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DERANDOMIZING ISOLATION IN SPACE-BOUNDED SETTINGS\ast 

DIETER VAN MELKEBEEK\dagger AND GAUTAM PRAKRIYA\dagger 

Abstract. We study the possibility of deterministic and randomness-efficient isolation in space-
bounded models of computation: Can one efficiently reduce instances of computational problems
to equivalent instances that have at most one solution? We present results for the NL-complete
problem of reachability on digraphs, and for the LogCFL-complete problem of certifying acceptance
on shallow semi-unbounded circuits. A common approach employs small weight assignments that
make the solution of minimum weight unique. The Isolation Lemma and other known procedures use
\Omega (n) random bits to generate weights of individual bitlength O(logn), where n denotes the bitlength
of solutions. We develop a derandomized version for both settings that uses O((logn)3/2) random
bits and produces weights of bitlength O((logn)3/2) in logarithmic space. The construction allows
us to show that every language in NL can be accepted by a nondeterministic machine that runs
in polynomial time and O((logn)3/2) space,and has at most one accepting computation path on
every input. Similarly, every language in LogCFL can be accepted by a nondeterministic machine
equipped with a stack that does not count towards the space bound, that runs in polynomial time and
O((logn)3/2) space, and that has at most one accepting computation path on every input. We also
show that the existence of somewhat more restricted isolations for reachability on digraphs implies
that NL can be decided in logspace with polynomial advice. A similar result holds for certifying
acceptance on shallow semi-unbounded circuits and LogCFL.
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1. Introduction. Isolation is the process of singling out a solution to a problem
that may have many solutions. It is used in algorithms with an algebraic flavor
in order to prevent cancellations from happening. Examples include reductions of
multivariate to univariate polynomial identity testing [40, 2] and recent approaches to
the Hamiltonicity problem [11, 29, 20, 19]. The process also plays an important role in
the design of parallel algorithms, where it ensures that the various parallel processes
all work towards a single global solution rather than towards individual solutions that
may not be compatible with one another. Both uses culminate in the asymptotically
best known parallel algorithms for finding perfect matchings in graphs [48] and related
problems [38, 1, 45]. A wide range of other algorithmic applications of isolation exist
[60, 9, 10, 36, 58, 66, 51, 3, 47, 21, 61, 7, 27, 37, 31, 14, 39, 55, 12, 22, 32, 23, 46, 33]. In
complexity theory isolation constitutes a key tool to show that in some computational
models hard problems are no easier to solve on instances with unique solutions than
on general instances [16, and references in section 2]. This happens by establishing
efficient simulations on unambiguous machines, i.e., nondeterministic machines with
at most one accepting computation path on every input.

In this paper we focus on isolation and unambiguity in two space-bounded set-
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tings, namely the NL-complete setting of reachability on digraphs (denoted asReach-
ability), and the LogCFL-complete setting of certifying acceptance on shallow semi-
unbounded circuits (denoted as Circuit Certification). G\'al and Wigderson [30]
developed randomized isolations for those settings, and Reinhardt and Allender [52]
established efficient randomized unambiguous simulations. We investigate the possibil-
ity of deterministic isolations and unambiguous simulations and present both positive
and negative results for those settings.

Randomness enters these works [30, 52] via the Isolation Lemma: For any non-
empty set system over a finite universe U , a random assignment of small integer
weights to the elements of U likely makes the set of minimum weight unique. In the
context of Reachability, [52] applies the Isolation Lemma to construct a weight
assignment to the edges of a digraph G such that the following property holds with
high probability: For all vertices s and t, there is at most one path of minimum
weight from s to t in G. We call such a weight assignment min-isolating for G. The
process uses \Omega (n) random bits, produces weights of bitlength O(log n), and runs in
space O(log n), where n denotes the number of vertices of G. In fact, the process only
depends on the number of vertices; we refer to it as a weight assignment generator.

The crux of our positive results is a logspace weight assignment generator for the
specific settings considered that uses significantly fewer random bits at the expense of
slightly higher bitlengths. For technical reasons we restrict our attention to layered
digraphs and assign weights to the (internal) vertices rather than to the edges. These
are not essential differences,1 but they facilitate a natural iterative/recursive approach
towards the construction of the weight assignment and allow for a cleaner and unified
treatment. We state an informal version of the result here and refer the reader to
section 3 for the formal statement.

Theorem 1.1 (informal). There exists a min-isolating weight assignment gen-
erator for layered digraphs that uses O((log n)3/2) random bits, produces weights of
bitlength O((log n)3/2), and runs in space O(log n), where n denotes the number of
vertices.

We use Theorem 1.1 to derive the following isolation result for NL, where the
notation UTISP(t, s) stands for the class of languages accepted by unambiguous non-
deterministic machines that run in time t and space s.

Theorem 1.2. NL \subseteq UTISP(poly(n), (log n)3/2).

In words, every language in NL can be accepted by a nondeterministic machine
that runs in polynomial time and O((log n)3/2) space, and has at most one accepting
computation path on every input.

Theorem 1.2 should be contrasted with the current most space-efficient simu-
lation of NL on deterministic machines, which is given by Savitch's theorem [54]:
NL \subseteq DSPACE((log n)2). That simulation does not run in polynomial time. In fact,
the best upper bound on the running time is the one for generic computations in
DSPACE((log n)2), namely nO(logn). Reachability can be solved in linear time
and space using depth-first search or breadth-first search. The smallest known space
bound for a deterministic algorithm that decides Reachability in polynomial time
is only slightly sublinear, namely n/2\Theta (

\surd 
logn) [8].

On the ``negative"" side, we give evidence that certain restricted types of isolations
for Reachability will be hard to find (if they exist at all):

1The restriction of Reachability to layered digraphs remains NL-complete. We can reassign
the weight of a vertex to each of its outgoing edges without affecting the total weight of any solution.
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\circ When viewed as reductions from Reachability to itself, the isolations from
[30, 52] as well as ours map an instance x

.
= (G, s, t) to an instance f(x) where

the underlying graph contains more vertices than G. As such, solutions to the
reduced instance f(x) are not necessarily solutions to the original instance x.
One can ask for isolations f with the additional property that the solution to
f(x) is also a solution to x. We refer to such isolations as prunings.

\circ Suppose that in addition to computing a min-isolating weight assignment, we
can also compute the minimum weight of a solution in logspace. Then we can
trivially decide Reachability in logspace: There exists a path from s to t
in G if and only if the min-weight of the instance (G, s, t) is finite. What if
we have a logspace function that is only known to agree with the min-weight
when the latter is finite?

We show that the existence of either restricted type of isolation implies an inclusion
of complexity classes that is considered unlikely.

Theorem 1.3. Either one of the following hypotheses implies that NL \subseteq L/ poly:
1. Reachability on layered digraphs has a logspace pruning.2

2. Reachability on layered digraphs has a logspace weight function \omega that is
min-isolating, and there exists a logspace function \mu such that \mu (x) equals the
min-weight \omega (x) of x under \omega on positive instances x.

In fact, the conclusion holds even if the algorithms are randomized, as long as the
probability of success exceeds 2

3 + 1
poly(n) and the algorithms run in logspace when

given two-way access to the random bits.

Two-way access to the random bits means that the random bits are provided on
a dedicated tape to which the machine has two-way read access.

It is not clear to us that Theorem 1.3 should be viewed as a roadblock to reducing
the number of random bits and the bitlength in Theorem 1.1 from O((log n)3/2) down
to O(log n), which would show that NL = UL.

The corresponding results for Circuit Certification and the complexity class
LogCFL are stated in sections 4 (positive) and 5 (negative).

Techniques. The crux for our positive results is an iterative/recursive construction
of a min-isolating weight assignment generator. In both settings there are \Theta (log n)
levels of recursion. In the case of Reachability the subproblems at the kth level
correspond to the subgraphs induced by blocks of 2k successive layers of G.

We develop several methods to build a min-isolating weight assignment wk+1 at
the (k + 1)st level out of a min-isolating weight assignment wk at the kth level. The
methods represent different trade-offs between the seed length and the bitlength. Our
starting point is two simple constructions, namely one based on shifting, and one
based on universal families of hash functions. The shifting approach does not need
any randomness at all but yields bitlength \Theta ((log n)2). Hashing yields the smaller
bitlength O(log n) but needs \Theta ((log n)2) random bits. Either one of these simple
approaches on its own is sufficient to establish weaker versions of our positive re-
sults, namely where the randomness or space bound is increased from O((log n)3/2)
to O((log n)2), i.e.,

(1.1) NL \subseteq UTISP(poly(n), (log n)2).3

2The first part of the theorem is shown independently in [43]. See the paragraph on related
papers later in this section for more details.

3This weaker inclusion is shown independently in [35]. See the paragraph on related papers later
in this section for more details.
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The \Theta ((log n)2) bits of randomness in the hashing-based approach are composed
of \Theta (log n) bits to describe a fresh hash function at each of the \Theta (log n) levels of re-
cursion. The reason one needs a fresh hash function at each level is to avoid potential
stochastic dependencies. We show how to use shifting to preclude the existence of
such dependencies, allowing us to reuse the same hash function at \Theta (

\surd 
log n) levels.

This combination of shifting and hashing balances the seed length and bitlength to
\Theta ((log n)3/2) each and yields Theorem 1.1 and its counterpart for Circuit Certifi-
cation.

For Theorem 1.2 and its counterpart for LogCFL we need to get rid of the random-
ness completely. We could do so by exhaustively trying all random seeds and employ-
ing an unambiguous logspace machine of [52] to select one that yields a min-isolating
weight assignment. However, given that the number of random bits is \Theta ((log n)3/2),

an exhaustive search would require time n\Theta (
\surd 
logn). In order to do better, we exploit

the structure of the randomness---it consists of \Theta (
\surd 
log n) hash functions requiring

\Theta (log n) random bits each. Using unambiguous logspace machines from [52], this
allows us to pick the hash functions one by one, maintaining the invariant that the re-
sulting weight assignments are min-isolating for the corresponding levels, and then use
the final assignment to decide reachability unambiguously. As we can cycle through
all possibilities for a hash function at a given level in polynomial time, this yields a
full derandomization running in polynomial time and space O((log n)3/2).

The ``negative"" results, Theorem 1.3 and its counterpart for Circuit Certifi-
cation, follow along the lines of the argument for a similar result from [26] in the
time-bounded setting. The first part is the space-bounded equivalent of the main
result in [26]; it suffices to verify that the argument from the time-bounded setting
carries over to the space-bounded setting. The second part does not have a counter-
part in [26] but follows from a similar argument and some additional observations.

Related papers. There is a remarkable correspondence in terms of statements and
the high-level approach between Theorem 1.2 and the result by Saks and Zhou [53]
that BPL \subseteq DSPACE((log n)3/2). Both have a recursive structure, use hashing,4

need to get rid of stochastic dependencies so as to enable the reuse of the same hash
function at multiple levels of recursion, exploit the leeway created by the discrepancy
between the randomness and processing space (bitlength), and ultimately balance
them to \Theta ((log n)3/2) bits each. In contrast to [53], we do obtain the equivalent
of a pseudorandom generator. Another contrast is that we are able to improve the
running time to polynomial, which remains open in the case of BPL [15]. Our high-
level approach for the improvement is similar to that for the improvement from BPL \subseteq 
DSPACE((log n)2) in [49] to BPL \subseteq DTISP(poly(n), (log n)2) in [50].

The recent derandomization results for PerfectMatching on bipartite graphs
[28] and for polynomial identity testing (PIT) for read-once arithmetic branching
programs [2] also employ a combination of hashing and shifting but no balancing.
They need O((log n)2) random bits as opposed to our O((log n)3/2). It is an open
question whether our approach can be used to reduce the number of random bits in
those settings. This question is related to the reduction from multivariate (mul-
tilinear) PIT to univariate PIT based on isolation: If w : [n] \mapsto \rightarrow \BbbN is a weight
assignment to the variables that is min-isolating for the monomials that occur in
a nonzero n-variate polynomial P (x1, x2, . . . , xn), then the substituted polynomial
Q(t)

.
= P (tw(1), tw(2), . . . , tw(n)) remains nonzero.
Kallampally and Tewari [35] independently proved the weaker inclusion (1.1) that

4The paper [53] does so via Nisan's pseudorandom generator [49].
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follows from either of our starting points---the pure shifting approach that needs no
randomness and bitlength \Theta ((log n)2), and the pure hashing approach that needs
\Theta ((log n)2) random bits and yields bitlength O(log n). In their construction both
quantities are \Theta ((log n)2).

Krishan and Limaye [43] independently proved the first part of our ``negative""
results (Theorem 1.3 and its counterpart for LogCFL), which follow from a space-
bounded rendering of the main argument in [26].5 They verify in detail that the
argument from [26] carries over to the settings of Reachability and Circuit Cer-
tification. Our approach is to present some generic conditions for the argument
from [26] to apply, and show that the conditions hold in the settings of Reachabil-
ity and Circuit Certification.

