substitutions we eliminate
all but one term in f. This implies that the sparse polynomial and
hence the overall resulting formula F’ is %—split. To perform the
additional step, observe that for any variable x, either at most half
of the terms in f depend on x or at most half do not. In the former
case, taking the partial derivative with respect to = eliminates at
least half of the terms; setting = to 0 has the same effect in the lat-
ter case. Repeating this process a number of times logarithmic in
the maximum number of terms eliminates all but one of the terms,
resulting in a trivially split formula.

This is the intuition behind the sparse-substituted extension of
Lemma 3.1 and corresponds to the first part of the next lemma.
The second part is the sparse-substituted extension of Lemma 3.2
and follows from that lemma by a simple observation.

LEMMA 3.4 (Fragmentation Lemma).  Let V be a non-empty
set of variables, k > 1, and F' be a multilinear sparse-substituted
ready -k formula such that V' C var(F'). Let t denote the maximum
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number of terms in each substituted polynomial.

(i) If k = 1, there exist disjoint sets of variables P,Z with
|P U Z| <log(t) + 1 such that OpF| .o is non-zero and is a
product of factors f for which |var(f) N V| < % Moreover,
the factors are subformulae of F'.

(ii) If k > 2, there exists a variable x € V such that 0, F is the
product of

(a) formulae f for which |var(f)NV| < “2/—‘, and

(b) at most one Y2-ready-(k — 1) formula.

Moreover, each of these factors is of the form g or 0,9 where
g is a subformula of F'.

Proor. We argue the two parts separately.

Part 1. Assume without loss of generality that F' has fanin two.

Write F' = B(py,...,pr) as in Definition 2.3, where B € F[Y]
is the backbone of F' and the p;’s are t-sparse multilinear poly-
nomials. Define Y' = {y; € Y | |var(p;) N V| > 0} and the weight
function w : Y’ — N by y; — |var(p;) N V|. Because F is a ready-
once formula and V' C var(F), W = > ., w(y) = [V|. Apply
Lemma 3.1 to B with set Y’ and weight function w to determine
a variable y; € Y’ C'Y such that we can write 9, B = [[; b; where
the b;’s are subformulae of B and }° ¢ ., w(y) < Y- |2ﬂ Pick
x € var(p;) N V. Note that = exists because ¢ € Y’. Since F'is a
ready-once formula, only p; depends on x and applying the chain
rule produces

axF = axB(ph ce 710T) = (axpz) : (ayiB(yh cee ayr))|YFﬁ

where g; = bj|y—;. Observe that each g; is a subformula of " and
depends on at most % variables from V. If 0,p; depends on at
most |21| of the variables in V, the lemma is complete with P = {z}
and Z = (). Therefore, assume otherwise.

Let p = 0,p;. Write p = Zﬁ:l M; where ¢ <t and each M; is
a distinct term.
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Cramv 3.5. There exist disjoint P', Z C var(p) such that
|P'U Z| <logl and Opip|z.o is a single term.

PrROOF. We proceed by induction on ¢. In the base case ¢ = 1.
Trivially, p is a term. It suffices to set P’ = Z = () and hence
|P'UZ| =0=logl.

In the induction step ¢ > 1, there is a variable z € var(p)
that divides some term M; of p, but not all terms of p. To see
this, suppose that each variable in var(p) divides each term of p,
then, because p is multilinear, each term must be the same, so
¢ = 1. This contradicts £ > 1. We complete by considering two
cases based on the number of terms that z divides. Suppose z
divides at most g terms of p. Then 0,p has at most % terms and is
non-zero. By induction there are sets P”, 7’ C var(0d,p) C var(p)
with |[P" U Z'| < log% = (log?) — 1 such that 0pr0,p|z.q is a
single term. Set P’ = P”" U {z} and Z = Z’ to conclude this
case. Otherwise, z divides more than é terms of p, but not all of
them. Thus p|,. o has at most g terms and is non-zero. Applying
the induction hypothesis to pl|,. suffices to conclude as in the
previous case but setting P’ = P” and Z = Z' U {«}. O

Apply Claim 3.5 to p to get P'UZ C var(p) with |P'UZ| < logt.
Set P = P'U {37} Note that apF|Z<_0 = (8p,0,~|z<_0) : Hj 9g; 7_é 0,
because F is multilinear, PUZ C var(p), and Opp;|z«o is a non-zero
term. Finally, observe that because Opp;|z. o is a term it trivially
factors into a product of subformulae of F' (namely variables) that
each depend on at most one variables in V. We conclude by noting
that 1 < |2ﬂ This follows because p; depends on x € V and at
least one other variable in V' (since 0,p; depends on more than |21|
variables in V' other than x), hence |V| > 2.

Part 2. Here the proof is essentially the same as the proof of
Lemma 3.2. Since k > 2, the argument always halts at an internal
gate and never reaches a sparse-substituted input. Only the num-
ber of occurrences of each variable is relevant to the decisions the
argument makes. This implies that the argument does not change
when sparse-substituted formulae are considered (and is even in-
dependent of the sparsity parameter). Thus, this part of the proof
is immediate as a corollary to the proof of Lemma 3.2. 0
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Observe that the cost of applying the Fragmentation Lemma
to a read-once formula is log(t) + 1 partial derivatives and zero-
substitutions, whereas applying it to a formula that is not read-
once requires only a single partial derivative (though the promised
result is weaker in this case).

It is useful to have a version of Part 2 of the Fragmentation
Lemma generalized to structurally-multilinear formulae. The ar-
gument is the same as for the earlier version except that in addition
to selecting an appropriate x, we must pick an o € F, such that
Op ol = Flyea — Flzeo is non-zero. The directed partial deriva-
tive comes in here because 0, F' = F|,.1 — F |, may be zero even
when F' depends on z, because F' is not multilinear.

LEMMA 3.6 (Fragmentation Lemma for Structurally-Multilinear
Formulae). Let V' be a non-empty set of variables, k > 2, and
F be a structurally-multilinear sparse-substituted ready -k formula
with V' C var(F'). Let t denote the maximum number of terms in
each substituted polynomial. There exists a variable x € V and
a € F such that Oy F' is non-zero and the product of

(i) formulae f for which |var(f)NV| < %, and

(i) at most one X*-ready-(k — 1) formula.

Moreover, each of these factors is of the form g or 0,9 where g is
a subformula of F'.

PROOF. Repeat the proof of Lemma 3.4, Part 2, but add the
following step. After selecting an appropriate variable x that F
depends on, select an « such that 0, ,F # 0. By the Schwartz-
Zippel Lemma, such an o exists within the algebraic closure F of
F. Note that, in fact, if |F| is larger than the degree of x in F' such
an « is present in IF. 0

3.4. Shattering Multilinear Formulae. The previous sub-
sections establish a method for fragmenting multilinear sparse-
substituted read-k formulae. We now apply the Fragmentation
Lemma (Lemma 3.4) to simultaneously split all branches of a mul-
tilinear sparse-substituted X"-read-k formula. We call this pro-
cess shattering. When k = 1, applying the Fragmentation Lemma
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greedily to a factor of a branch that depends on the largest num-
ber of variables suffices to split a multilinear sparse-substituted
Y"-read-once formula to an arbitrary level. To obtain an a-split
formula in the end, we need O(m%) partial derivatives and
zero-substitutions.

In the case of arbitrary read-value £ > 1 the Fragmentation
Lemma is not immediately sufficient for the task. As in the read-
once case, we can apply the lemma greedily to a largest factor of a
read-k branch to a-split the branch within at most % applications.
However, this is assuming that Case (ii.b) of the Fragmentation
Lemma never occurs where the ¥%-read-(k — 1) factor depends on
more than half (possibly all) of the variables. When this case occurs
the fragmentation process fails to split the formula into pieces each
depending on few variables. To resolve the issue, we leverage the
fact that this troublesome factor is both large and a X%-read-(k—1)
formula.

Consider a read-k formula F' on n variables. Apply the Frag-
mentation Lemma to F. Suppose that Case (ii.b) of the lemma
occurs, producing a variable x, and that the corresponding »2-
read-(k — 1) factor of 0,F depends on more than % of the vari-
ables. Without loss of generality, 0,F = H - (H; + H,), where
H is a product of read-k formulae each depending on at most %
variables, and both H; and Hj are read-(k — 1) formulae. Rewrite
F' by distributing the top level multiplication over addition:

F'=(H-H)+(H-H))=H-(H, + H,) =d,F.

Let V = var(H; + Hy). F' is explicitly a X%ready-(k — 1) formula
and a ready -k formula. However, F” is almost certainly not a read-
k formula. Partition the variables into “same-read” sets, that is,
sets of variables that appear the exact same number of times. By
further restricting to the largest “same-read” set of variables in
the larger of the two subformulae H; and H,, we can argue the
existence of a subset V/ C V that contains at least a i fraction of
the variables in V' such that the read of H; and H, with respect to
V' sum to at most k. Note that prior to this restriction the upper
bound on this sum is 2(k — 1). This action effectively breaks up
the original formula F' into two branches without increasing the
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sum of the read values of the branches. Since [V/| > 2, the set V’
is at most a factor 4k smaller than n, and the number of branches
increased by one.

This operation can be performed at most £ — 1 times on a
read-k formula before either: (i) the attempted greedy splitting
is successful, or (ii) the formula becomes the sum of k read-once
formulae with respect to some subset V' of [n]. In the latter case
we are effectively in the situation we first described with k = 1,
and all subsequent splittings will succeed. In either case we obtain
a formula that is shattered with respect to a subset V' that is at
most a factor k2% smaller than n.

In summary, the Shattering Lemma splits multilinear sparse-
substituted X-read-k formulae to an arbitrary extent, albeit with
some restriction of the variable set and an increase in top fanin.
Moreover, each of the branches in the shattered formula are present
in the original input formula, either as such or after taking some
partial derivatives and zero-substitutions. This technical property
follows from the properties of the Fragmentation Lemma and will
be needed in the eventual application.