Organization. In section 2 we introduce our terminology and survey prior work.
In section 3 we derive our positive results for Reachability and NL. The results
essentially also follow as corollaries to the corresponding results for Circuit Certi-
fication and LogCFL, which we prove from scratch in section 4. This organization
allows us to develop our ideas in the more familiar setting of Reachability and NL
in a gradual and somewhat informal way and suffice with a formal proof without much
intuition in the more general setting of Circuit Certification and LogCFL. We
spell out the connection in section 4.3. In section 5 we present our negative results
for both settings. In Appendix A we review results from [52] and present stronger
variants that we need for our results.

2. Preliminaries. We introduce our notation and terminology regarding isola-
tion and unambiguity and provide background on Reachability, Circuit Certi-
fication, and randomized isolations for those problems. We also present a formal
definition of the notion of a weight assignment generator and survey prior work on
derandomizing isolation.

2.1. Isolation and unambiguity. Let us define a computational (promise)6

problem as a mapping \Pi : X \mapsto \rightarrow 2Y from an instance x \in X to a set \Pi (x) of solutions
y \in Y , where x and y are strings that typically describe other types of objects.
Given an instance x \in X, the decision version of \Pi asks us to determine whether
\Pi (x) is nonempty. We denote by L(\Pi ) the set (language) of all instances x \in X
for which the decision is positive. The search version of \Pi asks us to produce a
solution y \in \Pi (x) or report that no solution exists. For example, for the NP-complete
problem of Satisfiability, x represents a Boolean formula and \Pi (x) its satisfying
assignments. For the NL-complete problem of Reachability, x represents a triple
(G, s, t) consisting of a directed graph G, a start vertex s, and a target vertex t, and
\Pi (x) is the set of paths from s to t in G.

A nondeterministic machine M is said to accept \Pi (or L(\Pi )) if for every x \in X,
M on input x has an accepting computation path if and only if x \in L(\Pi ). We say that
the machine M decides \Pi (or L(\Pi )) if M has an accepting computation path on every
x \in X, and on each such path M outputs a bit indicating whether \Pi (x) \not = \emptyset . Note
that the existence of a nondeterministic machine M that decides L(\Pi ) is equivalent to
the existence of nondeterministic machines M+ and M - of the same complexity that
accept L(\Pi ) and the complement of L(\Pi ), respectively. We say that M computes \Pi 

5The current version of the paper claims that the arguments also rely on [52], but the authors
agree that [52] is not needed there (personal communication).

6We use the prefix ``promise"" when we want to make it clear that the domain X of \Pi may be
restricted, i.e., may not equal the set of all strings.
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if it decides \Pi and on each accepting computation path on an input x with \Pi (x) \not = \emptyset 
also outputs some y \in \Pi (x) (which can depend on the path).

Within this framework we formalize the notion of isolation and distinguish be-
tween two types.

Definition 2.1 (notions of isolation). An isolation for a computational problem
\Pi : X \mapsto \rightarrow 2Y is a mapping reduction f that transforms x \in X into an equivalent
instance f(x) \in X with | \Pi (f(x))| \leq 1. A disambiguation is an isolation where
``equivalence"" means that \Pi (x) is empty if and only if \Pi (f(x)) is. A pruning is a
disambiguation where ``equivalence"" additionally requires that \Pi (f(x)) \subseteq \Pi (x).

Disambiguations are isolations geared towards decision problems. Prunings are
isolations geared towards search problems. Actually, for search problems it suffices
to have an intermediate notion, namely a recoverable disambiguation f , i.e., one for
which there exists an efficient transformation f \prime that takes any solution y \in \Pi (f(x))
and turns it into a solution f \prime (x, f(x), y) \in \Pi (x).

A closely related notion in the machine realm is that of unambiguity. A non-
deterministic machine M is called unambiguous on an input x if it has at most one
accepting computation path on input x. The machine is called unambiguous if it is
unambiguous on every input x.

A common way to achieve isolation is by introducing a weight function \omega : X \times 
Y \mapsto \rightarrow \BbbN and restricting the set of solutions to those of minimum weight, in the hope
that there is unique solution of minimum weight (or none in the case where there are
no solutions). We use the following terminology.

Definition 2.2 (min-isolation). Given \omega : X \times Y \mapsto \rightarrow \BbbN , the min-weight of x \in X
is defined as

\omega (x) =

\biggl\{ 
miny\in \Pi (x)(\omega (x, y)) if \Pi (x) \not = \emptyset ,
\infty otherwise.

We call \omega min-isolating for x if there is at most one y \in \Pi (x) with \omega (x, y) = \omega (x).

In order to construct an actual isolation for \Pi , we need to express the restricted
search on input x for a solution of weight \mu = \omega (x) as an instance f(x) of \Pi .

In many cases a suitable min-isolating weight function can be obtained as follows:
View the solutions y for a given instance x as subsets of a finite universe U = U(x),
assign small weights w(u) \in \BbbN to the elements u \in U , and define \omega (x, y) as a linear
combination of the weights w(u) of the elements u \in y. In fact, the trivial linear
combination (all coefficients 1) often suffices. If the linear combination is clear from
context, we often abuse notation and use w in lieu of \omega , e.g., writing w(y) for \omega (x, y),
or w(x) for \omega (x), or applying the term ``min-isolating"" to w.

The known generic isolation procedures [62, 48, 18] are all randomized. A ran-
domized isolation with success probability p is a randomized mapping reduction f
that, on every instance x \in X, satisfies the defining requirements for an isolation on
input x with probability at least p. In the min-isolation approach via a weight assign-
ment to the underlying universe, randomness comes into play in the construction of
the weight assignment. The following well-known mathematical fact (rephrased using
our terminology) forms the basis.

Fact 2.3 (Isolation Lemma [48]). Suppose that \Pi (x) \subseteq 2U and that \omega (x, y) =\sum 
u\in y w(u) for y \in \Pi (x). For any positive integer q, if w : U \mapsto \rightarrow [q \cdot | U | ] is picked

uniformly at random, then \omega is min-isolating for x with probability at least 1 - 1/q.

An important feature of the Isolation Lemma is that it keeps the range of the
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min-weight small, namely within [c \cdot | U | 2]. Once we have a min-isolating weight
assignment of small range, we can further pick an integer \mu uniformly at random
within that range and look for a solution y \in \Pi (x) with \omega (x, y) = \mu . If \mu happens to
be equal to \omega (x), then there is a unique such y. The small range of the min-weight
guarantees a reasonable probability of success p.

We can apply this process to Satisfiability with U denoting the set of variables
of the formula x, and q = 2, say. The probability of success is \Omega (1/n2), where n
denotes the number of variables of x. Since the weight restriction can be translated
in polynomial time into a Boolean formula on the variables of the original formula,
the resulting randomized isolation can be computed in polynomial time and is of the
pruning type. The former implies that NP \subseteq R \cdot PromiseUP [62].7 Intuitively, the
result means that, in the randomized time-bounded setting, having unique solutions
does not make instances of NP-complete problems easier. Formally, R denotes the
one-sided error (no false positives) probabilistic operator on classes \scrC of languages:
R \cdot \scrC is the class of languages L for which there exists a constant c \in \BbbN and a language
C \in \scrC such that for all inputs x,

x \in L \Rightarrow Pr\rho [\langle x, \rho \rangle \in C] \geq 1/nc,
x \not \in L \Rightarrow Pr\rho [\langle x, \rho \rangle \in C] = 0,

where \rho is picked uniformly at random from \{ 0, 1\} nc

, and n denotes the input length
| x| . The operator extends to classes of promise problems in a natural way. PromiseUP
represents the class of promise decision problems that can be accepted by nondeter-
ministic polynomial-time machines that are unambiguous on every input satisfying
the promise.

2.2. Reachability. G\'al and Wigderson [30] obtained a randomized isolation for
Reachability by applying the Isolation Lemma in a similar fashion with the edges
for the graph G as the universe U . Since the weighted reachability problem with
polynomially bounded weights is also in NL, one can translate the weight restricted
instance into an equivalent instance in logarithmic space, though on a graph with
more vertices. This results in a randomized disambiguation with success probability
1/ poly(n) that is computable in logarithmic space with two-way access to the ran-
dom bits. (The disambiguation is recoverable in deterministic logspace but is not
a pruning.) It follows that NL \subseteq R \cdot PromiseUL, where PromiseUL is the logspace
equivalent of PromiseUP. Thus, in the randomized space-bounded setting, having
unique solutions does not make instances of NL-complete problems easier.

Reinhardt and Allender [52] strengthened this result to NL \subseteq R \cdot (UL \cap coUL).
The class UL consists of the problems in PromiseUL for which the promise holds for
all inputs. In other words, UL is the class of languages accepted by unambiguous
logspace machines. The significance of the strengthening is that within the class
R \cdot (UL\cap coUL) the probability of error can be reduced to exponentially small levels,
allowing the randomness to be replaced by polynomial advice, i.e., R \cdot (UL\cap coUL) \subseteq 
(UL \cap coUL)/poly. It follows that Reachability has a randomized disambiguation
with exponentially small error that is computable in logspace with two-way access
to the random bits, as well as a disambiguation that is computable in logspace with
polynomial advice.

The construction in [52] needs a stronger property of the weight assignment w
than being min-isolating for the given input (G, s, t). It requires w to be min-isolating

7The original argument in [62] uses a different randomized isolation for Satisfiability; it has a
success probability of \Omega (1/n).
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for (G, s, t) for all choices of vertices s and t. In that case we call w min-isolating
for G. By setting q = 2n2 in the Isolation Lemma, a union bound guarantees that
with probability at least 50\%, a random weight assignment w : E \mapsto \rightarrow [2n2m] is min-
isolating for any given graph G = (V,E) with n vertices andm edges. The randomness
in NL \subseteq R\cdot (UL\cap coUL) is only used to generate random weight assignments. The new
ingredients in [52] that enable the strengthening from R\cdot PromiseUL to R\cdot (UL\cap coUL)
are unambiguous logspace machines that (i) decide whether or not a given weight
assignment is min-isolating for a given graph G, and (ii) compute the min-weight
w(G, s, t) under a given min-isolating weight assignment w.

2.3. Circuit certification. G\'al and Wigderson [30] also applied their approach
for isolating Reachability to the following computational problem. Recall that a
certificate for a gate g in a Boolean circuit C on an input z is a minimal8 subcircuit
F of C with output gate g that accepts z, written F (z) = 1.

Definition 2.4 (circuit certification). Circuit Certification is the computa-
tional problem that maps an input x

.
= (C, z, g) composed of a Boolean circuit C, an

input z for C, and a gate g of C to the set of certificates for g in C on input z.

Based on De Morgan's laws, one can always push the negations in a circuit to the
inputs without changing the input/output behavior or the depth of the circuit, while
at most doubling its size. On any given input z, there is a simple bijection between
the certificates for the transformed circuit and for the original one. Thus, it suffices
to consider circuits where negations appear on the inputs only. In such a circuit C
on input z, a certificate for a gate g satisfying g(z) = 1 can be constructed in the
following recursive fashion, starting from the subcircuit of C rooted at g: If g is an
AND gate, keep each incoming wire, but replace its originating gate by a certificate
for that gate. If g is an OR gate, keep a single incoming wire from a gate v satisfying
v(z) = 1, and replace v by a certificate for v. If g is a leaf (necessarily evaluating to
1), keep it.

The paper [30] assigns random weights w to the wires E of C. In order to
facilitate the translation of the search for a certificate F for x

.
= (C, z, g) of a given

weight \tau into an equivalent instance f(x) of Circuit Certification, the certificate
is conceptually first expanded into an equivalent formula in the standard way by
duplicating gates, wires, and their weights. The weight of the certificate F is then
defined as the weight of this formula seen as a weighted tree. Equivalently, along
the lines of the above process for constructing a certificate, the weight of a certificate
F for g can be defined recursively as the sum of the weights of the wires feeding
into g and the weights of the certificates that F induces for their originating gates.
Thus, the weight of a certificate is not merely the sum of the weights of the edges
in the certificate, but a linear combination of those weights with nonnegative integer
coefficients. The Isolation Lemma can be extended to this setting, namely to families
of multisets over the universe E, and guarantees with probability at least 1 - 1/q that g
has a unique certificate of minimum weight when w : E \mapsto \rightarrow [q \cdot | E| ] is chosen uniformly
at random. The number of times a wire can appear in the multiset (the coefficient
in the linear combination) can be as large as the maximum product of the fan-ins of
the AND gates on a path in C from the inputs to g. As a consequence, only circuits
of low depth in which the fan-in of the AND gates is small can be handled efficiently.

8The restriction of minimality is imposed in some references (e.g., [52]) but not in others (e.g.,
[30]). We impose it as it allows for a bijection between certificates and accepting computation paths
in the machine characterization of LogCFL.



DERANDOMIZING ISOLATION IN SPACE-BOUNDED SETTINGS 987

More specifically, [30] considers shallow semi-unbounded circuits. ``Shallow"" means
that the depth is bounded by log2(n), where n denotes the number of gates. ``Semi-
unbounded"" means that the fan-in of the AND gates is bounded by two (and that
negations appear on the inputs only).

Shallow semi-unbounded circuits are intimately connected to the complexity class
LogCFL of languages that reduce to a context-free language under logspace map-
ping reductions. The class can be defined equivalently as the languages accepted by
logspace-uniform families of shallow semi-unbounded circuits of polynomial size, the
nonuniform version of which is denoted as SAC1 [64]. The class LogCFL can also
be characterized as the languages accepted by nondeterministic machines that run in
polynomial time and logarithmic space and are equipped with an auxiliary stack that
does not count towards the space bound [56]. Such machines are sometimes called
auxiliary pushdown automata, and the class of languages accepted by such machines
running in time t and space s is denoted as AuxPDA-TISP(t, s). The corresponding
subclass for unambiguous machines is written as UAuxPDA-TISP(t, s). For any given
problem in LogCFL and any input x, there is a logspace computable and logspace
invertible bijection between the certificates for the circuits underlying the logspace-
uniform SAC1 characterization and the accepting computation paths of the machine
underlying the AuxPDA-TISP(poly(n), O(log n)) characterization. It follows that the
restriction of Circuit Certification to shallow semi-unbounded circuits is complete
for LogCFL under logspace mapping reductions and that logspace computable and
recoverable disambiguations for that problem and for the entire class are equivalent.

G\'al and Wigderson obtained a randomized disambiguation for Circuit Certi-
fication on shallow semi-bounded circuits that has success probability 1/ poly(n),
is computable in logspace with two-way access to the random bits, and is recover-
able in logspace. This implies the inclusion LogCFL \subseteq R \cdot Promise \scrC where we use
the shorthand \scrC .

= UAuxPDA-TISP(poly(n), O(log n)). Reinhardt and Allender [52]
strengthened this result to LogCFL \subseteq R \cdot (\scrC \cap co\scrC ), replacing the condition on the
weight assignment w by the requirement that w is min-isolating for every gate of C on
input z (not just the specified gate g). This implies that LogCFL \subseteq (\scrC \cap co\scrC )/ poly
and that a disambiguation for Circuit Certification on shallow semi-unbounded
circuits can be computed in logspace with polynomial advice.

2.4. Derandomizing isolation. The number of random bits needed for an ap-
plication of the Isolation Lemma as stated is \Theta (n log(qn)), namely \Theta (log(qn)) bits
for each of the n

.
= | U | elements of the universe U . In order to develop variants that

require fewer random bits, we introduce the notion of a weight assignment generator,
which can be viewed as a structured form of a pseudorandom generator geared towards
the setting of the Isolation Lemma. Whereas a pseudorandom generator is param-
eterized by the desired length of the pseudorandom sequence, a weight assignment
generator is parameterized by the desired domain D of the weight assignments.

Definition 2.5 (weight assignment generator). A weight assignment generator
\Gamma for a family of domains \scrD is a family of mappings (\Gamma D)D\in \scrD such that \Gamma D takes a
string \sigma \in \{ 0, 1\} s(D) for some function s : \scrD \mapsto \rightarrow \BbbN and maps it to a weight assignment
w : D \mapsto \rightarrow \BbbN . We say that w is chosen uniformly at random from \Gamma D if it is obtained
as w = \Gamma D(\sigma ) where \sigma is chosen uniformly at random from \{ 0, 1\} s(D).

The family of domains \scrD in Definition 2.5 is usually indexed by one or more
integer parameters, in which case we also index \Gamma that way. For example, for a
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derandomization of the Isolation Lemma we can equate the universe U with [| U | ] .
=

\{ 1, 2, . . . , | U | \} by ordering the elements of U in some way, e.g., lexicographically. We
can then choose \scrD = (Dn)n\in \BbbN with Dn

.
= [n] and write \Gamma n for \Gamma Dn

. This vanilla
set-up does not allow the weight assignments to distinguish between the elements of
the universe U (other than by their ordering). Definition 2.5 enables us to provide
the weight assignments with more information about their arguments, namely by
switching to more structured domains. For example, if the elements of the universe
can be colored red or blue, we can provide that information to the weight assignments
by using the domain D = [n] \times \{ red,blue\} for a universe of n elements. As another
example, in the context of Reachability we will use the domain Dn,d = [n]\times JdK .

=
\{ 1, 2, . . . , n\} \times \{ 0, 1, 2, . . . , d\} to handle layered graphs with n vertices and depth d;
here the second component enables the weight assignment to take into account the
layer of the vertex.

The relevant characteristics of a weight assignment generator are the following:
\circ The seed length s(D), which is the number of random bits we need when we
pick a weight assignment from \Gamma D uniformly at random.

\circ The maximum weight assigned by \Gamma D; the logarithm of the maximum weight
is called the bitlength of the generator. A bound on the weights is sometimes
also used as a parameter indexing the generator (in addition to the domain
D).

\circ The computational complexity of \Gamma , by which we mean the complexity of
deciding, on input of the parameters p, \sigma \in \{ 0, 1\} s, z \in D, i \in \BbbN , and
b \in \{ 0, 1\} , whether the ith bit of w(z) for w = \Gamma p(\sigma ) is b.

The Isolation Lemma can be viewed as a generic weight assignment generator (for
the family of domains ([n])n\in \BbbN ) that has seed length O(n log(qn)), bitlength O(log n),
and trivial complexity. By allowing weights that are polynomially larger than in
the Isolation Lemma, one can achieve seed length O(log(qn) + log(| \Pi (x)| )), which is
provably optimal for a generic \Pi (x) [18]. In our setting this yields seed length O(n)
and bitlength O(log n). In order to do better, one needs to exploit the specifics of
the set systems. Doing so generically in the time-bounded setting seems difficult.
There are implications from derandomizing the Isolation Lemma for generic \Pi (x) of
small circuit complexity to circuit lower bounds of various sorts [6], and vice versa
[41]. The circuit lower bounds are arguably reasonable but have been open for a long
time. There may be ways to obtain deterministic or derandomized isolations other
than by derandomizing the Isolation Lemma, but for Satisfiability the existence
of a deterministic polynomial-time pruning implies that NP \subseteq P/ poly. In fact, the
collapse follows from the existence of a randomized polynomial-time pruning that has
success probability p > 2/3 [26].

In the space-bounded setting there is more hope of obtaining unconditional de-
randomizations. An implication from lower bounds to derandomization still holds:
If there exists a problem in DSPACE(n) that requires Boolean circuits of linear-
exponential size, then there exists a logspace computable weight assignment generator
with seed length and bitlength O(log n) [41, 4]. There is no known result showing
that deterministic isolations in the space-bounded setting imply circuit (or branch-
ing program) lower bounds that are open. Moreover, unconditional results already
exist for certain restricted classes of digraphs. For Reachability on directed pla-
nar grid graphs, min-isolating weight assignments of bitlength O(log n) are known to
be computable in deterministic logspace [13]. Those assignments have been used to
construct disambiguations that are logspace computable and logspace recoverable for
larger classes of graphs [13, 59, 44].
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There have also been related successes for isolating PerfectMatching, the
problem of deciding/finding perfect matchings in graphs, restricted to certain special
types of graphs [24, 25, 5]. Fenner, Gurjar, and Thierauf [28] constructed a weight
assignment generator with seed length and bitlength O((log n)2) that is computable in
logspace and that produces a min-isolating weight assignment for PerfectMatching
on a given bipartite graph with probability at least 1 - log(n)/n. This allowed them
to prove that PerfectMatching on bipartite graphs has logspace-uniform circuits
of polylogarithmic depth and quasi-polynomial size.

3. Reachability and NL. In this section we develop our min-isolating weight
assignment generator for Reachability (Theorem 1.1) and derive our positive iso-
lation result for NL (Theorem 1.2).

3.1. Weight assignment generator. Recall the notion of min-isolation in the
context of Reachability.

Definition 3.1 (min-isolating weight assignment for Reachability). Let G =
(V,E) be a digraph. A weight assignment for G is a mapping w : V \mapsto \rightarrow \BbbN . The weight
w(P ) of a path P in G is the sum of w(v) over all vertices v on the path. For s, t \in V ,
w(G, s, t) denotes the minimum of w(P ) over all paths from s to t, or \infty if no such
path exists. The weight assignment w is min-isolating for (G, s, t) if there is at most
one path P from s to t with w(P ) = w(G, s, t). For A \subseteq V \times V , w is min-isolating for
(G,A) if w is min-isolating for (G, s, t) for each (s, t) \in A. We call w min-isolating
for G if w is min-isolating for (G,V \times V ).

We restrict our attention to layered digraphs. A layered digraph G = (V,E) of
depth d consists of d+ 1 layers of vertices such that edges only go from one layer to
the next. More formally, with n

.
= | V | we have that V \subseteq [n] \times JdK .

= \{ 1, 2, . . . , n\} \times 
\{ 0, 1, 2, . . . , d\} and E \subseteq \.\cup i\in [d](Vi - 1 \times Vi). We denote by Vi

.
= V \cap [n] \times \{ i\} the ith

layer of G.
In fact, we only need to consider layered digraphs of depths that are powers of

two. For d = 2\ell with \ell \in \BbbN , and k \in J\ell K, such a digraph can be viewed as consisting
of d/2k = 2\ell  - k consecutive blocks of depth 2k, where the ith block is the subgraph

induced by the vertices in layers (i - 1)2k through i2k, i.e.,
\bigcup i\cdot 2k

j=(i - 1)\cdot 2k Vj .

We need to design a randomness-efficient process that, given d = 2\ell and n, gener-
ates small weight assignments w : [n]\times JdK \mapsto \rightarrow \BbbN that are min-isolating for any layered
digraph G = (V,E) of depth d on n vertices with high probability. Note that the
use of the domain [n] \times JdK rather than merely [n] enables the weight assignment to
depend on the layer a vertex is in.

Iterative approach. Given the recursive nesting structure of the blocks, there is
a natural iterative/recursive approach towards the construction of w, based on the
following simple observation:

A min-weight path from s to t that passes through a vertex u is the
concatenation of a min-weight path from s to u and a min-weight
path from u to t.

We present an iterative (i.e., bottom-up) version, where in the kth iteration we try
to construct a weight assignment wk that is min-isolating for each block of depth 2k

and only assigns nonzero weights to the vertices that are internal to those blocks, i.e.,

to V \setminus 
\bigcup 2\ell  - k

i=0 Vi\cdot 2k .
We start with w0 \equiv 0 and end with w = w\ell . Here is how we move from wk to

wk+1 in iteration k+ 1 for k \in J\ell  - 1K. Consider a block B of depth 2k+1. It consists
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of two consecutive blocks B1 and B2 of depth 2k that have the middle layer M of B in
common (see Figure 1). The assignment wk gives weights to all vertices of B except
the initial layer, the middle layer M , and the final layer. We construct the assignment
wk+1 by extending wk; i.e., wk+1 keeps the values of wk on the layers internal to B1

or B2 and additionally assigns weights to the vertices in M . We refer to the union of
the middle layers M over all blocks of depth 2k+1 as the set Lk+1 of vertices at level
k + 1, i.e.,

(3.1) Lk+1
.
=

\bigcup 
odd i\in [2\ell  - k]

Vi\cdot 2k .

The new weights are assigned so as to maintain the invariant. Assuming that
wk is min-isolating for B1 and B2 individually, we want to make sure that wk+1 is
min-isolating for all of B. Consider two vertices s and t in B such that s appears in
an earlier layer than t.

\circ If t is internal to B1, then wk+1 is min-isolating for (B, s, t) no matter how
wk+1 assigns weights to M . This follows from the hypothesis and the fact
that wk+1 and wk agree on the vertices of B1 other than M . The case where
s is internal to B2 is similar.

\circ Otherwise, s belongs to B1 and t belongs to B2. In that case every path from
s to t has to cross layer M . We claim that among the paths (if any) that cross
M in a fixed vertex v, there is a unique one of minimum weight with respect
to wk+1, say Pv. This follows from the above observation, the hypothesis,
and the fact that wk+1 and wk agree on the vertices of B other than M .
Indeed, any such path Pv is the concatenation of a path Psv in B1 from s to
v, and a path Pvt in B2 from v to t. Since wk+1(Pv) = wk(Pv) + wk+1(v) =
wk(Psv) + wk(Pvt) + wk+1(v), both Psv and Pvt need to be min-weight with
respect to wk. By the hypothesis, both those min-weight paths are uniquely
determined, whence so is Pv.
Thus, in order to guarantee that wk+1 is min-isolating for (B, s, t), it suffices
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to ensure that for all vertices u, v \in M that are on a path from s to t,

(3.2) \mu k(s, u) + \mu k(u, t) + wk+1(u) \not = \mu k(s, v) + \mu k(v, t) + wk+1(v),

where \mu k(s, t)
.
= wk(G, s, t) denotes the minimum weight of a path from s

to t under wk, or \infty if no such path exists. We refer to condition (3.2) as a
disambiguation requirement. See Figure 1 for an illustration.

We now consider three ways to meet the disambiguation requirements: shifting,
hashing, and a combination of both. For each construction we track

\circ the number Rk of random bits that wk needs, and
\circ the maximum weight Wk of paths in G under wk.

The quantity R
.
= R\ell corresponds to the seed length of the weight assignment gen-

erator \Gamma . The logarithm of the quantity W
.
= W\ell equals the bitlength of \Gamma up to

an additive term of O(log d). As we will see in section 3.2, the simulations of NL on
unambiguous machines that we obtain via \Gamma run in space O(R + log(W ) + log(n)).
Thus, our aim is to minimize the quantity R + log(W ) up to constant factors. We
will ultimately succeed in making it as small as O((log n)3/2). Ideally, we would like
to reduce it further to O(log n) so as to establish NL \subseteq UL.