LEMMA 3.7 (Shattering Lemma). Let a : N — (0,1] be a non-
increasing function. Let F € Flxy,...,x,] be a formula of the
form F = ¢+ Y ", F;, where c is a constant, and each F; is a
non-constant multilinear sparse-substituted read-k; formula. Let t
denote the maximum number of terms in each substituted polyno-
mial. There exist disjoint subsets P, Z,V C [n| such that OpF|z.
can be written as ¢’ + Zzl F!, where ¢ is a constant, and

om' <k=> "k

1=1""

o each F] is multilinear and a(m’ + 2)-splity,

o |[PUZ|<(k—m+1)- a(éiz) - (log(t) + 1), and

k—m
alk
o |[V|> <%) -n—%-(log(t)%—l).

Moreover, the factors of each of the F!’s are of the form Op f [y
where f is some subformula of some F; and P C P.
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PROOF.  We iteratively construct disjoint subsets P, Z,V C [n],
maintaining the invariant that 0pF|z. o can be written as
F' = 437" F! where

(1) each F! is a ready-k} formula and ¢’ is a constant
(2) m' <k

(3) S k=K <k
(4) each Fj is the product of factors of the form 0p f|z, o where f
is some subformula of some F; and P C P.

Setting P + 0,Z < 0,V <« [n] and F’ < F realizes the
invariant initially. The fact that m’ < k follows because each Fj is
non-constant.

The goal of our algorithm is to a(m’ + 2)-splity the formula
F’. Each iteration (but the last) consists of two phases: a split-
ting phase, and a rewriting phase. In the splitting phase we at-
tempt to split F’ by greedily applying the Fragmentation Lemma
(Lemma 3.4) on each of the branches F!. The splitting phase may
get stuck because of a Y%-ready-(k, — 1) subformula that blocks
further splitting. If not and the resulting F’ is sufficiently split,
the algorithm halts. Otherwise, the algorithm enters the rewriting
phase where it expands the subformula that blocked the Fragmen-
tation Lemma and reasserts the invariant, after which the next
iteration starts. A potential argument shows that the number of
iterations until a successful splitting phase is bounded by k — m.
We first describe the splitting and rewriting phases in more detail,
then argue termination and analyze what bounds we obtain for the
sizes of the sets P, Z, and V.

Splitting. Assume that F” is not O‘(mTUFQ)—SphtV, otherwise halt. Let
F}; be a subformula of F” that depends on the most variables in V/
out of all the factors of the F/’s. Apply the Fragmentation Lemma
(Lemma 3.4) with respect to the set V N var(F};) to produce sets
P Z" C |n]. Since F’ is multilinear, the Fragmentation Lemma

implies one of the following holds:
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|V Owvar(F;)|

2 varil-

(i) The factors of Op/Fj;| 7o depend on at most
ables in V' N var(F};), or

(ii) OpF;| 2«0 has one multilinear sparse-substituted Y2-ready -
[Vnvar(F;)|

3 varil-

(ki — 1) factor which depends on more than
ables in V' N var(F};).

Repeatedly perform this greedy application, adding elements to
the sets P’ and Z’ until either case (ii) above occurs or Op/ F'| 7. o
is w-splitv. In the former case we start a rewriting phase
and modify Op/ F”| 7. o before we re-attempt to split. In the latter
case our goal has been achieved provided that |P' U Z’'| < ‘12‘:
We can add P’ to the set P we already had, similarly add Z’
to Z, and replace V by V' = V \ (P’ U Z’). The assumption
that |[P'U Z'| < |—‘2/| guarantees that |V'| > '21‘ Since 0pF|z.0
(which equals Op/ F'| 7. ) is a(mT,H)—splitV, the latter inequality
implies that the formula is a(m’ + 2)-splity,. If the assumption
that |P'U Z'| < |—‘2/| does not hold, then outputting V' = () will
meet the size bound for that set and trivially make the formula
apF|Z%0 a(m’ + 2)-Sphtvl.

The splitting phase maintains the invariant. Regarding Part (4)
of the invariant, observe that the factors produced by the Fragmen-
tation Lemma are subformulae of the input to the Fragmentation

Lemma (for which the invariant initially held).

Rewriting. We now describe the rewriting phase. Consider the set
of variables V' at the beginning of the preceding splitting phase.
Let Fl’J be the subformula the splitting phase blocked on, and
let H; and Hy denote the two branches of the multilinear sparse-
substituted 32-ready-(k! — 1) subformula of 9, F! that caused the
blocking Case (ii.b) of the Fragmentation Lemma to happen. We
have that Op F}}| 70 = H - (Hy + Hy), where H is some ready-k;
formula that is independent of the variables in V N var(H; + Ha).
Let V! = V Nnvar(H, + H,). Partition V’ into sets {Vj,...,V}, ;}
based on the exact number of occurrences of each variable inZH1.
Let V" be any set from this partitioning excluding the set Vj (we
will restrict the choice of V" later). This implies that H; is ready-
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ki, and Hy is ready~-kl, for some integers k;, and ki, such that
ki, kly < kb and ki, + Kk, < KL

Rewrite Op/ F'| 710 as a top fanin m’+2 formula by distributing
multiplication over addition in the term Op/ F}|z o:

(38)  OpF'|zo=(H-H)+ (H-H)+ > 0pFl|zo.

JFi
Observe that > ., Op Fj| 710 is a readyn-(3_;; ;) formula as

partial derivatives and substitutions do not increase the read-value,
and V" C V. The term (H - H,)+ (H - Hy) may not be a ready-k]
formula, but it must be a ready,-k, formula. It is explicitly the
sum of a readyr-k, formula and a ready. -k}, formula for some
kly, kly < K. with k}; + ki, < k. The representation of 0p' F'|z
in Equation (3.8) is therefore a ready-k" formula with top fanin
m' + 2.

Set I’ to be this representation of Op' F”| 7. 9. Merge branches
that have become constant into a single constant branch. This
maintains the invariant that m’ < k' < k. Setting V' < V" makes
F’" a top-fanin-(m’ + 1) ready-k’ formula. As for Part (4) of the
invariant, note that the subformula Fj; which blocked the Frag-
mentation Lemma originally satisfied it during the splitting phase.
This means that with respect to the additional partial derivatives
and zero-substitutions performed for the attempted split, H; and
Hs, as well as H, satisfy the invariant as new factors of the branches
F!. Thus, the new I’ satisfies the full invariant. This completes
the rewriting phase and one full iteration of the algorithm.

Correctness. We repeat the sequence of splitting and rewriting
phases until a splitting phase runs till completion. In that case the
algorithm produces disjoint sets P, Z,V C [n] such that OpF|zc0
can be written as a a(m’+2)-splity formula with top fanin m/+1 <
k+1.

Apart from the size bounds on the sets P, Z, and V, all that
remains to establish correctness is termination. To argue the latter
we use the following potential argument. Consider the sum ZZI k;
and view it as m’ blocks of integer size, where k| is the size of the
1th block. Over the course of the algorithm blocks can only stay

the same, shrink, or be split in a nontrivial way. The latter is
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what happens in a rewriting phase. As soon as all blocks are of
size at most 1, the splitting phase is guaranteed to run successfully
because Case (ii.b) of the Fragmentation Lemma cannot occur for
read-once formulae, and the algorithm terminates. As we start out
with m nontrivial blocks and a value of k for the sum, there can
be no more than k& — m nontrivial splits. Therefore, there are no
more than k& —m rewriting phases and k —m + 1 splitting phases.

Analysis. We now bound the size of P U Z. We first analyze how
many times the Fragmentation Lemma is applied in each split-
ting phase. The goal is to o(m +2) +2) splitv each of the m’ branches.
To O‘(mTH)—sphtv one branch, m applications of the Frag-
mentation Lemma are sufficient, since each application reduces
the intersection of the factors with V' to at most half the orig-
inal amount. Since the invariant maintains m’ < k and « is
non-increasing, we can upper bound the number of applications
of the Fragmentation Lemma during an arbitrary iteration by
a(iiiiz) < a(;"im. Each single application of the Fragmentation
Lemma adds at most (log(¢) + 1) variables to P’ and Z’. Since
there are at most kK — m + 1 splitting phases, across all iterations
at most (k—m+1)(log(t) + 1) —E (k+2) variables are added to PU Z.

We finish by lower bounding the size of V. Consider the change
in |V| over one combined splitting/rewriting iteration. We have
that |V'| > Wﬂﬂ, because F’ was not M-Spiitv before
attempting to split FZ’] (so the largest number of variables in V'

that a factor depends on is at least M [V]), Fj; was chosen
for its maximal dependence on variables from V', and |var(H; +
Hy) N V[ > |var(F};) N V|/2. If we pick V" to be the largest
set from the partitioning {V{,V7,...,V/, |} excluding Vj, and we
assume without loss of generality thatl|var(H1)] > |var(Hs)|, we
have that |V"| > k, 1 |V’|. Combining these inequalities and

using the facts that « is non-increasing and k > ki, m’ gives:

(m +2) (k;+2)

V// >

1
| = mi‘// VI= V1.

This means that |V| decreases by a factor of at most in

(k+2)
each combined splitting/rewriting iteration. At the end of the final
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splitting phase |V'| > |V|=2|P'UZ’| because V" is set to the empty
set when |P'U Z'| > |V‘. Recall that |[P'U Z'| < k+2 (log(t) +
1). Since there are at most & — m combined sphttmg/rewmtlng
iterations, this gives the following lower bound at the end:

O

4. Reducing Testing Read-(k + 1)Formulae to
Testing ¥?-Read-k Formulae

In this section we describe two methods of reducing identity test-
ing structurally-multilinear sparse-substituted read-(k + 1) formu-
lae to identity testing structurally-multilinear sparse-substituted
Y:2read-k formulae. The first reduction is non-blackbox and is el-
ementary. The second reduction is blackbox and makes use of the
Fragmentation Lemma of the preceding section.