Shifting. For v \in M \subseteq Lk+1 we set wk+1(v) = index(v) \cdot b, where b is an integer
that exceeds Wk, and index is an injective function from M to \BbbN . As the vertices in
V are represented as pairs (i, j) \in JdK\times [n] and all vertices in M have the same first
component, we can simply use the projection (i, j) \mapsto \rightarrow j as the index function. This
guarantees distinct values for the two sides of (3.2) for different u and v, irrespective
of the values of \mu k(s, u)+\mu k(u, t) and \mu k(s, v)+\mu k(v, t). In terms of binary represen-
tations, if b is a power of 2, this construction can be interpreted as shifting the index
function into a region of the binary representation that has not been used before.

We have that Rk+1 = Rk and Wk+1 \leq Wk +2\ell  - k - 1 \cdot n \cdot b \leq (dn+1)(Wk +1) - 1.
When we use shifting at all levels, we end up withR = 0 andW \leq (dn+1)\ell = nO(logn),
so R+ log(W ) = O((log n)2).

Hashing. When wk+1(u) and wk+1(v) are picked uniformly at random from a
sufficiently large range, independently from each other and from the values \mu k(s, u)+
\mu k(u, t) and \mu k(s, v) + \mu k(v, t), the disambiguation requirement (3.2) holds with high
probability. We make use of universal hashing to obtain the random values we need
using few random bits, and in particular of the following well-known family and
property. We cast the notion in terms of a weight assignment generator with a bound
on the weights as an additional parameter.

Fact 3.2 (universal hashing [17]). There exists a logspace computable weight as-

signment generator (\Gamma 
(hashing)
m,r )m,r\in \BbbN with seed length s(m, r) = O(log(mr)) such that

\Gamma 
(hashing)
m,r produces functions h : [m] \mapsto \rightarrow [r] with the following property: For every

u, v \in [m] with u \not = v and every a, b \in \BbbN ,

(3.3) Pr
h
[a+ h(u) = b+ h(v)] \leq 1/r,

where h is chosen uniformly at random from \Gamma 
(hashing)
m,r .

We identify D
.
= JdK \times [n] with [m] = [(d + 1) \cdot n] in a natural way. If we pick

h : D \mapsto \rightarrow [r] uniformly at random from \Gamma 
(hashing)
m,r and set wk+1 = h on Lk+1, (3.3)

guarantees that each individual disambiguation requirement (3.2) holds with proba-
bility at least 1 - 1/r. As there are at most n4 choices for (s, t, u, v), a union bound
shows that all disambiguation conditions are met simultaneously with probability at
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least 1  - n4/r. It suffices to pick r as a sufficiently large polynomial in n in order
to guarantee high success probability. In particular, r = n6 suffices for probability of
success at least 1 - 1/n2.

Based on the characteristics of the family of hash functions \Gamma (hashing) from Fact 3.2
we have that Rk+1 = Rk +O(log(dnr)) = Rk +O(log n) and Wk+1 \leq Wk + 2\ell  - k - 1 \cdot 
r \leq Wk + dr = Wk + nO(1). When we use a fresh uniform sample h = hk from
\Gamma (hashing) for each iteration k \in [\ell ], we end up with R = O(\ell log(n)) = O((log n)2),
and W = \ell \cdot nO(1) = nO(1), so R+ log(W ) = O((log n)2) again.

Combined approach. The shifting approach is ideal in terms of the amount of
randomness R but leads to weights that are too large. The hashing approach is ideal
in terms of the bound W on the path weights but requires too many random bits. We
now combine the two approaches so as to balance R and log(W ). The construction
can be viewed as incorporating shifting into the hashing approach, or vice versa. Our
presentation follows the former perspective.

In order to reduce the number of random bits in the hashing approach, we attempt
to employ the same hash function h in multiple successive iterations, say iterations
k + 1 through k\prime , going from wk to wk\prime . This does not work as such because the
minimum path weights in the disambiguation requirements (3.2) for iterations above
k + 1 depend on h, and we cannot guarantee the bound (3.3) if a or b depend on h.
However, the influence of the choice of h on those minimum path weights is limited.
More specifically, in iteration k + 2 we have that for any s and t that belong to the
same block of depth 2k+1

(3.4) \mu k(s, t) \leq \mu k+1(s, t) \leq \mu k(s, t) + r.

The first inequality follows because wk+1 \geq wk. The second one follows by considering
a minimum-weight path P from s to t under wk and realizing that

\mu k+1(s, t) \leq wk+1(P ) = wk(P ) + h(v) = \mu k(s, t) + h(v) \leq \mu k(s, t) + r,

where v is the unique vertex in P \cap Lk+1.
Let b be a power of two to be determined later. Inequality (3.4) implies that

\mu k(s, t) and \mu k+1(s, t) are the same after truncating the log b lowest-order bits, i.e.,
\lfloor \mu k(s, t)/b\rfloor = \lfloor \mu k+1(s, t)/b\rfloor , unless adding r to \mu k(s, t) results in a carry into bit
position log b (the position corresponding to the power 2log b = b). Suppose we can
prevent such carries from happening. Conceptually, in iteration k + 2 we can then
apply the hashing approach with the same hash function h as in iteration k + 1
provided we use the truncated values \mu \prime 

k+1(s, t)
.
= \lfloor \mu k(s, t)/b\rfloor = \lfloor \mu k+1(s, t)/b\rfloor as the

minimum path weights. Indeed, since the values \mu \prime 
k+1 are independent of h, (3.3) in

Fact 3.2 shows that the disambiguation requirements with respect to \mu \prime 
k+1, i.e.,

(3.5) \mu \prime 
k+1(s, u) + \mu \prime 

k+1(u, t) + h(u) \not = \mu \prime 
k+1(s, v) + \mu \prime 

k+1(v, t) + h(v),

hold with high probability. Undoing the truncation, (3.5) implies that

\mu k+1(s, u) + \mu k+1(u, t) + h(u) \cdot b \not = \mu k+1(s, v) + \mu k+1(v, t) + h(v) \cdot b.

Thus, by setting wk+2(v) = h(v) \cdot b for v \in Lk+2 we realize the actual disambigua-
tion requirements for iteration k + 2 with high probability in conjunction with the
disambiguation requirements for iteration k+1. The setting of wk+2 on Lk+2 can be
interpreted as using a shifted version of the same hash function h instead of h itself.
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We can repeat the process for iterations k + 3 through k\prime . In iteration k + i, the
bound (3.4) becomes

\mu k(s, t) \leq \mu k+i - 1(s, t) \leq \mu k(s, t) + r \cdot (bi - 2 + 2bi - 3 + \cdot \cdot \cdot + 2i - 2) \leq \mu k(s, t) + 2rbi - 2,

where the last inequality assumes that b \geq 4. We set wk+i(v) = h(v)\cdot bi - 1 for v \in Lk+i

and achieve our goal if h satisfies the disambiguation requirements
(3.6)
\lfloor \mu k(s, u)/b

i - 1\rfloor + \lfloor \mu k(u, t)/b
i - 1\rfloor + h(u) \not = \lfloor \mu k(s, v)/b

i - 1\rfloor + \lfloor \mu k(v, t)/b
i - 1\rfloor + h(v)

for all appropriate choices of s, t, u, v. Equation (3.3) in Fact 3.2 and a union bound
show that the requirements (3.6) are all met simultaneously by the same hash function
h for all iterations k + 1 through k\prime with probability at least 1  - \Delta /n2 for r = n6,
where \Delta 

.
= k\prime  - k.

In iteration k+2 we made the assumption that there are no carries into position
log b when adding r to the values \mu k. More generally, in iteration k + i, we assumed
there are no carries into position (i  - 1) \cdot log b when adding 2rbi - 2 to the values \mu k.
The assumption holds if b \geq 4r and the values \mu k have a 0 in the position right before
each of the positions (i - 1)\cdot log b. We can maintain the latter condition as an invariant
throughout the construction by setting b = O(r) sufficiently large.

This completes the combined construction and its correctness argument. For
future reference, we mention the following alternate way of handling the carries in
the correctness argument. Setting b \geq 2r is enough to ensure that the carries are
no larger than 1. We can handle such carries by strengthening the disambiguation
requirements (3.6) and impose that the left-hand side and right-hand side are not just
distinct but are separated by a small constant. This only involves a constant factor
more of applications of (3.3) in the union bound and guarantees that the values remain
distinct after undoing the truncation. In fact, it suffices that for all i \in [k\prime  - k]

\lfloor (\mu k(s, u) + \mu k(u, t))/b
i - 1\rfloor + h(u) \not \in \lfloor (\mu k(s, v) + \mu k(v, t))/b

i - 1\rfloor + h(v) + \{  - 1, 0, 1\} 

for some b \geq 4r. This is the approach we use in the formal proof of Lemma 4.3 in
section 4.1 (in the setting of Circuit Certification instead of Reachability).
We refer the reader to the argument for Claim 4.4 on page 998 for more details.

The combined construction obeys Rk\prime = Rk + O(log(dnr)) = Rk + O(log n) and
Wk\prime \leq Wk + 2\ell  - k\prime \cdot 2rb\Delta  - 1 \leq Wk + drb\Delta  - 1 = Wk +O(n\Delta ), where \Delta 

.
= k\prime  - k.

Final construction. Starting from w0 \equiv 0, for any \Delta \in [\ell ] we can apply the com-
bined construction \ell /\Delta times consecutively to obtain w = w\ell . Each application uses
a fresh hash function to bridge the next \Delta levels. The setting \Delta = 1 corresponds
to the pure hashing approach, and the setting \Delta = \ell essentially corresponds to the
pure shifting approach.9 We can interpolate between the parameters of the pure shift-
ing and pure hashing approaches by considering intermediate values of \Delta . We have
R = O(\ell /\Delta \cdot log n) andW = O(\ell /\Delta \cdot n\Delta ), so R+log(W ) = O((\ell /\Delta +\Delta ) log n). The lat-
ter expression is minimized up to constant factors when \ell /\Delta = \Delta , i.e., when \Delta =

\surd 
\ell ,

yielding a value of R+ log(W ) = O(
\surd 
\ell log n) = O(

\surd 
log d log n) = O((log n)3/2).

The above construction yields a weight assignment generator \Gamma (reach) that is
indexed by the number of vertices n and the depth d, with Dn,d

.
= [n] \times JdK .

=

\{ 1, 2, . . . , n\} \times \{ 0, 1, 2, . . . , d\} as the domain for the weight functions given by \Gamma 
(reach)
n,d .

We conclude as follows.

9In this setting the hash function h from the ``combined"" approach can be replaced by an index
function.
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Theorem 3.3 (formal version of Theorem 1.1). There exists a weight assignment

generator \Gamma (reach) = (\Gamma 
(reach)
n,d )n,d\in \BbbN that is computable in space O(log n) and has seed

length and bitlength O(
\surd 
log d log n) such that for every layered digraph G of depth d

with n vertices

Pr
w
[w is min-isolating for G] \geq 1 - 1/n,

where w is chosen uniformly at random from \Gamma 
(reach)
n,d .

The construction we developed works for any d that is a power of 2 and any
n \in \BbbN and has the properties stated in Theorem 3.3. We already analyzed the seed
length and bitlength. For any given layered digraph of depth d on n vertices, the
failure probability at each level of the construction is at most 1/n2. As there are
\ell 

.
= log d \leq log n levels, the overall failure probability is at most log(n)/n2 \leq 1/n.

The logspace computability follows from the logspace computability of the underlying
universal family of hash functions and the fact that iterated addition is in logspace
(see, e.g., [65]).

Values of d that are not powers of 2 can be handled by first extending the given
layered digraph G with identity matchings (for each i connect the ith gate in the next
layer with the ith gate in the previous layer) until the depth reaches a power of 2,
and then applying the above construction.

This finishes a somewhat informal proof of Theorem 3.3. Section 4.1 contains a
more formal proof (in the setting of Circuit Certification instead of Reacha-
bility).

3.2. Isolation. We now establish Theorem 1.2. The following proposition10

shows that it suffices to construct a Turing machine that accepts Reachability
unambiguously on layered digraphs in time poly(n) and space O((log n)3/2).

Proposition 3.4. Reachability on layered digraphs is hard for NL under log-
space mapping reductions that preserve the number of solutions.

Given our weight assignment generator \Gamma (reach), a natural approach towards com-
puting Reachability unambiguously on a given layered instance (G, s, t) is to go
over the list of all weight assignments w produced by \Gamma (reach), pick the first one that
is min-isolating for G, and use it to decide the given instance (G, s, t). In fact, the
earlier improvement from Reachability \in R \cdot PromiseUL [30] to Reachability \in 
R \cdot (UL\cap coUL) [52] can be viewed as following the same approach. Instead of the list
of weight assignments obtained from \Gamma (reach) (which is guaranteed to contain a min-
isolating one), [52] uses a list of 2n2 random weight assignments of bitlength O(log n)
(which contains a min-isolating one with probability at least 50\%). The following
ingredients are essential to get the approach to work.