4.1. Non-Blackbox Reduction. In the non-blackbox set-
ting we only need to deal with multilinear sparse-substituted
formulae, because we can efficiently transform structurally-
multilinear sparse-substituted read-£ formulae into multilinear
sparse-substituted read-k formulae in a non-blackbox way while
preserving non-zeroness using the transformation £ from Sec-
tion 2.1.4 (see Definition 2.7). Recall Section 1.2.2 for the intuition
behind the following non-blackbox reduction from identity test-
ing multilinear sparse-substituted read-(k + 1) formulae to identity
testing multilinear sparse-substituted X2-read-k formulae.

LEMMA 4.1 (Read-(k+1) PIT < 32-Read-k PIT — Non-Blackbox
Multilinear).  For an integer k > 0, given a deterministic iden-
tity test for n-variate size-s multilinear sparse-substituted ¥2-read-
k formulae that runs in time T(k,n,s,t), where t denotes the
maximum number of terms in each substituted polynomial, there
is a deterministic algorithm that tests n-variate size-s multilin-
ear sparse-substituted read-(k + 1) formulae that runs in time

O((k+ 1)n-T(k,n,s,t) + poly(s)).
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Algorithm 2 — REDUCEL(g)

1. if g = g1 op g2 then
2: g < REDUCE(g1) op REDUCE(g2)

3: for all variables z appearing in g:

4:  if x ¢ var(g) then

o: g < g’xeo

6: elseif g =g, op ¢go and = appears k + 1 times in g then
7 return a fresh variable y,

8 return g

Proor. Consider the algorithm REDUCE described in Algo-
rithm 2. Let F' be a multilinear sparse-substituted read-(k + 1)
formula. We first argue that computing REDUCE(F') suffices to
test I, then prove several properties of REDUCE, and conclude by
describing how to efficiently compute REDUCE(F') using the given
algorithm for multilinear sparse-substituted Y2-read-k formulae.

Let g be a gate of F. Define F'|,., to be the formula resulting
from F' by replacing the gate g with another formula ¢'.

Cram 4.2. For every formula g:

(i) REDUCEL(g) is a multilinear sparse-substituted read-
max(k, 1) formula.

(ii) For every variable x appearing in REDUCE(g), = €
var(REDUCEL(g)).

(iii) For every multilinear sparse-substituted read-(k+ 1) formula
F containing g as a gate, F' = 0 iff F|g rupuce,(g) = 0.

Applied at the output gate, property (iii) implies that F' = 0 iff
REDUCE,(F) = 0. If REDUCE,(F) contains a variable, then by
property (ii) REDUCE;(F') must be non-constant and thus non-
zero. If REDUCE(F') contains no variables, then it is constant
and it suffices to evaluate the formula to determine whether that
constant is zero. Thus, to identity test F' it suffices to compute
and then examine REDUCE(F), and the latter examination can
be done in time poly(s).
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We argue Claim 4.2 by structural induction on g. In the base
case, g is a sparse-substituted input. Property (i) holds as the
sparse-substituted inputs are defined to be read-once. Property
(ii) holds because the only action of REDUCEy is to eliminate all
variables that g does not depend on. It immediately follows that
F = F|gRupuo () and property (iii) holds.

In the induction step, g = giop gy for op € {+,x}.
Applying the induction hypothesis twice we have that F =
0 iff F|g1<—REDUCEk(g1) =0 iff

(F ’gl +REDUCEL(g1) ) ’gg +REDUCEL(g2)

= Flge(Repucei(g1) op Repucey(g2)) = 0.

There are two cases.

1. After reducing the children of g, there is a variable z € var(g)
that appears k + 1 times in g.

In that case, REDUCE(g) returns y,. Since y, is a read-once
formula, properties (i) and (ii) are immediate. We now argue
property (iii), i.e., that F' = 0 iff F|,, =0.

Since F' is a read-(k + 1) formula, g must contain every oc-
currence of x. Thus Fl4,, does not depend on z. As y,
occurs only once in Flg., , without loss of generality, write:
Flgey, = P+ Q - y,, for two polynomials P and @ that do
not depend on z or y,. If ) =0, then F' is independent of g,
s0 Flgey, = F. If Q # 0, then F is non-zero because @ - g
depends on x but P does not, and F|,, # 0 for a similar
reason. In both cases we conclude that F' = 0 iff F|,, =0
and property (iii) holds.

2. After reducing the children every variable x € var(g) occurs
at most k times in g.

In this case, REDUCE(g) is explicitly a read-k formula and
property (i) holds. Properties (ii) and (iii) hold because the
loop eliminates each variable x ¢ var(g) that occurs in g
while not changing the polynomial computed at g.
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This finishes the proof of Claim 4.2. The correctness of the
overall algorithm follows by applying Claim 4.2 with g = F.

It remains to argue that REDUCE,(F') can be efficiently com-
puted. An inspection of REDUCE, shows that it does not increase
the size, number variables, or sparsity of gates it transforms. The
main difficulty is implementing the test = ¢ var(g) from Line 4.

1. When g is a sparse polynomial, x ¢ var(g) can be decided in
poly(s) time by summing coefficients of identical terms in g’s
list of monomials to aggregate duplicates and then searching
for a monomial with non-zero coefficient in which x appears.

2. Otherwise g is an internal gate. Property (ii) for the reduced
children of g implies that they depend on exactly those vari-
ables that occur in them.

(a)

When g is a multiplication gate and both reduced chil-
dren of g contain variables, g depends on exactly those
variables that appear in g and hence the test in Line 4
is always false. When g is a multiplication gate and at
least one reduced child contains no variables, determine
the constant value of those children. If a constant child
evaluates to zero, g = 0 and the test in Line 4 is always
true, otherwise it is always false. Thus when ¢ is a mul-
tiplication gate, x ¢ var(g) can be decided in poly(s)
time.

When ¢ is an addition gate and at least one reduced
child of g does not contain z, no additional work is
needed as the dependence on x cannot change at g and
hence the test in Line 4 is false.

Otherwise, both reduced children of g contain x. In that
case we decide x ¢ var(g) by taking the partial deriva-
tive of each reduced child with respect to the variable
x and then applying the assumed identity test on %2
read-k formulae to test whether % # 0. Note that % is
indeed a Y¥?-read-k formula as property (i) implies that
the reduced children are read-k£ formulae. The partial
derivative can be computed in time poly(s) since the
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multiplication gates in the multilinear subformulae of
the reduced children are variable disjoint by property

(ii).

Since F' is a read-(k + 1) formula, for any given variable z, the
nontrivial case in 2b) can happen at most k + 1 times. Moreover,
for that case to happen x has to be one of the variables of the
original formula F'. This implies that REDUCE(F') makes at most
(k + 1)n calls to the X2-read-k identity test. All the other work to
evaluate Line 4 is poly(s). Combining the cost for evaluating Line
4 with a straight-forward implementation of the rest of REDUCEy,
we conclude that our identity test runs in time claimed. [l

Since testing multilinear sparse-substituted read-k formulae is
trivial for £ = 0, the special case of Lemma 4.1 with k£ = 0 yields
the following corollary.

COROLLARY 4.3. There is a deterministic algorithm for identity
testing multilinear sparse-substituted read-once formulae that runs
in time poly(s), where s denotes the size of the formula.

In fact, the proof of Lemma 4.1 for £ = 0 shows that Corol-
lary 4.3 even holds without the multilinearity condition (which is
non-vacuous for sparse-substituted formulae), but we will not need
that extension.

4.2. Blackbox Reduction. Let F' be a structurally-multilinear
read-(k + 1) formula. We construct a generator for F' using a gen-
erator G for structurally-multilinear Y2-read-k formulae. If F is a
read-k formula, the assumed generator alone suffices. Otherwise,
we apply the Fragmentation Lemma for structurally-multilinear
sparse-substituted formulae (Lemma 3.6) to show that there is a
partial derivative of I’ that has mostly small factors and, possibly,
one factor that is a large structurally-multilinear Y2-read-k for-
mula. In the former case the factors are small enough to be hit re-
cursively, and in the latter case the factor is hit by the assumed gen-
erator for structurally-multilinear ¥2-read-% formulae. The proper-
ties of the SV-generator (Proposition 2.12 and Lemma 2.14) imply
that if G, is a generator for the partial derivative of a polynomial
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with n variables, then G, + G, 1 is a generator for the original
polynomial.

LEMMA 4.4 (Read-(k + 1) PIT < X*:Read-k PIT - Blackbox
Structurally-Multilinear).  For an integer k > 1, let G be a gen-
erator for n-variate structurally-multilinear sparse-substituted ¥.2-
read-k formulae, and let F' be a non-zero n-variable structurally-
multilinear sparse-substituted read-(k + 1) formula. Then G +
Gn,log\var(F)| hits F.

PrROOF. First observe that if F' is read-k, we are immediately
done because F(G) # 0 and 0 is in the image of the SV-generator
(by Proposition 2.12, Part (i)).

The proof goes by induction on |var(F)|. If |var(F)| = 0, the
lemma holds trivially as F' is constant. If |var(F)| = 1, F is a
read-once formula, which is covered by the above observation. For
the induction step, by the above observation we can assume that F’
is read-(k 4+ 1) and not read-k. Therefore, F' meets the conditions
to apply the structurally-multilinear version of the Fragmentation
Lemma (Lemma 3.6) with V' = var(F). The lemma produces a
variable z € var(F) and o € F. The factors of 9,,F all de-
pend on at most Wagﬂ variables and are read-(k + 1) formulae,
except for at most one which is a Y2-read-k formula. The induc-
tion hypothesis gives that the former factors of 0, oF" are all hit
by G + G jog(jvar(r)|/2)- The latter factor (if it occurs) is hit by G.
Applying Lemma 2.14 gives that G + G, jog(jvar(F)|/2) + Gn,1 hits F.
Recalling Proposition 2.12, Part (iii), implies that G + Gy, jog jvar(#)|
hits F. O

5. Reducing Testing Y2-Read-k Formulae to
Testing Read-k Formulae

In this section we present two methods of reducing identity testing
structurally-multilinear sparse-substituted Y2-read-k formulae to
identity testing structurally-multilinear sparse-substituted read-k
formulae. We first develop those methods for multilinear rather
than structurally-multilinear sparse-substituted formulae, and then
show how to lift them to the latter setting.
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Both reductions rely on a common theorem (Theorem 5.4),
which we prove in Section 5.2. Informally, that theorem says that
for a non-zero multilinear sparse-substituted ¥2-read-k formula F
on n variables and a shift & satisfying some simple conditions, the
shifted formula F(Z + &) is hit by the SV-generator G, , with
w = k9% (log(t) + 1), where t denotes the maximum number of
terms in each substituted polynomial.