Lemma 3.5. There exist unambiguous machines, denoted WeightCheck(reach)

and WeightEval(reach), such that for every digraph G = (V,E) on n vertices, weight
assignment w : V \mapsto \rightarrow \BbbN , and s, t \in V ,

(i) WeightCheck(reach)(G,w) decides whether or not w is min-isolating for G,
and

(ii) WeightEval(reach)(G,w, s, t) computes w(G, s, t) provided w is min-isola-
ting for G.

10The property that the mapping reductions preserve the number of solutions is not needed here
but will be used later.
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Both machines run in time poly(log(W ), n) and space O(log(W ) + log(n)), where W
denotes an upper bound on the finite values of w(G, u, v) for u, v \in V .

Lemma 3.5 is an improvement of a result in [52]. It follows along the same
lines but has a better dependency of the running time on W , namely polynomial
in log(W ) instead of polynomial in W . As our weight assignment generator yields

values of W = n\Theta (
\surd 
logn), the improvement is necessary to make sure that our unam-

biguous machine for Reachability runs in polynomial time. Note that the machine
WeightEval(reach) does not simply go over all integers \mu from 0 to W and check
whether a path from s to t of weight \mu exists (knowing that it is unique if it exists)
until the first success or the weight range is exhausted. That process would take at
least W steps in the worst case. We refer the reader to Appendix A for the work-
ings of the machines WeightEval(reach) and WeightCheck(reach) and for further
discussion.

Like [52], we call WeightCheck(reach)(G,w) for each w from the list up and until

the first success, and then call WeightEval(reach)(G,w, s, t) with that first successful
w. This describes a deterministic machine for Reachability on layered digraphs
that makes calls to the unambiguous nondeterministic machinesWeightCheck(reach)

and WeightEval(reach). The result is an unambiguous nondeterministic machine
assuming the following general convention regarding the behavior of a machine M
making a call to a nondeterministic machine N : On any computation path on which
N rejects, M halts and rejects; on any accepting computation path of N , M continues
the path assuming the output of N as the result of the call.

In order to try all weight assignments produced by \Gamma (reach), we go over all seeds
\sigma and produce the required bits of w = \Gamma (reach)(\sigma ) from \sigma on the fly whenever they
are needed, without storing them. Given the logspace computability of \Gamma (reach), the
resulting unambiguous machine for Reachability on layered digraphs runs in time
2R \cdot poly(log(W ), n) and space O(R + log(W ) + log n), where R denotes the seed
length of \Gamma (reach), and W the maximum path length under a weight assignment that
\Gamma (reach) produces. With the parameters of \Gamma (reach) stated in Theorem 3.3 this gives
time nO(

\surd 
logn) and space O((log n)3/2).

In order to reduce the running time to nO(1) while keeping the space bound to
O((log n)3/2), we improve over the exhaustive search over all seeds of \Gamma (reach) by
exploiting the internal structure of \Gamma (reach). We use the same technique as in [50].
Recall from the final construction in section 3.1 that the seed \sigma consists of \Delta =
O(
\surd 
log n) parts of O(log n) bits, each describing a hash function hi from the family

\Gamma (hashing) from Fact 3.2. The hash functions h1, . . . , hi define a weight assignment
wi\cdot \Delta that is intended to have the following property: wi\cdot \Delta is min-isolating for each
block of depth 2i\cdot \Delta of G. We construct (the seeds \sigma i for) the hash functions hi one
by one, maintaining the intended property as an invariant for i = 0, 1, . . . ,\Delta . The
invariant trivially holds for i = 0. In the step from i  - 1 to i for i \in [\Delta ], we go

over all possible seeds \sigma i for \Gamma 
(hashing)
m,r , consider hi

.
= \Gamma 

(hashing)
m,r (\sigma i), check whether or

not the weight assignment wi\cdot \Delta defined by the already determined h1, . . . , hi - 1 and
the current choice for hi maintains the invariant, and select the first \sigma i for which
it does. Each check is performed by running WeightCheck(reach)(B,w) for each
of the blocks B of depth 2i, passing if and only if all of them pass. The correctness
argument from section 3.1 guarantees that the search always succeeds. Once we arrive
at w = w\Delta , we run WeightEval(reach)(G,w, s, t) as before. Note that the number
of choices for \sigma i that need to be examined for each i \in [\Delta ] is nO(1). It follows that
the resulting machine runs in time nO(1) and space O((log n)3/2) and unambiguously
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decides Reachability on layered digraphs.
This finishes the proof of Theorem 1.2. A more formal proof in the setting of

Circuit Certification and LogCFL is given in section 4.2.

4. Circuit certification and LogCFL. In this section we state and formally
prove our positive results for Circuit Certification and LogCFL. In the last part
we explain how these results imply the results for Reachability and NL from section
3.

4.1. Weight assignment generator. Analogous to the setting of Reacha-
bility and NL, our isolations for Circuit Certification and LogCFL hinge on an
efficient min-isolating weight assignment generator. Although not essential, it is more
convenient for us to assign weights to the gates rather than the wires.

Let us formally define what min-isolation means in the context of Circuit Cer-
tification. We view a Boolean circuit C as an acyclic digraph C = (V,E), where
V represents the gates of the circuit, and E the wires. Each leaf (vertex of indegree
zero) is labeled with a literal (input variable or its negation) or a Boolean constant
(0 or 1); each other vertex is labeled with AND or OR. We consider circuits with and
without a single designated output gate.

Definition 4.1 (min-isolating weight assignment for Circuit Certification).
Let C = (V,E) be a circuit. A weight assignment for C is a mapping w : V \mapsto \rightarrow \BbbN .
The weight w(F ) of a certificate F with output v equals w(v) plus the sum over all
gates u that feed into v in F , of the weight of the certificate with output u induced by
F . For an input z for C, and g \in V , w(C, z, g) denotes the minimum of w(F ) over
all certificates F for (C, z, g), or \infty if no certificate exists. The weight assignment
w is min-isolating for (C, z, g) if there is at most one certificate F for (C, z, g) with
w(F ) = w(C, z, g). For U \subseteq V , w is min-isolating for (C, z, U) if w is min-isolating
for (C, z, u) for each u \in U . We call w min-isolating for (C, z) if w is min-isolating
for (C, z, V ).

Note that the weight w(F ) of a certificate F for a gate g is a linear combination
of the weights w(v) for v \in V with coefficients that are natural numbers. The sum of
the coefficients in any given layer below g is at most 2\ell , where \ell denotes the number
of AND layers between that layer and g (inclusive).

We restrict our attention to semi-unbounded circuits that are layered and alter-
nating. A circuit is layered if the underlying digraph is layered and all leaves appear
in the same layer. A circuit is alternating if on every path the nonleaves alternate
between AND and OR. More formally, for a circuit C = (V,E) of depth d with n gates
we have that V = \.\cup i\in JdKVi, where Vi \subseteq [n]\times \{ i\} and E \subseteq \.\cup i\in [d](Vi - 1 \times Vi). Vertices
in V0 are labeled with literals and constants only. Every other layer Vi contains only
AND gates or only OR gates, depending on the parity of i.

With the above conventions we can view weight assignments to the gates as
mappings w : [n] \times JdK \mapsto \rightarrow \BbbN . We construct such assignments inside the following

weight assignment generator \Gamma (cert) = (\Gamma 
(cert)
n,d )n,d\in \BbbN , which is indexed by the number

of gates n and the depth d. The domain of the weight assignments given by \Gamma 
(cert)
n,d is

Dn,d
.
= [n]\times JdK, enabling the weight assignment of a gate to depend on the layer the

gate belongs to.

Theorem 4.2. There exists a weight assignment generator \Gamma (cert) = (\Gamma 
(cert)
n,d )n,d\in \BbbN 

that is computable in space O(log n) and has seed length and bitlength O(
\surd 
d log n) such

that for every layered alternating semi-unbounded Boolean circuit C of depth d with
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n gates and any input z for C,

(4.1) Pr
w
[w is min-isolating for (C, z)] \geq 1 - 1/n,

where w is chosen uniformly at random from \Gamma 
(cert)
n,d .

The essential ingredient in the proof of Theorem 4.2 is the following formalization
of the combined approach from section 3.1 for the setting of Circuit Certification.
It turns a weight assignment that is min-isolating for all gates up to some layer into
one that is min-isolating for all gates up to some higher layer, and only assigns new
weights to the AND gates of the layers in between. For ease of notation, we assume
that the depth is even (say d = 2\ell for some \ell \in \BbbN ), that we jump from an even layer
2k to some higher even layer 2k\prime , and that the layer V1 next to the leaves consists of
ANDs. Thus, odd layers consist of AND gates, and positive even layers consist of OR
gates.

Lemma 4.3. There exists a weight assignment generator \Gamma (cert,step) = (\Gamma 
(cert,step)
n,\ell ,k,k\prime )

for n, \ell , k, k\prime \in \BbbN with k \leq k\prime \leq \ell and domain Dn,\ell ,k,k\prime 
.
= [n]\times J2\ell K that is computable

in space O(log n), has seed length O(log n) and bitlength O((k\prime  - k) log n), and has
the following property for every layered alternating semi-unbounded Boolean circuit
C = (V,E) of depth d

.
= 2\ell with n gates and layers V0, V1, . . . , Vd where layer V1

consists of AND gates, and for every input z for C: If w : V \mapsto \rightarrow \BbbN is a weight
assignment that is min-isolating for (C, z, V\leq 2k), where V\leq i

.
=

\bigcup 
j\leq i Vj, then

Pr
\sigma 
[w + \Gamma 

(cert,step)
n,\ell ,k,k\prime (\sigma ) is min-isolating for (C, z, V\leq 2k\prime )] \geq 1 - 1/n2,

where the seed \sigma is chosen uniformly at random. Moreover, \Gamma 
(cert,step)
n,\ell ,k,k\prime (\sigma ) assigns

nonzero weights only to
\bigcup 

j\in [k+1,k\prime ] Lj, where Lj
.
= V2j - 1 denotes the jth AND layer.

Proof. Let C be a circuit as in the statement of the lemma, z an input for C, and
w : V \mapsto \rightarrow \BbbN a weight assignment that is min-isolating for (C, z, V\leq 2k).

Pick h : D \mapsto \rightarrow [r] with D = Dn,\ell ,k,k\prime 
.
= [n] \times J2\ell K uniformly at random from

\Gamma 
(hashing)
n(2\ell +1),r, identifying [n(2\ell + 1)] and [n] \times J2\ell K in a natural way. For a given h, we

define a sequence of weight assignments wj : V \mapsto \rightarrow \BbbN for j = k, k+1, . . . , k\prime as follows:
wk = w, and for i \in [k\prime  - k] and g \in V ,

wk+i(g) =

\biggl\{ 
wk+i - 1(g) + h(g) \cdot bi - 1 if g \in Lk+i,
wk+i - 1(g) otherwise,

where b is a positive integer to be determined.
For g \in V , we denote by \mu j(g)

.
= wj(C, z, g) the minimum weight of a certificate

for (C, z, g) with respect to wj , or \infty if no certificate exists. We show that if b and
r are sufficiently large polynomials in n, then with probability at least 1  - 1/n2 the
following invariant holds for i \in Jk\prime  - kK:

(4.2) wk+i is min-isolating for (C, z, V\leq 2(k+i)).

We make the following observations:
\circ By the hypothesis on w the invariant holds for i = 0.
\circ For i \in [k\prime  - k], the invariant for i  - 1 implies that wk+i is min-isolating
for (C, z, V\leq 2(k+i - 1)). The reason is that for gates g \in V\leq 2(k+i - 1), whether a
weight assignment is min-isolating for (C, z, g) only depends on the weights of
the gates in V\leq 2(k+i - 1). As wk+i - 1 and wk+i agree on that set, the invariant
for i - 1 implies that wk+i is min-isolating for (C, z, g).
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Fig. 2.

\circ For i \in [k\prime  - k], the invariant for i  - 1 implies that wk+i is min-isolating
for (C, z, V2(k+i) - 1). This follows because V2(k+i) - 1 is an AND layer. A
certificate for an AND gate g \in V2(k+i) - 1 is the AND of certificates for gates
u, v \in V2(k+i - 1) feeding into g, and wk+i(C, z, g) = wk+i(g)+wk+i(C, z, u)+
wk+i(C, z, v). Since wk+i and wk+i - 1 agree on V2(k+i - 1), the invariant for
i - 1 implies that wk+i is min-isolating for (C, z, g).

Thus, in order to show that the invariant is maintained from i - 1 to i for i \in [k\prime  - k],
it suffices to show that wk+i is min-isolating for (C, z, V2(k+i)) assuming the invariant
holds for i - 1. The following claim provides a sufficient condition.

Claim 4.4. Let i \in [k\prime  - k], and let g \in V2(k+i) with g(z) = 1. Suppose that
b \geq 4r and that wk+i - 1 is min-isolating for (C, z, V\leq 2(k+i - 1)). If for all distinct
u, v \in Lk+i

.
= V2(k+i) - 1 that feed into g

(4.3)

\biggl\lfloor 
\mu k(u)

bi - 1

\biggr\rfloor 
+ h(u) \not \in 

\biggl\lfloor 
\mu k(v)

bi - 1

\biggr\rfloor 
+ h(v) + \{  - 1, 0, 1\} ,

then wk+i is min-isolating for (C, z, g).