Note that, since F' is a non-zero polynomial, such a theorem is
trivially true for a typical shift o, even with w = 0. The interesting
part of the theorem is the simplicity of the conditions on & that
guarantee the hitting property. In particular, the properties needed
of & allow such a ¢ to be computed efficiently either by an identity
test for multilinear sparse-substituted read-k£ formulae, or as an
element in the image of a hitting set generator for such formulae.

In Section 5.1 we argue that small sums of specially shifted
multilinear sparse-substituted read-£ formulae cannot compute a
term of high degree. This is the Key Lemma for multilinear sparse-
substituted formulae and is a formalization of Lemma 1.3 from the
introduction. Using the Key Lemma and the hitting property of
the SV-generator (Lemma 2.17), we prove (as Theorem 5.4 in Sec-
tion 5.2) that the SV-generator hits small sums of specially shifted
multilinear sparse-substituted read-£ formulae. In Section 5.3 and
Section 5.4 we use Theorem 5.4 to argue reductions from identity
testing multilinear sparse-substituted Y2-read-k formula to iden-
tity testing multilinear sparse-substituted read-k formulae in both
the non-blackbox and blackbox settings.

Section 5.4 concludes by extending the blackbox reduction to
structurally-multilinear sparse-substituted read-k formulae. To do
this we use the transformation £ from Section 2.1.4 (see Defini-
tion 2.7) to generalize the Key Lemma to structurally-multilinear
sparse-substituted formulae, and then argue how the other ingre-
dients transfer. The corresponding step in the non-blackbox set-
ting is straightforward because there £ can be directly applied to
efficiently reduce the problem of testing structurally-multilinear
sparse-substituted read-k formulae to testing multilinear sparse-
substituted read-k formulae.
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5.1. Proving the Key Lemma for Multilinear Formulae.
In order to prove the Key Lemma, we first establish a similar
lemma for split multilinear sparse-substituted formulae, and then
apply the Shattering Lemma to lift the result to the bounded-read
setting.

Let F = Y™ F; be a sufficiently split multilinear sparse-
substituted formula on n variables. By applying the structural
witness for split formulae (Lemma 2.19) we can argue that if none
of the F;’s are divisible by any variable then F' cannot compute a
term of the form a- M,,, where a is a non-zero constant and, recall,
M,, denotes the monomial [] , x;. The idea is to consider the
formula F' — a - M,, and apply the structural witness to it in order
to show that it is non-zero. The non-divisibility condition and the
natural properties of M, immediately give simplicity. Minimality
essentially comes for free because the argument is existential. The
splitting required by the structural witness immediately follows
from the splitting of F. Formalizing this idea yields the following
lemma.

LEMMA 5.1. Let F = 3" F; be a multilinear sparse-substituted

a(m + 1)-split formula on n > 1 variables, where o = & and R
is the function given by Lemma 2.19. If no F; is divisible by any

variable, then F' # a - [[\_, x; for any non-zero constant a.

Note that for a non-constant formula F on n variables to be
a(m + 1)-split, n needs to be at least 1/a(m + 1).

PROOF. Suppose for the sake of contradiction that F' = a - M,
for some non-zero constant a.

If there is some subsum of the branches of F' that equals 0,
eliminate all those branches. Not all branches of F' may be elimi-
nated in this way as this contradicts a - M,, Z0. Let 0 <m’ <m
be the remaining number of branches, and let F’ denote the sum
of the remaining branches. The formula F’ —a- M, is minimal and
has top fanin m’ + 1.

Now, suppose that there is some non-constant polynomial @)
that divides every remaining F;. Since F' = a - M, Q) also divides
M,,. Because () is non-constant, some variable x divides () and
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hence divides each remaining F;. This contradicts the hypothesized
non-divisibility property of the F;. Therefore F' — a - M, is simple
as a formula with top fanin m’ + 1.

The previous two paragraphs establish that the F' — a - M, is
simple, minimal, and has top fanin m’ + 1. Further, for every vari-
able, there is some branch that depends on that variable, because
the M, branch depends on every variable. Observe that the M,
branch is trivially a(m’ + 1)-split and every other branch is also
a(m’ + 1)-split as m’ < m and a = % is decreasing. The struc-
tural witness for split formulae (Lemma 2.19) then implies that
F'—a- M, # 0, and thus that F' Z a - M,,. This contradicts the

initial assumption and concludes the proof. [l

The property that the branches F; are not divisible by any
variable can be easily established by shifting the formula by a point
o that is a common non-zero of all the branches Fj. Indeed, if we
pick & such that F;(g) # 0 then no variable can divide F;(Z + o).
This reasoning is formalized in the following corollary.

COROLLARY 5.2. Let F = Y " F, be a multilinear sparse-
substituted a(m+-1)-split formula onn > 1 variables, where o = %

and R is the function given by Lemma 2.19. If no F; vanishes at
o, then F(z+5) # a- [}, ; for any non-zero constant a.

PROOF.  Since the branches of F' are a(m+1)-split, the branches
of F(Z + o) are also a(m + 1)-split. By assumption, F;(d) #
0. Therefore, for each branch F; and variable z; € [n], F;(z +
0)|z;+-0 Z 0. This implies that no variables divide any F;(z + 7).
With this property established, apply Lemma 5.1 on F(z + &) to
conclude the proof. O

We now show how to lift Corollary 5.2 from split multilin-
ear sparse-substituted formulae to sums of multilinear sparse-
substituted bounded-read formulae. This yields our key lemma
— that for such formulae F' and a “good” shift &, F(Z + ) is not
divisible by a term of large degree. For brevity, in the intuition be-
low we discuss the simpler case of showing the formula is, instead,
not identical to a term of large degree.
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For the sake of contradiction suppose the opposite, i.e., that
F(z+40) = a-M,, for some non-zero constant a and large n. Shatter
F into F' = 0pF| 7. using the Shattering Lemma (Lemma 3.7),
and apply the same operations that shatter ' to M,. Observe
that zero-substitutions are shifted into substitutions by &, and that
OpM, |z (—#) is a non-zero term of degree n—|PUZ| provided that
no component of & vanishes. After an appropriate substitution for
variables outside of the set V' from the Shattering Lemma, we
obtain that F'(Z 4+ &) = &' - My for some non-zero constant @’ and
V C [n], where My denotes the product of the variables in V.

At this point we would like to apply Corollary 5.2 to derive a
contradiction. However, we need to have that [V| > 0 and that &
is a common non-zero of all the branches of F’. The former fol-
lows from the bounds in the Shattering Lemma provided n is suffi-
ciently large. To achieve the latter condition we impose a stronger
requirement on the shift & prior to shattering so that afterward &
is a common non-zero of the shattered branches. The Shattering
Lemma tells us that the factors of the branches of the shattered
formula are of the form 0z f|z.¢ where f is a subformula of some
F; and P C P. Therefore, we require that & is a common non-zero
of all such subformulae that are non-zero. This is what we mean
by a “good” shift.

One additional technical detail is that we must apply a substi-
tution to the variables outside of V' that preserves the properties
of & and does not zero M,,. This step is in the same spirit as the
argument in the proof of the structural witness for split formulae
(Lemma 2.19), namely that a typical assignment suffices.

With these ideas in mind, the key lemma is as follows.

LEMMA 5.3 (Key Lemma). Let F = c+ Y .", F;, where each
F, € Flxy,...,z,] is a non-constant multilinear sparse-substituted
read-k; formula, and c is a constant. If ¢ is a common non-zero of
the non-zero formulae of the form Op f|z.o where f is a subformula
of some F; and |[PUZ| < b= (k—m+1)-4k-R(k+2)- (log(t)+1),
then

F(z+0) & Dy,

for ¢ > w = (8k - R(k + 2))fF~™ ! (log(t) + 1), where k = > ki, ¢

i=1"Vis
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denotes the maximum number of terms in each substituted poly-
nomial, and R is the function given by Lemma 2.19.

PROOF. Assume the contrary, without loss of generality, that
F(z 4+ 7)) = Q- M, for some non-zero multilinear polynomial Q
and ¢ > w. If any variable divides (), factor that variable out and
increase ¢ by one. This way we can assume () is not divisible by
any variables.

We first argue that, without loss of generality, var(F;) C [¢] for
all ¢ € [m]. Suppose that some F; depends on a variable x; with
J & [£]. Replace F with F|;,.,,, and observe this is equivalent to
substituting 0 for z; in F(z+ ). We have My|,,. o = M, because
M, does not depend on z;, and Q" = Ql.;<0 #Z 0, because z;
does not divide (). The assignment ¢ remains a common non-zero
of the stated type of formulae, now with F; replaced by Fi]xjkgj.
If @' is divisible by any variables factor them out, and increase
¢ accordingly. Repeat this procedure until var(F;) C [¢] for all
i € [ml.

Note that these substitution may make some branches constant.
In this case combine these constant branches into a single constant
branch. Since all F; were originally non-constant, the quantity
k — m has not increased.

Define o = %. Shatter F' using Lemma 3.7. This produces the
sets of variables P, Z, and V. Let F' = 0pF| ;.. By the Shatter-
ing Lemma F' = ¢ + Z:Zl F! is a multilinear sparse-substituted
formula that has top fanin m’+1 < k+1, is a(m’ + 2)-splity, and
each F] is a product of factors of formulae of the form 0pf]|z0
where f is a subformula of an F; and P C P. Assume without loss
of generality that each F is non-zero. By the lemma, |[PU Z| < b.
By hypothesis, the subformulae of the above form do not vanish at
7. These properties imply that F!(7) # 0 for each i € [m/].

There is an assignment to the variables in [¢]\V that: (1) pre-
serves & as a non-zero of the F/’s on the remaining variables V', and
(2) differs in every component from . In fact, a typical assignment
suffices. To see this, consider the polynomial:

= (H F{hwa) - ]I @ =)

Je(([EN\V)
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The polynomial ® is non-zero because the F!’s do not vanish at
0. Thus, a non-zero assignment for ® satisfies the requirements
above. Pick § to be any such assignment.

Let F" = F'|qg\v)—g, where the Fj" are defined similarly. By
the first property of 3, F/(5) # 0. By the second property of 3,
My ((g\v)«(5—5) 18 @ non-zero term over the variables V. Then using
the initial assumption write

F'(z+0) = F'(Z+0)ln\v)e-0 = ¢ Melgonv) -0 = a - My,

for some non-zero constant a’. Now, F” € F[V] is a multilinear
sparse-substituted a(m’ + 2)-splity formula with top fanin m’ + 1,
where no branch vanishes at ¢. Thus, we obtain a contradiction
with Corollary 5.2 as long as |V| > 0. By the bound on |V| given
in the Shattering Lemma and then condition that ¢ > w, the latter
is the case for w > (8% - R(k + 2))* ™+ (log(t) + 1). O

5.2. Generator for Shifted Multilinear Formulae. In this
subsection we show that the SV-generator hits small sums of
specially shifted multilinear sparse-substituted bounded-read for-
mulae. Our argument critically relies on the property given in
Lemma 2.17 — that the SV-generator hits any class of polynomials
that is closed under zero-substitutions and such that no term of
high degree divides polynomials in the class.

In order to prove a usable theorem for our applications, we use
the Key Lemma (Lemma 5.3) to construct a class of polynomials
sufficient to apply Lemma 2.17. Let F be a formula, & be a shift,
and w be as in the statement of the Key Lemma. Consider F'(z+7).
By the Key Lemma, F(Z 4+ 7) & D,, for n > w. Now consider
substituting 0 for z; in F(z + &), this equivalent to substituting
oj for x; in F' then shifting all other variables by . This means
that the preconditions of the Key Lemma are satisfied for F’ |zj<_oj,
and hence F(Z + 7)|s;<0 € Dy, for n > w. This argument can be
repeated to get that each zero-substitution of F(Z + &) is not in
D,, for n > w. The set of polynomials which corresponds to all
zero-substitutions of F(Z+d) serves as the set P in the application
of Lemma 2.17. This, in turn, implies that G, ,, hits F'(Z+4¢), since
it is a member of this set of polynomials.
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THEOREM 5.4. Let F = ¢+ Y ."| F;,, where ¢ is a constant,
and each F; € F|xy,...,x,| is a non-constant multilinear sparse-
substituted read-k; formula. If ¢ is a common non-zero of the
non-zero formulae of the form Op f| 7.0 where f is a subformula of
some F; and |[PUZ| <b=(k—m+1)-4k- R(k+2)- (log(t) + 1),
then

F#0= F(Gupw+0)#0

for w > (8k - R(k + 2))* ™ (log(t) + 1), where k = >1" k;, ¢
denotes the maximum number of terms in each substituted poly-
nomial, and R is the function given by Lemma 2.19.

PROOF. Define the classes of formulae
F ={Flscs|S Cn|}, and FF ={F'(z+07)| F' € F}.

Observe that F’ is closed under zero-substitutions because F is
closed under substitutions by ¢ and for any variable z;,
F/("Z‘ + 6)|$j<—0 = (F/|$j<_0'j)(i + 6)'

Without loss of generality each I’ € F has at most one top
level branch which is constant, since constant branches can be col-
lected into a single constant branch without compromising any of
the relevant properties of F”. Observe that for each F' € F, the
assignment & remains a common non-zero of the subformulae of F’
under at least b partial derivatives and zero-substitutions, because
we are performing a partial substitution of & itself. Therefore, for
each " € F, the preconditions of Lemma 5.3 are met and hence
F'(z+07) & Dy, for £ > w. This implies that F’ is disjoint from Dy,
for ¢ > w. Lemma 2.17 then says that G,,,, hits 7', and F(Z + &)
in particular. U

5.3. Non-Blackbox Reduction. In this subsection we focus on
giving a non-blackbox reduction from identity testing multilinear
sparse-substituted ¥™-read-k formulae to identity testing multilin-
ear sparse-substituted read-k formulae on n variables. The exten-
sion from multilinear to structurally-multilinear formulae follows
immediately by the transformation £ from Section 2.1.4, and we
incorporate it into the proof of the main non-blackbox result in
Section 6.1.
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The first step of the reduction is to compute an appropriate shift
o using an identity test for multilinear sparse-substituted read-k
formulae. One technical complication is to ensure that the formula
has gates that are explicitly multilinear, so that partial derivatives
can be computed efficiently. This can be done using an identity
test for multilinear sparse-substituted read-k formulae. We also
evaluate the constant parts of the formula in an effort to reduce
the effective number of subformulae that must be tested recursively
when computing 6. Once we have &, we simply evaluate F'(G), ., +
) on sufficiently many points and see whether we obtain a non-
zero value.

LEMMA 5.5 (¥™-Read-k PIT < Read-k PIT — Non-Blackbox Mul-
tilinear). For any integer k > 1, given a deterministic identity test
for multilinear sparse-substituted read-k formulae that runs in time
T(k,n,s,t), there is a deterministic identity test for multilinear
sparse-substituted X"-read-k formulae that runs in time

E2m2nC® Tk, n, O(slog(kmnb*?))), t) 4 nOwmk 1os®+1) o]y (),

where s denotes the size of the formula, n the number of vari-
ables, and t the maximum number of terms in each substituted
polynomial, b = ((k — 1)m + 1) - 4km - R(km + 2) - (log(t) + 1),
Wy e = (8km - R(km + 2))*k=Um+1 and R is the function given by
Lemma 2.19.

PROOF. Let F =3 " F;, where each F; is a multilinear sparse-
substituted read-k formula. Let b be sufficient to apply Theo-
rem 5.4 with the parameters k; = k, m, and n.

Ensuring syntactic multilinearity. Observe that since F; is a read-k
formula there are at most kn gates in F; whose children both con-
tain variable occurrences. Call these gates the essential gates of F;.
Process each of the F; from the bottom up, making the children of
multiplication gates variable disjoint. To do this, at each essential
gate g in F; compute the set of variables that g depends on. This
can be done using the hypothesized identity test on the first order
partial derivatives of g with respect to each variable. These partial
derivatives can be efficiently computed as the children have been
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previously processed to have variable disjoint multiplication gates.
Set variables that g does not depend on to 0, though only within
the subformula ¢g. Note that this does not affect the polynomial
computed at each gate of F}; it merely removes extraneous variable
occurrences. Since F; has at most kn essential gates, this step uses
at most kmn? applications of the read-k identity test and a poly(s)
amount of local computation.

Shrinking the number of subformulae. Let g be an essential gate of
F;. Let ¢’ be the unique gate above g which is either the output
or a child of an essential gate (it may be that ¢ = g). Write
g = ay9 + B, for constants o, and 3, determined by evaluating
the constant part of the formula between ¢ and ¢'.

Let F be the set of all variables {x;}, , unioned with the
set of all non-zero formulae of the form Opf|z. o where f is one
of {g, ayg, ay9+ B,} for some essential gate g of a branch Fj,
and |P U Z| < b. Notice that the elements of F are multilinear
sparse-substituted read-k formulae because each g is of that type,
and that type of formulae is closed under partial derivatives and
substitutions. The elements of F have size s as multilinear sparse-
substituted read-k formulae. To see this, observe that g is explicitly
a subformula of F; and hence has size s. Let ¢’ be the unique
gate above ¢ which is either the output of F; or a child of an
essential gate. By construction ¢’ = a,9 + f, and since ¢’ is a
subformula of Fj, the polynomial ozg + 3, can be expressed by a
size s multilinear sparse-substituted read-k formula. Finally, note
that the polynomial a,g can be expressed as a size s formula by
taking ¢’ and dropping all addition branches that diverge from
the path between ¢’ and ¢ (i.e., oy = 0Jy¢’). There are at most
n 4 3kmnbtt < 4kmn®*! formulae in F. Since the multiplication
gates of F' are variable disjoint this implies that the formulae in F
can be enumerated in time |F| - poly(s).

Finding a common non-zero of F. Define the polynomial & =
[I;er f # 0. All the formulae in F are multilinear. This means
that ® has total degree at most 4kmn’*2. By the Schwartz-Zippel
Lemma we only need to test elements from a subset W from F
(or an extension field of IF) of size at most the degree of ® plus
one. We can use trial substitution to determine a point, 6 € F"
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where @ is non-zero, in a manner similar to finding a satisfy-
ing assignment to a CNF formula given a SAT oracle: For each
variable, in turn, determine a value from W that keeps ® non-
zero. Fix the variable to this value, and then move on to consider
the next variable. This uses at most 8kmn’™ identity tests on
a partially substituted version of ®. Each of these identity tests
on ® uses at most 4kmn’*! identity tests to test the individual
factors of ®. In total, our algorithm uses at most 72k?m?2n2+4
identity tests on multilinear sparse-substituted read-k formulae to
compute o. Note that the substitution of values from W may
increase the individual size of the formulae in F by an additive
amount of O(slog(kmn®*3)) overall. Thus we can compute & in
72k2m2n® T - T(k,n, s(1 + O(log(kmnbT3))), ) time using the as-
sumed identity test.