See Figure 2 for an illustration.

Proof of Claim 4.4. Since g is an OR gate, a certificate Fg for (C, z, g) consists
of an edge from g to one of its inputs v for which v(z) = 1, and a certificate Fv for
v. As wk+i(Fv) = wk+i - 1(Fv) + h(v) \cdot bi - 1, it follows that the min-weight certificates
for v under wk+i - 1 and under wk+i are the same. Thus, v has a unique min-weight
certificate under wk+i,

(4.4) \mu k+i(v) = \mu k+i - 1(v) + h(v) \cdot bi - 1,

and the following condition is sufficient to guarantee that wk+i is min-isolating for
(C, z, g): For all distinct gates u, v \in Lk+i

.
= V2(k+i) - 1 that feed into g

(4.5) \mu k+i(u) \not = \mu k+i(v).

We argue that (4.5) follows from (4.3) as long as b \geq 4r.
For v \in Lk+i with v(z) = 1, let Fv denote a min-weight certificate for v under

wk. We have that

(4.6) \mu k(v) \leq \mu k+i - 1(v) \leq wk+i - 1(Fv) \leq wk(Fv) + 4r \cdot bi - 2 = \mu k(v) + 4r \cdot bi - 2.

The first inequality follows because wk+i - 1 \geq wk, and the second one and the last one
follow from the definition of \mu . For the third inequality, note that wk+i - 1 is obtained
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from wk by adding weights to the vertices in the AND layers below Lk+i. In particular,
for a vertex u \in Lk+i - j we have that wk+i - 1(u) = wk(u)+h(v) \cdot bi - 1 - j \leq wk(u)+ r \cdot 
bi - 1 - j . Recall that the weight wk+i - 1(Fv) is a linear combination of vertex weights
wk+i - 1(\cdot ) with nonnegative integral coefficients. The sum of the coefficients that the
weights of the vertices in Lk+i - j receive in wk+i - 1(Fv) is at most 2j . Summing over
all such layers with j > 0 we have that

wk+i - 1(Fv) \leq wk(Fv) + r \cdot 
i - 1\sum 
j=1

2jbi - 1 - j \leq wk(Fv) + 4r \cdot bi - 2

for b \geq 4.
After division by bi - 1, (4.6) shows that

\mu k(v)

bi - 1
\leq \mu k+i - 1(v)

bi - 1
\leq \mu k(v)

bi - 1
+

4r

b
,

which implies that

(4.7)

\biggl\lfloor 
\mu k(v)

bi - 1

\biggr\rfloor 
\leq 

\biggl\lfloor 
\mu k+i - 1(v)

bi - 1

\biggr\rfloor 
\leq 

\biggl\lfloor 
\mu k(v)

bi - 1

\biggr\rfloor 
+ 1

for b \geq 4r. In combination with the hypothesis (4.3), (4.7) implies that\biggl\lfloor 
\mu k+i - 1(u)

bi - 1

\biggr\rfloor 
+ h(u) \not =

\biggl\lfloor 
\mu k+i - 1(v)

bi - 1

\biggr\rfloor 
+ h(v),

which by (4.4) in turn implies (4.5) after undoing the division. This finishes the proof
of Claim 4.4.

Each individual disambiguation requirement (4.3) can be written as three condi-
tions of the form (3.3). By Fact 3.2, each of these three conditions individually holds
with probability at least 1 - 1/r. There are at most n3 disambiguation requirements
over all i \in [k\prime  - k], namely n choices for each of g, u, and v. A union bound shows
that they all hold simultaneously with probability at least 1 - 3n3/r, which is at least
1 - 1/n2 for r \geq 3n5. Whenever they hold, we know that the invariant (4.2) holds for
each i \in Jk\prime  - kK, and in particular that wk\prime is min-isolating for (C, z, V\leq 2k\prime ).

This leads to the following definition of \Gamma (cert,step): \Gamma 
(cert,step)
n,\ell ,k,k\prime takes a seed \sigma for

\Gamma 
(hashing)
n(2\ell +1),r, considers h = \Gamma 

(hashing)
n(2\ell +1),r(\sigma ) as a function h : D \mapsto \rightarrow [r] with D = Dn,\ell ,k,k\prime 

.
=

[n]\times J2\ell K, and for g \in [n]\times \{ j\} sets

(\Gamma 
(cert,step)
n,\ell ,k,k\prime (\sigma ))(g) =

\biggl\{ 
h(g) \cdot b(j - 1)/2 - k for odd j \in [2k + 1, 2k\prime  - 1],
0 otherwise.

The above analysis shows that \Gamma (cert,step) has the required min-isolating property.
By setting b to the first power of 2 that is at least 4r with r = 3n5, the bitlength
becomes O((k\prime  - k) log b) = O((k\prime  - k) log n). The other required properties follow

from the properties of the universal family \Gamma 
(hashing)
m,r given in Fact 3.2. They im-

ply that \Gamma 
(cert,step)
n,\ell ,k.k\prime has seed length O(log(| Dn,\ell ,k,k\prime | \cdot r)) = O(log n). As each bit of

(\Gamma (cert,step)(\sigma ))(g) equals an easily determined bit of h(g), the logspace computabil-
ity of the universal family of hash functions implies the logspace computability of

\Gamma 
(cert,step)
n,\ell ,k,k\prime . This completes the proof of Lemma 4.3.
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We now turn to the proof of the theorem.

Proof of Theorem 4.2. Let C be a circuit as in the statement of the theorem with
layers Vj \subseteq [n]\times \{ j\} for j \in JdK, and let z be an input for C. Consider first the case
where the layer V1 of C next to the leaves consists of ANDs.

If d is even and of the form d = 2\ell with \ell = \Delta 2 for some \Delta \in \BbbN , we can apply
Lemma 4.3 \Delta times successively, starting from an arbitrary weight assignment w0.
The ith application sets k = ki

.
= (i  - 1) \cdot \Delta and k\prime = k\prime i

.
= i \cdot \Delta , uses a fresh

seed \sigma i for \Gamma 
(cert,step)
n,\ell ,ki,k\prime 

i
, sets wi\cdot \Delta = w(i - 1)\cdot \Delta + \Gamma 

(cert,step)
n,\ell ,ki,k\prime 

i
(\sigma i), and tries to maintain

the invariant that wi\cdot \Delta is min-isolating for (C, z, V\leq 2i\cdot \Delta ). We end up with w\ell =

w0 + \Gamma 
(cert,odd)
n,d (\sigma 1, \sigma 2, . . . , \sigma \Delta ), where

(4.8) \Gamma 
(cert,odd)
n,d (\sigma 1, \sigma 2, . . . , \sigma \Delta )

.
=

\sum 
i\in [\Delta ]

\Gamma 
(cert,step)
n,\ell ,ki,k\prime 

i
(\sigma i).

The superscript ``odd"" in \Gamma (cert,odd) refers to the fact that only odd layers receive
nonzero values under weight assignments generated by \Gamma (cert,odd). The probability
that the ith application breaks the invariant is at most 1/n2. By a union bound, the
probability that the invariant fails at the end is at most \Delta /n2 \leq 1/n. Thus, for any

fixed w0 : [n] \times JdK \mapsto \rightarrow \BbbN , w0 + \Gamma 
(cert,odd)
n,d is min-isolating for (C, z) with probability

at least 1  - 1/n. The seed length of \Gamma 
(cert,odd)
n,d is \Delta times the one of \Gamma 

(cert,step)
n,d,\cdot ,\cdot , i.e.,

O(\Delta log n) = O(
\surd 
d log n). The maximum weight assigned by \Gamma 

(cert,odd)
n,d is at most

\Delta times the one assigned by \Gamma 
(cert,step)
n,d,\cdot ,\cdot , so the bitlength of \Gamma 

(cert,odd)
n,d is O(log(\Delta ) +

\Delta \cdot log n) = O(
\surd 
d log n). The logspace computability of \Gamma (cert,step) and the fact that

iterated addition can be computed in logspace (see, e.g., [65]) imply that \Gamma 
(cert,odd)
n,d is

computable in space O(log n).
Other values of d can be handled by conceptually extending the circuit with suc-

cessive matchings until the depth is of the form 2\Delta 2, applying the above construction,
and then only using the part needed. As the smallest such \Delta still satisfies \Delta = \Theta (

\surd 
d),

the parameters remain the same up to constant factors. Thus, we have a weight as-
signment generator \Gamma (cert,odd) with all the properties required of \Gamma (cert) in the case
where the layer V1 of C consists of ANDs.

To handle the case where V1 consists of ORs, we can conceptually split every
wire (u, v) from a leaf u to v \in V1 into two by inserting a fresh AND gate g and
replacing (u, v) by (u, g) and (g, v). We then apply the construction for the case
where V1 consists of ANDs, and finally undo the splitting again, transferring the
weight of each fresh AND gate g to the leaf u that feeds into it. This results in a
weight assignment generator \Gamma (cert,even) that only assigns nonzero weights to the even
layers and has all the properties required of \Gamma (cert) for circuits C where the layer V1

next to the leaves consists of ORs. For any such circuit C, input z for C, and any

fixed w\prime 
0 : [n]\times JdK \mapsto \rightarrow \BbbN , we have that w\prime 

0 +\Gamma 
(cert,even)
n,d is min-isolating for (C, z) with

probability at least 1 - 1/n.
We claim that

\Gamma 
(cert)
n,d

.
= \Gamma 

(cert,odd)
n,d + \Gamma 

(cert,even)
n,d

satisfies all requirements irrespective of the type of V1, provided that we pick the seeds

for \Gamma 
(cert,odd)
n,d and \Gamma 

(cert,even)
n,d independently. This follows from the above analysis by

setting w0 = \Gamma 
(cert,even)
n,d and w\prime 

0 = \Gamma 
(cert,odd)
n,d . More specifically, in the case where

V1 consists of ANDs, the above analysis shows that (4.1) holds for any fixed choice
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of the seed for \Gamma 
(cert,even)
n,d , and thus holds overall by averaging. The case where V1

consists of ORs is similar. The parameters of \Gamma (cert) follow from those of \Gamma (cert,odd)

and \Gamma (cert,even). This finishes the proof of Theorem 4.2.

4.2. Isolation. We use the weight assignment generator from Theorem 4.2 to
establish the following result

Theorem 4.5. LogCFL \subseteq UAuxPDA-TISP(poly(n), (log n)3/2).

In words: Every language in the class LogCFL can be accepted by a nondeter-
ministic machine equipped with a stack that does not count towards the space bound,
that runs in polynomial time and O((log n)3/2) space, and has at most one accepting
computation path on every input.

By the following proposition, it suffices to construct such a machine for Circuit
Certification on shallow layered alternating semi-unbounded circuits.

Proposition 4.6. Circuit Certification on shallow layered alternating semi-
unbounded Boolean circuits is hard for LogCFL under logspace mapping reductions
that preserve the number of solutions.

Our unambiguous machine for Circuit Certification hinges on our weight
assignment generator for the problem as well as the following unambiguous ma-
chines. They represent improvements of machines from [52], similar to those given by
Lemma 3.5 in the context of Reachability. See Appendix A for a proof and further
discussion.

Lemma 4.7. There exist unambiguous machines, denoted WeightCheck(cert)

and WeightEval(cert), each equipped with a stack that does not count towards the
space bound, such that for every layered semi-unbounded Boolean circuit C = (V,E)
of depth d with n gates, every input z for C, weight assignment w : V \mapsto \rightarrow \BbbN , and
g \in V ,

(i) WeightCheck(cert)(C, z, w) decides whether or not w is min-isolating for
(C, z), and

(ii) WeightEval(cert)(C, z, w, g) computes w(C, z, g) provided w is min-isolating
for (C, z).

Both machines run in time poly(2d, log(W ), n) and space O(d + log(W ) + log(n)),
where W denotes an upper bound on the finite values w(C, z, g) for g \in V .

We now have all the ingredients to establish our efficient unambiguous machines
for LogCFL.

Proof of Theorem 4.5. By way of Proposition 4.6, it suffices to construct an un-
ambiguous machine that decides11 Circuit Certification on layered alternating
semi-unbounded Boolean circuits C = (V,E) of size n and depth d \leq log2(n) and
runs in time nO(1) and space O((log n)3/2) when equipped with a stack that does not
count towards the space bound. In fact, thanks to simple manipulations described
earlier, it suffices to consider the case where the depth d is of the form d = 2\Delta 2 for
\Delta \in \BbbN , and where the layer next to the leaves consists of ANDs. We claim that the
machine CircuitEval described in Algorithm 1 does the job.

Consider the version of our weight assignment generator \Gamma (cert) from Theorem 4.2
that is geared towards such circuits, namely \Gamma (cert,odd) given by (4.8). We know that

on most seeds \Gamma 
(cert,odd)
n,d produces a weight assignment w that is min-isolating for

11In fact, we only need to construct a machine that accepts the language, but we naturally get
the stronger notion of one that decides the language.
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Algorithm 1: CircuitEval(C, z, g).