Putting everything together. We conclude by arguing that o suf-
fices to apply Theorem 5.4 to show that Gy u,, ,-(ogt+1) + 0 hits
F. Suppose we recursively transform F', by replacing the subfor-
mula ¢’ rooted at the root or at a child of an essential gate in a
branch Fj, with the formula ayg + 3, where g is the first essen-
tial descendant of ¢’. The resulting formula F' is equivalent to
F, but has at most 3kmn gates. Moreover for every subformula
f of F and sets |[P U Z| < b, the polynomial dpf|z (if non-
zero) appears in F by construction. This implies that & is satisfies
the conditions for Theorem 5.4 with respect to F. Since F = F,
F = 0iff F(Gpuw,,,-(ogt+1) +7) = 0. By multilinearity, the for-
mula F' has degree at most n and the SV-generator has degree n.
Since the SV-generator is computable in polynomial time, apply-
ing Proposition 2.10 gives a test for F'(z 4+ &) that runs in time
nOWmi-(logt+1) holy(s). This is the identity test we desired. Com-
bining the running time for all parts gives the total running time
claimed. 0

5.4. Blackbox Reduction. We begin by describing a blackbox
version of Lemma 5.5, i.e., a blackbox reduction for multilinear
sparse-substituted formulae. The overall approach is the same,
though the details are somewhat simpler. With Theorem 5.4 in
hand, all that remains is to demonstrate an appropriate shift lies
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in the image of a generator for multilinear sparse-substituted read-
k formulae and then apply the theorem to complete the reduction.

LEMMA 5.6 (¥™-Read-k PIT < Read-k PIT — Blackbox Multilin-
ear). For an integer k > 1, let G be a generator for n-variate multi-
linear sparse-substituted read-k formulae. Then G +Gn,wm7k-(log(t)+1)
is a generator for n-variate multilinear sparse-substituted ¥ -read-
k formulae, where w, ; = (8km - R(km+2))*k=Ym+1 + denotes the
maximum number of terms in each substituted polynomial, and R
is the function given by Lemma 2.19.

PrROOF. Let F be a multilinear sparse-substituted X™-read-k
formula. Write F' = """ | F;, where each Fj is a multilinear sparse-
substituted read-k formula.

Let b = ((k — 1)m + 1) - 4km - R(km + 2) - (log(t) + 1) and
W = Wy - (log(t) + 1); in other words, sufficient parameters for
applying Theorem 5.4 with m and k; = k.

Let F be the set of all non-zero formulae of the form 9p f|z. o
where f is a subformula of some F; and P, Z are disjoint sets of
variables with [P U Z| < b. Consider the polynomial ® =[] f.
Note that & # 0, and that each f € F is multilinear sparse-
substituted read-k formula with at most ¢ terms in each substituted
polynomial.

Since G is a generator for multilinear sparse-substituted read-
k formulae and & is the product of multilinear sparse-substituted
read-k formula, G hits ®. Consequently, there is a point 5 with
components in a finite extension E O [F that witnesses the non-
zeroness of ®(G). This implies that no formula in F vanishes at
G(B3). By Theorem 5.4, G, ,-(og(t)+1) hits F(Z + G(B)). Thus,
G + Gnw,, j-(og(t)+1) hits F'; completing the reduction. O

In the blackbox setting the extension from multilinear sparse-
substituted to structurally-multilinear sparse-substituted formu-
lae takes some work. We first need to extend the Key Lemma
(Lemma 5.3).

5.4.1. Generalizing the Key Lemma. The statement of the
generalization for structurally-multilinear sparse-substituted for-
mulae is almost identical to the original one for multilinear sparse-
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substituted formulae, except that ¢ must be the common non-zero
of more formulae. The proof is via a reduction to the original
lemma. Here is the outline.

Let F' be a structurally-multilinear formula. Suppose that
F(z + &) € D, for some assignment . Recall the transformation
L discussed in Section 2.1.4. By a hybrid argument we show that
for each variable z; there is a degree d; such that substituting the
appropriate power of o; into the variables y; 4, for d < d;, makes
the multilinear sparse-substituted formula L(F') divisible by the
linear polynomial (y;4, — O']C-lj ). Doing this to L(F') for each j € [n]
produces a formula which is divisible by a shifted monomial in the
yja; variables. The only variables y; 4 that remain have d = d;, or
d > d;. The variables y; 4, will be the “z” variables when we apply
the Key Lemma. We fix the variables y; 4, for d > d;, to a typical
substitution, so that the relevant properties are preserved. The
result is a multilinear sparse-substituted formula in the variables
Yja; Which computes a shifted monomial. This allows us to reach
a contradiction by applying Lemma 5.3.

The remaining question is: What are the conditions on 67 &
must be a common non-zero of all the non-zero subformulae that
may be considered by the Key Lemma when the above process is
complete. However, we do not know a priori which choices our
proof makes for the d;, and hence which variables remain when
applying the Key Lemma. Therefore, we require that & be a com-
mon non-zero with respect to all possible choices of the d;. In
particular, we want ¢ to be the common non-zero of the non-zero
Op(Lxpuz)(f))|z<0 where f is a subformula of F', and P and Z
are sets of y; 4 variables. This way, independent of the choices the
proof makes for the d; the conditions of the Key Lemma can be
satisfied.

This intuition is formalized the following lemma.

LEMMA 5.7 (Generalized Key Lemma). Let F' = ¢+ Y. Fj,
where ¢ is a constant, and each F; € F[zy,...,x,] is a non-con-
stant structurally-multilinear sparse-substituted read-k; formula.
If 6 is a common non-zero of the non-zero formulae of the form
Op(Lxpuz)(f))|z<0 where f is a subformula of some F; and P, Z C
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Y ={ys; | ¢,j > 1} such that
|IPUZ|<b=(k—m+1)-4k - R(k + 2) - (log(t) + 1),

then
F(z+0) ¢ Dy,

for £ > w = (8k - R(k +2))* ™" (log(t) + 1), where k =Y _" ki, t
denotes the maximum number of terms in each substituted poly-
nomial, and R is the function given by Lemma 2.19.

PROOF. Assume the contrary, without loss of generality, that
F(z +0) = Q- M, for some non-zero polynomial @ and ¢ > w.

Denote F' = Y7 F, = L(F). As F # 0, for cach j € [n] there

must exist maximum d; > 1 such that

F|{yjyd<—0']d | dE[dj*].]} % 0

Observe that for each j € [{], Fls o,

= 0. In addition, by
Lemma 2.8, Part (ii), and the definition of L:

0

L(Fluyes))
L(F)

‘ {yjyd<—0? | d21}

- F|{yj,dw;? |d>1}

. al d
This means that F‘{yj,w—a? | detd; 1} has (y;.4,—0;’) as a factor. By
repeating this argument sequentially for every j € [n], and using
the fact that substitutions on multilinear polynomials commute,

we obtain a sequence (dy,...,d,) € N" such that

F = ZF@/ - Fl{yj,d%a;ﬂjzl,de[dj—l}} 7‘é 0.

=1

Moreover, F” is a multilinear sparse-substituted m-sum of read-k;
formulae and

A d]
Fr=qQ- H(yj,dj_aj )
]

jew
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for some non-zero polynomial )" and integer ¢’. We have ¢/ > {
because each j € [¢] must produce such a linear factor (the j €
[n]\[¢] may or may not contribute such factors). Partition ¥ =
{yja | j,d > 1} into three sets depending on whether d < d;, d =
dj, or d > d;. Call these three sets Y=, Y=, and Y~ respectively.

Consider a subformula f’ of some Fi’ and let f and f, re-
spectively, be the corresponding subformulae of F; and Fi. Let
P,Z C Y= be such that |[PU Z| < b and apf’|ZH) % 0. By
Lemma 2.8, Part (iv), and then the definition of a:

(o)t
= (aP(ﬁX(PUZ)(f)”Z(—O) ‘{l’jFUj | 7>1} # 0.

The substitution on the LHS of the above equation can be par-
titioned corresponding to the sets Y<, Y=, and Y~. We drop the
substitutions associated with Y ~; this keeps the formula non-zero.
Since f is multilinear, P, Z C Y=, and Y~ is disjoint from Y <, the
substitutions of variables from Y= commutes with partial deriva-
tives on P and zero-substitutions on Z. This fact allows us to push
the substitutions over Y'< closer to f (to form f’ ), and reach the
following conclusion

CHn .
= (3Pf|Z<—0>

{vrat-o? | 21} 7 0

This argument shows that substituting o’ = ajj for all j € [n] into

Y= does not zero the formula 0p f’ | zc-0. Moreover, this argument
is generic with respect to the choice of f’ , P, and Z, so the substi-
tution & for Y= does not zero dp f’ |70 for any subformula f' of
F’, and any choice of disjoint P, Z C Y= satisfying |[PUZ| <b.
However, the resulting formulae are over Y~ UY = not just Y=.
Observe that @)’ may only depend on variables from Y~ because
F” is multilinear. Fix the variables of Y™ so that &' is a common
non-zero of the formulae dp f’ |70, and @’ is not zeroed (for this,
a typical substitution suffices). Let F” be the result of applying
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this substitution to F’. We have that

F'=Q" 1] Wi, — o)),
)

jel

for some non-zero polynomial @”, is a multilinear sparse-
substituted formula over only the variables in Y'=. Define 2} = y; 4,

for all j € [n]. Then F”(# + ') is a term of degree ¢'. Further-
more, we argued that for all subformulae f” of F” and disjoint
sets P,Z C Y=, with |[PU Z| < b, we have that " does not zero
Op f” |7c0. Collect the constant branches of F" into a single con-
stant branch; the resulting formula satisfies all preconditions of
Lemma 5.3, and a contradiction immediately follows. 0

Note that if the given structurally-multilinear formula is in fact
a multilinear formula, then the conditions of the lemma are equiv-
alent to the conditions of Lemma 5.3 (up to a relabeling of the
variables). Also note the proof of Lemma 5.7 only used sets P and
Z that are disjoint, and that contain at most one y variable that
corresponds to each z;, so we could have relaxed the statement of
the lemma accordingly.

5.4.2. Blackbox Reduction for Structurally-Multilinear
Formulae. We are now ready to generalize Lemma 5.6 to
structurally-multilinear formulae. We first observe that Theo-
rem 5.4 generalizes to structurally-multilinear formulae.

THEOREM 5.8. Let F' = ¢+ Y. " F;, where ¢ Is a constant,
and each F; is a non-constant structurally-multilinear sparse-
substituted read-k; formula on n variables. If ¢ is a common
non-zero of the non-zero formulae of the form 0p(Lxpuz)(f))|z<o
where f is a subformula of some F; and P,Z C {y,; | {,j > 1},
|[PUZ|<b=(k—m+1)-4k- R(k + 2) - (log(t) + 1), then

F#£0= F(Guw+07)#0,
for w > (8k - R(k + 2))* ™ (log(t) + 1), where k = >" ki, t

denotes the maximum number of terms in each substituted poly-
nomial, and R is the function given by Lemma 2.19.
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PROOF. Observe that the statement of this theorem is the same
as Theorem 5.4 except that it takes on the conditions associated
with Generalized Key Lemma (Lemma 5.7). To prove this theorem
follow the proof of Theorem 5.4, but use the stronger preconditions
to apply Lemma 5.7 instead of Lemma 5.3. U

With Theorem 5.8 in hand, we can argue the following gener-
alization of Lemma 5.6. The statement is identical to the orig-
inal except that “multilinear sparse-substituted” is replaced by
“structurally-multilinear sparse-substituted”.

LEMMA 5.9 (¥™-Read-k PIT < Read-k PIT - Blackbox
Structurally-Multilinear).  For an integer k > 1, let G be a
generator for n-variate structurally-multilinear sparse-substituted
read-k formulae. Then G + Gy, ,-(og(t)+1) 1S a generator for n-
variate structurally-multilinear sparse-substituted »"-read-k for-
mulae, where wy,; = (8km - R(km + 2))*~Vm+1 + denotes the
maximum number of terms in each substituted polynomial, and R
is the function given by Lemma 2.19.

PrROOF. The proof is the same as in the original version except
that Theorem 5.8 is applied instead of Theorem 5.4. This means
that the class F of polynomials which & is a common non-zero
of must be larger to account for the stronger preconditions of the
theorem. 0

6. Identity Testing Read-£ Formulae

Before moving on to prove our main theorems, we briefly stop to
recall the overall approach. For clarity we only state the non-
blackbox approach; the blackbox approach follows a similar pat-
tern. We construct an identity test for structurally-multilinear
read-k formulae using four tools.

LEMMA 4.1 — areduction from identity testing multilinear sparse-
substituted read-(k + 1) formulae to identity testing multi-
linear sparse-substituted X?-read-k formulae.
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LEMMA 5.5 — a reduction from identity testing multilinear sparse-
substituted ¥2-read-k formulae to identity testing multilinear
sparse-substituted read-k formulae.

COROLLARY 4.3 — an identity test for multilinear sparse-
substituted read-once formulae.

LEMMA 2.8 (Parts (i) & (ii)) — a reduction from identity testing
structurally-multilinear read-k£ formulae to identity testing
multilinear sparse-substituted read-k formulae.

Combining the first two reductions reduces identity testing mul-
tilinear sparse-substituted read-(k + 1) formulae to identity test-
ing multilinear sparse-substituted read-k formulae. Applying this
observation recursively and combining it with Corollary 4.3 as
the base case, establishes an identity test for multilinear sparse-
substituted read-k for arbitrary (not necessarily constant) k. We
then plug in Lemma 2.8 to lift this result to structurally-multilinear
formulae.

In the blackbox setting we deal directly with structurally-
multilinear formulae. In the last subsection we develop a spe-
cialized blackbox identity test for structurally-multilinear sparse-
substituted read-k formulae of constant depth.

6.1. Non-Blackbox Identity Test. Combining Lemmas 4.1,
5.5, 2.8, and Corollary 4.3 in the way suggested above proves the
following main result.

THEOREM 6.1 (Main Result — Non-Blackbox). There exists a
deterministic polynomial identity test for structurally-multilinear
sparse-substituted formulae that runs in time

$OW) () ® tog)+1),

where s denotes the size of the formula, n the number of variables, k
the maximum number of substitutions in which a variable appears,
t the maximum number of terms a substitution consists of, and d
the maximum degree of individual variables in the substitutions.
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Proor. Consider a structurally-multilinear sparse-substituted
read-k formula F'. In time polynomial in the size of F' we can com-
pute the transformed formula F’ = L(F') given in Definition 2.7.
By Lemma 2.8, Parts (i) and (ii), F is non-zero iff F’ is, and F” is
a multilinear sparse-substituted read-k formula of size s’ = poly(s)
on n’ < dn variables where each substitution contains at most
t' =t terms.

In order to identity test F’, we apply a recursive procedure
based on the reductions from Lemma 4.1 and Lemma 5.5, with
the base case given by Corollary 4.3. It remains to analyze the
running time T'(k,n’, s, t') of the resulting algorithm, which we do
by induction on k.

By Corollary 4.3, T'(1,n/,s',t') = poly(s’). Consider the induc-
tion step from k to k + 1. By Lemma 5.5 we can test multilinear
sparse-substituted Y2-read-k formulae of size s’ on n’ variables with
sparsity ¢ in time k*n'® - T'(k,n/, s'blog(2kn’),t') + n'* - poly(s')),
where b = O(k'*logk - (log(t') + 1)) and w = k%P (log(t') + 1).
By Lemma 4.1 this means that T'(k + 1,n/,s",#) = O(kn'(k*n'® -
T(k,n',s'blog(2kn’),t") +n" - poly(s')) + poly(s’)). Moreover, the
proofs of Lemma 4.1 and Lemma 5.5 show that the reductions can
be uniformly constructed from k£ and that the constants hidden in
the Big-Oh notations are independent of k. Solving the recurrence
for T' and using the facts that n’ < dn, s’ = poly(s), and ¢ = ¢, we
obtain the claimed bound. 0

This theorem instantiates to the non-blackbox part of Theo-
rem 1.2 when the read k is constant and further to the non-blackbox
part of Theorem 1.1 when t = d = 1. Using transformations differ-
ent from £ (Definition 2.7) it is possible to attain alternate (often
incomparable) running-time parameterizations in the main theo-
rem.

6.2. Blackbox Identity Test. We proceed analogously to the
previous subsection but skip the intermediate step of multilinear
sparse-substituted formulae. We first argue that the SV-generator
works for structurally-multilinear sparse-substituted read-once for-
mulae — this extends the argument in Shpilka & Volkovich (2009),
which works for read-once formulae. Additionally, the argument is



72 Anderson, van Melkebeek & Volkovich

stated with respect to a depth parameter to make a later special-
ization to constant-depth more concise.

The idea is the following. We recurse on the structure of
the structurally-multilinear sparse-substituted read-once formula
F and argue that the SV-generator takes non-constant subformu-
lae to non-constant subformulae. There are three generic cases,
based on the top gate of F: (i) addition, (ii) multiplication, and
(iii) a sparse-substituted input.

In case (i), the fact that F' is read-once implies that addition
branches are variable disjoint. This means that there is a variable
whose partial derivative eliminates at least half of the formula and
reduces the depth by one. Combining this fact with Lemma 2.14
completes the case. In case (ii), the fact that the SV-generator
takes non-constant subformulae to non-constant subformulae im-
mediately implies that if the SV-generator hits the children of a
multiplication gate it also hits the gate itself. In case (iii) we can
immediately conclude using Lemma 2.15.

LEMMA 6.2. Let F' be a non-zero structurally-multilinear sparse-
substituted depth-D read-once formula on n variables. Then G, .,
hits F' for w = min {[log [var(F)|], D} + [logt]+1, where t denotes
the maximum number of terms in each substituted polynomial.
Moreover, if F' is non-constant then so is F(Gy, ).

Proor. We proceed by structural induction on F. When F' is
constant, F(G,,) = F and the lemma trivially holds. When F is
a non-constant sparse-substituted input with ¢ terms, F(G,, ) is
non-constant for w > [logt] 4+ 1 by Lemma 2.15. In the induction
step F'is non-constant and not a sparse-substituted input. There
are two induction cases.

Case (i): The top gate of F' is an addition gate: F = > " [},
where the F;’s are structurally-multilinear sparse-substituted
depth-(D — 1) read-once formulae. If " has only one non-constant
branch, say Fj, the induction hypothesis implies that Fi(Gp) is
non-constant and hence F'(Gy,.,) is non-constant. Otherwise, as-
sume that the branches F; and F5, are non-constant. Then, because
F' is read-once: F; and Fy are variable disjoint, without loss of
generality |var(F))| < w, and for any x € var(Fy) there exists
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v € F such that 9, ,F = 0, ,(>1", F}) = Oy F1 # 0. Thus, 0, ,F
has depth at most D — 1 and depends on at most ‘VLQ(F” variables.

Observe that

i { [0 1) g1

The induction hypothesis immediately gives that the 0, ,F # 0 is
hit by Gy, 1. Applying Lemma 2.14 implies that F'(Gp—1+Gn 1)
is non-constant. By the Proposition 2.12, Part (iii), G, w—1+Gn1 =
G, completing this case.

Case (i): The top gate of F is a multiplication gate: F' =[], F,
where the F; are structurally-multilinear sparse-substituted depth-
(D —1) read-once formulae. The induction hypothesis immediately
implies that G, hits each F;, where v’ = min{[log |var(F)|], D —
1} + [logt] + 1. Further, at least one F; must be non-constant and
each F;(G,, ) is non-constant if F; non-constant. Combining this
with the fact that w > w’ implies that F'(G,, ) is non-constant,
completing this case. U]

We formally conclude using Lemmas 4.4, 5.9, and 6.2 to prove
the following main result.