Input : C = (V,E): layered semi-unbounded circuits of depth d with
layers V0, V1, . . . , Vd

z: input for C
g \in V

Promise: d = 2\Delta 2 for \Delta \in \BbbN and V1 consists of ANDs
Output : g(z)

1 for i\leftarrow 1 to \Delta do
2 foreach \sigma i \in \{ 0, 1\} s(n,d) in lex order do
3 isolating \leftarrow true;
4 foreach v \in V\leq 2i\Delta in lex order do

5 if not WeightCheck(cert)(Cv, z,
\sum i

j=1 \Gamma 
(cert,step)
n,d,(j - 1)\cdot \Delta ,j\cdot \Delta (\sigma j)) then

6 isolating \leftarrow false;
7 exit the for loop over v;

8 end
9 if isolating then store the current \sigma i and exit the loop over \sigma i;

10 end

11 end

12 if WeightEval(cert)(C, z,
\sum \Delta 

j=1 \Gamma 
(cert,step)
n,d,(j - 1)\cdot \Delta ,j\cdot \Delta (\sigma j), g) <\infty then

13 accept and return 1
14 else accept and return 0;

(C, z). The machine CircuitEval in Algorithm 1 constructs such a seed. In fact, it
constructs the lexicographically first such seed.

Recall that the seed \sigma consists of \Delta parts \sigma i \in \{ 0, 1\} s(n,d) for i \in [\Delta ], where

s(n, d) denotes the seed length of \Gamma 
(cert,step)
n,d,\cdot ,\cdot . Note that w

.
= \Gamma 

(cert,odd)
n,d (\sigma 1, . . . , \sigma \Delta ) is

min-isolating for (C, z) if and only if

(4.9) wi\cdot \Delta 
.
=

i\sum 
j=1

\Gamma 
(cert,step)
n,d,(j - 1)\Delta ,j\Delta (\sigma j) is min-isolating for (C, V\leq 2i\Delta )

for each i \in [\Delta ]. This enables a prefix search for the lexicographically first \sigma for which
w is min-isolating for (C, z). The first part of Algorithm 1 implements this search.
In the ith iteration it finds the lexicographically first \sigma i satisfying the invariant (4.9),
given values for \sigma 1, . . . , \sigma i - 1 from prior iterations. In order to check whether a given
candidate \sigma i works, it runs the machine WeightCheck(cert)(Cv, z, wi\cdot \Delta ) for each
v \in V\leq 2i\Delta , where Cv denotes the subcircuit of C rooted at v.

Once \sigma is determined, CircuitEval calls WeightEval(cert)(C, z, w, g) to com-
pute w(C, z, g), which is finite if and only if g(z) = 1.

The correctness of CircuitEval follows from maintaining the invariant (4.9)

and the specifications of WeightCheck(cert) and WeightEval(cert). The unam-
biguity of CircuitEval follows from the unambiguity of WeightCheck(cert) and
WeightEval(cert) (and the usual conventions regarding composing unambiguous ma-
chines).

We end with a time and space analysis of CircuitEval. Each run of line 5
takes time poly(2d, log(W ), n) and space O(d+log(W )+log(n)), where W is a bound
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on the path weights under w. This follows from the complexities of \Gamma (cert,odd) and
WeightCheck(cert) and the fact that iterated addition is in logspace (see, e.g., [65]).
The three loops add a multiplicative term of \Delta \cdot 2s(n,d) \cdot n to the running time and
an additive term of log(\Delta )+ s(n, d) + log(n) + log(W ) to the space bound. The time

and space needed for the call to WeightEval(cert) at the end is dominated by the
rest of the computation. Since \Delta = \Theta (

\surd 
d) \leq 

\surd 
log n, s(n, d) = O(log n), and W =

2O(\Delta \cdot log(n)), the overall running time is poly(2d, n), and the space is O(
\surd 
d log(n)).

This yields the stated complexities in the case of shallow circuits, for which d \leq 
log2(n).

4.3. Reachability through circuit certification. We now explain how our
results for Circuit Certification and LogCFL essentially imply the results for
Reachability and NL from section 3. We review the reduction from Reachabil-
ity to Circuit Certification given by Savitch's theorem and show how it yields
our weight assignment generator \Gamma (reach) for Reachability from a slight modification
\~\Gamma (cert,odd) of our weight assignment generator \Gamma (cert,odd) for Circuit Certification,
and that min-isolation of \~\Gamma (cert,odd) on a reduced instance is equivalent to a restricted
version of min-isolation of \Gamma (reach) on the original instance. The reduction also allows
us to obtain alternate unambiguous machines for Reachability and NL meeting the
requirements of Theorem 1.2 from the unambiguous machines for Circuit Certifi-
cation and LogCFL of Theorem 4.5.

Reduction. Savitch's theorem transforms nondeterministic logspace computations
into equivalent logspace-uniform polynomial-size families of shallow alternating semi-
unbounded circuits. This is one way to see that NL \subseteq LogCFL, and is equivalent to
the following statement.

Proposition 4.8. There exists a logspace mapping reduction from Reachabil-
ity to Circuit Certification on shallow alternating semi-unbounded Boolean cir-
cuits.

We sketch the reduction, as we need to analyze some of its properties.

Proof sketch. Let G = (V,E) be a digraph of depth d on n vertices. For k \in \BbbN 
with k \geq 2, and s, t \in V , we can express the predicate Reachk(s, t) of whether there
exists a path of at most k edges from s to t in G as

(4.10)
\bigvee 
v\in V

Reachk(s, v, t),

where

Reachk(s, v, t)
.
= Reach\lceil k/2\rceil (s, v) \wedge Reach\lfloor k/2\rfloor (v, t).

Recursive application starting from k = d yields an alternating semi-unbounded cir-
cuit of even depth \~d \leq 2 log d. The OR gates are labeled Reachk(s, t) for k \in [2, d]
and s, t \in V , indicating their meaning. The AND gates are labeled Reachk(s, v, u) for
k \in [2, d] and s, v, t \in V , also indicating their meaning, namely whether there exists a
path of at most k edges from s to t consisting of a path of at most \lceil k/2\rceil edges from s
to v followed by a path of at most \lfloor k/2\rfloor edges from v to t. The gates with fan-in zero
correspond to Reachk(s, t) with k = 1, which we replace with an input variable indi-
cating whether (s, t) \in E. Let C denote the resulting circuit (without a designated
output gate). The reduction maps the Reachability instance x

.
= (G, s, t) to the

Circuit Certification instance \~x = (C, z, g) where z encodes the graph G, and g
denotes the gate Reachd(s, t).
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For future reference we introduce the following terminology.

Definition 4.9 (Reachability instances of Circuit Certification). The in-
stances of Circuit Certification that result from the reduction in Proposition 4.8
are called Reachability instances of Circuit Certification.

Like before, we restrict our attention to Reachability instances x
.
= (G, s\ast , t\ast )

where G = (V,E) is a layered digraph of depth d = 2\ell for some \ell \in \BbbN . Let
V0, V1, . . . , Vd denote the layers of G. We further restrict x such that s\ast \in V0 and
t\ast \in Vd. For such instances x the reduction in Proposition 4.8 yields a Circuit
Certification instance \~x

.
= (C, z, g) where C has depth \~d = 2\ell , is layered, alternat-

ing, and semi-unbounded, and has an AND layer next to the leaves. We denote the
successive layers of C by \~V0, \~V1, . . . , \~V \~d, and the kth layer of ANDs by \~Lk

.
= \~V2k - 1.

We can also restrict the range of v in (4.10) from all of V to the layer in the middle
between the layers of s\ast and t\ast .

The following connections exist between x and its solutions (paths P ), and \~x and
its solutions (certificates F ).

\circ There is a bijection between the OR gates in C and pairs of vertices (s, t)
such that s belongs to the first layer of some block and t to the last layer of
the same block---in symbols, pairs (s, t) in A\leq \ell 

.
=

\bigcup 
k\leq \ell Ak where

(4.11) Ak
.
=

\bigcup 
i\in [d/2k]

V(i - 1)\cdot 2k \times Vi\cdot 2k .

For any fixed such pair (s, t) and the corresponding OR gate g, there is a
bijection between the solutions to the Reachability instance (G, s, t) (paths
P from s to t), and the solutions to the Circuit Certification instance
(C, z, g) (certificates F in C witnessing that g(z) = 1).

\circ There is a bijection between the AND gates in C and triples of vertices (s, v, t)
where (s, t) \in A\leq \ell as above, and v belongs to the middle layer between s and

t. We can view \~Lk as the subset of those triples (s, v, t) where (s, t) \in Ak.
The projection of \~Lk onto its middle component equals the set Lk given by
(3.1). For any fixed such triple (s, v, t) and the corresponding AND gate g,
there is a bijection between the paths in G from s to t that pass through v,
and the certificates in C witnessing that g(z) = 1.

Consider a weight assignment \~w to the gates of C that only assigns nonzero weights to
the AND gates, i.e., to the gates in \~L\leq \ell . Suppose that \~w has the additional property
that the value of \~w(s, v, t) only depends on v, i.e., there exists a weight assignment
w to V such that \~w(s, v, t) = w(v). Then for any OR gate g and solution F for
(C, z, g), and for the corresponding (s, t) and solution P for (G, s, t), it is the case
that \~w(F ) = w(P ). In particular, we have that \~w is min-isolating for (C, z, g) if and
only if w is min-isolating for (G, s, t). It follows that

(4.12) \~w is min-isolating for (C, z)\leftrightarrow w is min-isolating for (G,A\leq \ell ),

i.e., \~w is min-isolating for (C, z, g) for all gates g if and only if w is min-isolating for
(G, s, t) for all pairs s and t such that s belongs to the first layer of some block and t
to the last layer of the same block.

Weight assignment generator. Consider the version of our weight assignment gen-
erator \Gamma (cert) that is geared towards circuits (like C) with an AND layer next to the
leaves, namely \Gamma (cert,odd) given by (4.8). \Gamma (cert,odd) has the property that the weight
assignments \~w it produces only assign nonzero weights to AND gates. It does not
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have the property that the weights of the AND gates (s, v, t) in C only depend on v.
However, we can easily tweak the construction of \Gamma (cert,odd) so that it does.

The critical part in our analysis of the weight assignment generator \Gamma (cert,odd) is
the disambiguation requirements (4.3). There is one such requirement for each choice
of an OR gate g and two of the AND gates \~u and \~v that feed into g.12 In the case
of the circuit C, each OR gate g is of the form g = (s, t), and the ANDs feeding into
it are of the form \~u = (s, u, t) and \~v = (s, v, t). Thus, in each of the disambiguation
requirements the gates \~u and \~v necessarily share their first and last components. This
allows us to relax the requirement (3.3), i.e.,

Pr
\~h
[a+ \~h(\~u) = b+ \~h(\~v)] \leq 1/r

where \~h is chosen uniformly at random from \Gamma 
(hashing)
\~m,\~r , from holding for all pairs

(\~u, \~v) with \~u \not = \~v, to holding for all pairs of the form ((s, u, t), (s, v, t)) with u \not = v.

This in turn allows us to replace the family \Gamma 
(hashing)
\~m,\~r by a family of functions of the

form \~h(s, v, t)
.
= h(v) for h from another (smaller) universal family of hash functions

\Gamma 
(hashing)
m,r , without affecting the analysis.

The result can be interpreted as the following modification \~\Gamma (cert,odd) of our weight
assignment generator \Gamma (cert,odd). In order to formally express the relationship, we view
both as taking hash functions as inputs rather than seeds for \Gamma (hashing) that produce
those hash functions. We use square brackets to make the distinction clear. We
have that \~\Gamma (cert,odd)[h1, . . . , h\ell ]

.
= \Gamma (cert,odd)[ \~h1, . . . , \~h\ell ] where \~hk(s, v, t)

.
= hk(v) for

k \in [\ell ]. The new generator produces a weight assignment \~w = \~\Gamma (cert,odd)[h1, . . . , h\ell ]
to the gates of C that is min-isolating for (C, z) with probability at least 1 - 1/n. It
only assigns nonzero weights to the AND gates of C, i.e., the gates in \~L\leq \ell . It has
the above additional property---there exists a weight assignment w on V such that
\~w(s, v, t) = w(v) for all AND gates (s, v, t) in C. The weight assignment w only gives
nonzero weights to L\leq \ell = V \setminus (V0

\bigcup 
Vd). Moreover, the construction of \~\Gamma (cert,odd)

mimics the one of \Gamma (reach), and we have that w = \Gamma (reach)[h1, . . . , h\ell ].
In conclusion, we have exhibited an alternate way to obtain the weight assignment

generator \Gamma (reach) from section 3.1 for Reachability: Start with the slight modifi-
cation \~\Gamma (cert,odd) of our weight assignment generator \Gamma (cert,odd) for Circuit Certi-
fication and apply the reduction from Reachability to Circuit Certification
given in Proposition 4.8. Moreover, by (4.12) we have the following equivalence for
every seed \sigma : \~\Gamma (cert,odd)(\sigma ) is min-isolating for (C, z) if and only if \Gamma (reach)(\sigma ) is min-
isolating for (G,A\leq \ell ). In other words, \~\Gamma (cert,odd)(\sigma ) is min-isolating for (C, z, g) for
all gates g of C if and only if \Gamma (reach)(\sigma ) is min-isolating for (G, s, t) for all s and t
such that s belongs to the first layer of some block and t to the last layer of the same
block.