THEOREM 6.3. For some function w, = k°®), the polynomial
map G ,-(log(t)+1)+klogn 1S & hitting set generator for structurally-
multilinear sparse-substituted formulae, where n denotes the num-
ber of variables, k the maximum number of substitutions in which
a variable appears, and t the maximum number of terms a substi-
tution consists of.

Proor. We proceed by induction on £ and argue that we can
set wy, equal to the value wy ) from Lemma 5.9. The base case
is immediate from Lemma 6.2. Consider the induction step for
arbitrary k. Assume that G = G, u,.(log(t)+1)+klogn 15 a genera-
tor for structurally-multilinear sparse-substituted read-k formulae.
Lemma 5.9 with m = 2 implies that G + G}, u,.(log(t)+1) 1S & gener-
ator for structurally-multilinear sparse-substituted X2-read-% for-
mulae. Apply Lemma 4.4 to G' = G + Gy w-(log(t)+1)- Lhis gives
that G w,-(log(t)+1)+klogn + Grwe-(og(t)+1) + Grjogn 1S & generator
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for structurally-multilinear read-(k + 1) formulae. Apply the basic
properties of the SV-generator from Proposition 2.12, Part (iii), to
get that a total seed length of 2wy - (log(t)+1)+ (k+1) log n suffices
to hit structurally-multilinear read-(k + 1) formulae. Observe that
2wy < wgy1, and the theorem follows. O

A structurally-multilinear formula F' on n variables, with indi-
vidual degree d, has total degree at most dn. The SV-generator
G, With output length n has total degree at most n. Combining
these facts and Proposition 2.10 with Theorem 6.3 establishes the
following.

THEOREM 6.4 (Main Result — Blackbox). There exists a de-
terministic blackbox polynomial identity test for structurally-
multilinear sparse-substituted formulae that runs in time

(dn) KO (log(t)+1)+O(k log n)

and queries points from an extension field of size O(dn?), where
n denotes the number of variables, k the maximum number of
substitutions in which a variable appears, t the maximum number
of terms a substitution consists of, and d the maximum degree of
individual variables in the substitutions.

This theorem instantiates to the blackbox part of Theorem 1.2
when £ is constant and further to the blackbox part of Theorem 1.1
when t =d = 1.

6.3. Special Case of Constant-Depth. We can improve the
running time of our blackbox constant-read identity test by fur-
ther restricting formulae to be constant-depth. We consider only
the blackbox case because that is where we can get a substan-
tial improvement. In the constant-depth setting we allow addition
and multiplication gates that have arbitrary fanin. In order to
specialize our previous argument to the constant depth case, we
first give a version of the structurally-multilinear Fragmentation
Lemma (Lemma 3.6) parameterized with respect to the depth. We
then carry through the different parameterization in Lemma 4.4
and Theorem 6.3.
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LEMMA 6.5 (Bounded-Depth Fragmentation Lemma). Let V' be
a non-empty set of variables, k > 2, D > 1, and F' be a depth-
D structurally-multilinear sparse-substituted ready -k formula such
that V' C var(F'). Let t denote the maximum number of terms in
each substituted polynomial. There exists a variable x € V and
« € F such that Or.oF' iIs non-zero and is

(i) either the product of formulae of depth at most D —1, or else
(ii) a single XF-ready-(k — 1) formula.

Moreover, in each case the factors are of the form g or 0, ,g where
g is a subformula of F.

Note the stronger either/or format of the Bounded-Depth Frag-
mentation Lemma in comparison with the general Fragmentation
Lemma (Lemma 3.6). Another difference is that the proof of the
former is straightforward.

PrROOF. First note that since V' C var(F), for each z € V there
is an a € F with Op ol # 0. Pick any such a (for the x we will
select below).

There are two cases based on the output gate of F. Consider
the case where ' = [], g;. In this case F' is already the product
of subformulae that have depth at most D — 1, and by structural
multilinearity the same holds for every directional partial derivative
of F'. This completes the first case.

Consider the case where F' = ). g;. Suppose g; contains k
occurrences of some x € V. Then 0, o' = 0,491 is adepth D — 1
formula. Otherwise, no g; contains k occurrences of any individual
variable in V, so F itself is a ¥*-ready-(k — 1) formula, and so is
every directional partial derivative of F'. Selecting any x € V does
the job then. This completes the second case. U]

Lemma 6.5 leads to the following variant of Lemma 4.4 in the
bounded-depth setting.

LEMMA 6.6. For an integer k > 1, let G be a generator for n-
variate structurally-multilinear sparse-substituted depth-D ¥*+1-
read-k formulae and let F' be a non-zero n-variable structurally-



76  Anderson, van Melkebeek & Volkovich

multilinear sparse-substituted depth-D read-(k+1) formula. Then
Q + Gn,D hits F'.

PrROOF. First observe that if F' is read-k, we are immediately
done because F(G) # 0 and 0 is in the image of the SV-generator
(by the first item of Proposition 2.12).

The proof goes by induction on D. If D = 0, the lemma holds
trivially as F' is constant. If D = 1, F' is a read-once formula,
which is covered by the above observation. For the induction step,
by the above observation we can assume that F' is read-(k + 1)
and not read-k. Therefore, F' meets the conditions to apply the
second part of the Fragmentation Lemma for bounded depth for-
mulae (Lemma 6.5). The lemma produces a variable x € var(F')
and o € F. The factors of Oy oF" all have depth at most D — 1
and are structurally-multilinear read-(k + 1) formulae, except for
at most one which might be a X¥*!l-read-k formula. The induc-
tion hypothesis gives that the former factors of 9, o F' are all hit by
G + G, p-1. The latter factor (if it occurs) is hit by G. Applying
Lemma 2.14 gives that G + G, p—1 + G, 1 hits F'. Recalling Propo-
sition 2.12, Part (iii), implies that G + G,, p hits F. O

We can use the previous lemma with Lemmas 5.9 and 6.2 to
construct a hitting set generator specialized to bounded depth.
The proof is almost identical to Theorem 6.3, except that fanin of
the reduced instance increases to k + 1 from 2. This weakens the
parameterization of the seed length with respect to k.

THEOREM 6.7. For some function w, = kO**), the polynomial
map G, (log(t)+1)+kD 1S a hitting set generator for structurally-
multilinear sparse-substituted depth-D formulae, where n denotes
the number of variables, D the depth of the formula, k the max-
imum number of substitutions in which a variable appears, and t
the maximum number of terms a substitution consists of.

Proor. We proceed by induction on k and argue that we
can set wy equal to the value wyiqy from Lemma 5.9. The
base case is immediate from Lemma 6.2. Consider the induc-
tion step for arbitrary k. Assume that G = G, ;. (log(t)+1)+kD 1S
a generator for structurally-multilinear depth-D read-k formulae.
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Lemma 5.9 with m = k + 1 implies that G + G}, w,-(ogt)+1) 15 a
generator for structurally-multilinear depth-D ¥*+!-read-%k formu-
lae. Apply Lemma 6.6 to G' = G + Gy uw,-(og(t)+1)- Lhis gives
that G, uwy.(log(t)+1)+kD + Gnowg-(ogt)+1) + Gn,p 1S a generator for
structurally-multilinear depth-D read-(k + 1) formulae. Apply the
basic properties of the SV-generator from Proposition 2.12, Part
(i), to get that a total seed length of 2wy, 1 - (log(¢t)+1)+ (k+1)D
suffices to hit structurally-multilinear depth-D read-(k+ 1) formu-
lae. Observe that 2wy < w1, and the theorem follows. OJ

Analogous to the unbounded-depth setting, combining Theo-
rem 6.7 with Proposition 2.10 establishes the following theorem.

THEOREM 6.8 (Improvement for Bounded-Depth Formulae).
There exists a deterministic blackbox polynomial identity test
for structurally-multilinear sparse-substituted formulae with un-
bounded fanin that runs in time

(dn)k0<k2> (log(t)+1)+0 (kD)

and queries points from an extension field of size O(dn?), where n
denotes the number of variables, D the depth of the formula, k the
maximum number of substitutions in which a variable appears, t
the maximum number of terms a substitution consists of, and d
the maximum degree of individual variables in the substitutions.

The important difference between the above theorem and The-
orem 6.4 is that the exponent no longer depends on n. When the
read of a formula is constant we obtain the following corollary.

COROLLARY 6.9. There exists a deterministic blackbox polyno-
mial identity test for structurally-multilinear sparse-substituted
constant-depth constant-read formulae that runs in time (dn)°{°8?)
and queries points from an extension field of size O(dn?), where n
denotes the number of variables, t the maximum number of terms
a substitution consists of, and d the maximum degree of individual
variables in the substitutions.

Additionally, if the sparsity of substituted polynomials is con-
stant the algorithm runs in polynomial time. In particular, we
obtain the following corollary.
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COROLLARY 6.10. There is a deterministic polynomial-time
blackbox identity test for multilinear constant-depth constant-read
formulae.

Note that in much of the prior work the term “constant-depth
circuit” is used instead of “constant-depth formula.” The two no-
tions are equivalent in the sense that the standard transformation
between circuits and formulae preserves the depth while yielding
only a polynomial blow-up in the size. See (Raz & Yehudayoff
2008; Shpilka & Yehudayoff 2010) for further discussion. In gen-
eral this transformation does not preserve the read value. In fact,
it is meaningless to define “read-k circuits” since in a circuit the
fanout of a gate is unbounded. However, in the cases we consider
the read value is never affected.

Recently, Agrawal et al. (2012) used the notion of algebraic de-
pendence and presented a unified approach for obtaining identity
tests for constant-depth constant-read formulae. In fact, they de-
velop a polynomial-time blackbox identity test for constant-depth
constant-read formulae with addition, multiplication, and power-
ing gates,? without the restriction of multilinearity. However, their
technique requires unbounded field characteristic and thus only
subsumes Theorem 6.8 (and other constant-depth constant-read
results (Karnin et al. 2013; Saraf & Volkovich 2011; Shpilka &
Volkovich 2009)) in the case of characteristic zero fields.
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