Isolation. The min-isolation property that we obtain for \Gamma (reach) via the alter-
nate route is weaker than via the direct route; the weight assignment generator is
only min-isolating for (G,A\leq \ell ) rather than for (G,V \times V ). Nevertheless, the weaker
property is sufficient to derive the unambiguous machines for Reachability and NL
from Theorem 1.2. This is because the weaker property is compatible with the con-
structions in Lemma 3.5; see Lemma A.5 in Appendix A. In fact, Lemma A.5 can
be obtained from the corresponding result in the setting of Circuit Certification

12We consistently introduce tildes for elements of the reduced Circuit Certification instance
if there is a need to---for lack of a better word---disambiguate them from corresponding elements of
the original Reachability instance.
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and LogCFL, namely Lemma 4.7. Applying the reduction from Reachability to
Circuit Certification as above to Lemma 4.7 yields Lemma A.5 except that the
resulting unambiguous machines make use of a stack that is not counted towards the
space bound. However, one can argue that, in the case of Reachability instances,
the stack is not needed. The only reason the stack is used in Lemma 4.7 is for guessing
and checking certificates in a space efficient manner. In the setting of Reachability
the role of the certificates is taken over by paths, which can be guessed and checked
space efficiently without access to a stack. See the proofs in Appendix A for more
details.

For the same reason, the unambiguous machine CircuitEval in the proof of
Theorem 4.5 does not need access to its stack on Reachability instances. In com-
bination with Proposition 3.4, this observation yields Theorem 1.2 as a corollary to
Theorem 4.5.

5. Limitations. In this section we prove our ``negative result"" for isolating
Reachability (Theorem 1.3) and a corresponding result for Circuit Certifica-
tion.

Recall that we view a computational problem as a mapping \Pi : X \mapsto \rightarrow 2Y , where
\Pi (x) for x \in X represents the set of solutions on input x. One can also think of \Pi 
as defining a relation \pi : X \times Y \mapsto \rightarrow \{ 0, 1\} , where \pi (x, y) indicates whether y \in \Pi (x).
We use the notation L(\Pi ) to denote the set (language) of instances x \in X for which
\Pi (x) \not = \emptyset .

The first part of Theorem 1.3 follows by verifying that the main result of Dell et
al. [26] carries over to the space-bounded setting: If \Pi has an efficient pruning and \pi 
is efficiently computable, then L(\Pi ) can be decided efficiently. The prunings in this
statement are deterministic or, more generally, randomized with probability of suc-
cess at least 2

3 +
1

poly(n) . The paper [26] showed that the above statement holds when

``efficient"" means polynomial-time for any \Pi that satisfies certain additional proper-
ties, which all the classical problems like Satisfiability do. We observe that the
argument in [26] also works when ``efficient"" means logspace, and that both Reach-
ability and Circuit Certification have the required additional properties. This
yields the first part of Theorem 1.3 and its counterpart for Circuit Certification.
The second part follows from a slight modification of the argument.

The proof in [26] relies on a proposition of Ko [42].

Proposition 5.1 ([42]). Suppose that there exists a predicate T : D\times D \mapsto \rightarrow \{ 0, 1\} 
for some D \subseteq X with the following properties:

(\forall x, z \in D \cap L(\Pi )) T (x, z) \vee T (z, x),(5.1)

(\forall x, z \in D) z \in L(\Pi ) \wedge T (z, x)\Rightarrow x \in L(\Pi ).(5.2)

Then for some \ell \in J\lceil log(| D| +1)\rceil K there exists a sequence z\ast 1 , . . . , z
\ast 
\ell \in D\cap L(\Pi ) such

that for every x \in D

(5.3) x \in L(\Pi )\leftrightarrow (\exists i \in [\ell ])T (z\ast i , x).

If the \vee in (5.1) were replaced by an exclusive or, T would induce a tournament
over the vertex set D \cap L(\Pi ), where T (z, x) (an edge from z to x) means that x wins
the duel between z and x. Equation (5.1) requires the digraph T over D to contain
a tournament over D \cap L(\Pi ) (and have a self-loop at every vertex in D \cap L(\Pi )).
Equation (5.2) can be interpreted as saying that winners of duels are more likely to



DERANDOMIZING ISOLATION IN SPACE-BOUNDED SETTINGS 1007

be in L(\Pi ) in the following sense: If at least one of x or z is in L(\Pi ), then any winner
of the duel between x and z is.

Proposition 5.1 follows from the fact that every tournament graph has a dominat-
ing set of logarithmic size. In the case where D represents all instances of a given size
n (of which there are at most 2n), Proposition 5.1 shows us via (5.3) how to decide
L(\Pi ) efficiently on D with the help of the \ell \cdot n \leq n2 bits of advice z\ast i for i \in [\ell ],
provided T (z\ast i , x) is efficiently computable for i \in [\ell ] and x \in D.

Reference [26] constructs such a predicate T satisfying (5.1) and (5.2) assum-
ing the existence of an efficient deterministic pruning f for \Pi , that \pi is efficiently
computable, and that \Pi allows an efficient disjoint union operator.

Definition 5.2 (disjoint union of computational problems). Let \Pi : X \mapsto \rightarrow 2Y

be a computational problem. A disjoint union operator for \Pi consists of a mapping
\sqcup : X\times X \mapsto \rightarrow X and a mapping \tau : X\times X\times [2]\times Y \mapsto \rightarrow Y such that for all x1, x2 \in X,
| \Pi (x1 \sqcup x2)| = | \Pi (x1)| + | \Pi (x2)| and \Pi (x1 \sqcup x2) = \.\cup i\in [2]\tau (x1, x2, i,\Pi (xi)), where
\tau (x1, x2, i,W )

.
= \.\cup y\in W \{ \tau (x1, x2, i, y)\} for any W \subseteq Y .

\sqcup maps a pair of instances (x1, x2) to an instance x1 \sqcup x2 whose solutions can
be viewed as the disjoint union of the solutions of x1 and of x2, where \tau (x1, x2, i, yi)
describes the translation of the solution yi \in \Pi (xi) into the corresponding solution in
\Pi (x1 \sqcup x2).

Several of the classical computational problems \Pi allow simple disjoint union
operators that are computable in logspace, meaning that both \sqcup and \tau in Definition 5.2
are computable in logspace. Oftentimes the underlying predicate \pi is computable in
logspace as well. This is the case for, among others, Satisfiability, Reachability,
and Circuit Certification.

Proposition 5.3. Reachability and Circuit Certification on shallow semi-
unbounded circuits have disjoint union operators as well as underlying predicates that
are computable in logspace. The same holds for their restrictions to layered digraphs,
and to layered alternating circuits, respectively.

The key insight in [26] is that a pruning f applied to the disjoint union x1 \sqcup x2

implicitly selects an instance among x1 and x2 that is more likely to be positive---the
unique solution of f(x1 \sqcup x2) (if there is one) corresponds to a solution of exactly one
of the two instances x1 and x2. A predicate T satisfying Ko's requirements (5.1) and
(5.2) can be defined as follows on all pairs of instances (z, x) \in X \times X:

T (z, x)\leftrightarrow 
\biggl\{ 

\tau (z, x, 1,\Pi (z)) \cap \Pi (f(z \sqcup x)) = \emptyset for z \leq lex x,
\tau (x, z, 2,\Pi (z)) \cap \Pi (f(x \sqcup z)) = \emptyset for x \leq lex z,

where \leq lex denotes the lexicographic ordering. In other words, T (z, x) holds if the
unique solution of f(min(x, z) \sqcup max(x, z)) does not correspond to a solution of z,
where min and max refer to the lexicographic ordering \leq lex. The ordering of the
arguments of the disjoint union is necessary to ensure that we work with the same
disjoint union instance while determining T (z, x) and T (x, z). The isolation property
| \Pi (f(\cdot ))| \leq 1 ensures that T satisfies condition (5.1). The pruning property \Pi (f(\cdot )) \subseteq 
\Pi (\cdot ) implies condition (5.2).

In order to obtain an efficient algorithm for \Pi , [26] applies Ko's proposition on
the set D of instances of size n with at most one solution. In the case of an instance
z\ast with a unique solution, say \Pi (z\ast ) = \{ y\ast \} , we can evaluate T (z\ast , x) as

(5.4) T (z\ast , x)\leftrightarrow 
\biggl\{ 
\neg \pi (f(z\ast \sqcup x), \tau (z\ast , x, 1, y\ast )) for z\ast \leq lex x,
\neg \pi (f(x \sqcup z\ast ), \tau (x, z\ast , 2, y\ast )) for x \leq lex z\ast .
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Given z\ast and y\ast , T (z\ast , x) can be computed efficiently when all of \pi , f , \sqcup , and \tau can.
This leads to an efficient algorithm with advice for deciding L(\Pi ) on the instances
with at most one solution, where the advice consists of the strings (z\ast i , y

\ast 
i ) for i \in [\ell ].

In order to decide L(\Pi ) on any instance x \in X, we first apply the pruning f and then
run the algorithm for instances with at most one solution on f(x). This results in an
efficient algorithm with polynomial advice for deciding L(\Pi ).

The above argument works for polynomial-time efficiency as well as for logspace
efficiency. The polynomial-time incarnation yields the main result of [26] regarding
the existence of deterministic polynomial-time prunings for Satisfiability. The
logspace incarnation yields the first part of Theorem 1.3 regarding the existence of
deterministic logspace prunings for Reachability as well as a corresponding result
for Circuit Certification.

As for the second part of Theorem 1.3 and its counterpart for Circuit Certifi-
cation, a min-isolating weight assignment \omega (x, y) applied to the disjoint union x1\sqcup x2

selects between x1 and x2 in a similar way as a pruning does---the unique min-weight
solution (if one exists) of the disjoint union corresponds to a solution of exactly one
of x1 and x2. Given a function \mu (x) that agrees with the min-weight \omega (x) on positive
instances x, this leads to the following predicate T satisfying the requirements (5.1)
and (5.2) on instances (z\ast , x) where z\ast has a unique solution y\ast :

(5.5) T (z\ast , x)\leftrightarrow 
\biggl\{ 

\omega (z\ast \sqcup x, \tau (z\ast , x, 1, y\ast )) \not = \mu (z\ast \sqcup x) for z\ast \leq lex x,
\omega (x \sqcup z\ast , \tau (x, z\ast , 2, y\ast )) \not = \mu (x \sqcup z\ast ) for x \leq lex z\ast .

As in the setting of part 1, we obtain an efficient algorithm with polynomial advice
for deciding L(\Pi ) on instances with at most one solution. To handle all inputs, we no
longer have access to a pruning as we did in the case of part 1 of the theorem. Access
to the functions \omega and \mu does yield an efficient disambiguation provided the search
for a solution of a given weight can be efficiently reduced to \Pi under a reduction
that preserves the number of solutions. This is the case for polynomially bounded
\omega and each of Satisfiability, Reachability, and Circuit Certification on
shallow semi-unbounded circuits, both for polynomial-time efficiency and for logspace
efficiency. In order to handle larger weight functions \omega , we can alternately make use
of a randomized disambiguation with success probability 1/ poly(n), which exists for
all of these problems by virtue of the Isolation Lemma, and hardwire good random
bit strings in the advice.

This completes the proof outlines for parts 1 and 2 of Theorem 1.3 (as well as
their counterparts for Circuit Certification) in the case where the pruning f and
the functions \omega and \mu are deterministic. For the more general case where they can be
randomized and have probability of success at least 2

3 +
1

poly(n) , the predicate T needs

to be generalized in an appropriate way. The following lemma formalizes the general
case. We view a randomized mapping as a deterministic one that gets a random bit
string \rho \in \{ 0, 1\} r as an additional input, and often write \rho as a subscript to the name
of the procedure.

We state the lemma for logspace efficiency for concreteness, but the proof only
requires mild properties of the underlying notion of efficiency. In particular, it also
applies to polynomial-time efficiency.

Lemma 5.4. Let \Pi : X \mapsto \rightarrow 2Y be a computational problem with an underlying
predicate \pi that is computable in logspace and has the following additional properties:

\circ \Pi has a disjoint union operator given by \sqcup and \tau in Definition 5.2 where \sqcup 
and \tau are computable in logspace.
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\circ \Pi has a randomized disambiguation g that is computable in logspace and sat-
isfies the following for all inputs x:

x \in L(\Pi ) \Rightarrow Pr[g(x) \in L(\Pi )] \geq 1/ poly(| x| ),
x \not \in L(\Pi ) \Rightarrow Pr[g(x) \in L(\Pi )] = 0,

where the probabilities are over the internal coin flips of g.
\circ There exists a logspace mapping reduction h from the following decision prob-
lem to \Pi : On input of an instance x \in X and an index i \in \BbbN , decide whether
there exists y \in \Pi (x) such that the ith bit of y is 1. Furthermore, the instances
h(x, i) have at most one solution if the instance x does.

For any p = 2
3 + 1

poly(n) either of the following hypotheses imply that L(\Pi ) can be

decided in logspace with polynomial advice, where \rho is chosen uniformly at random
from \{ 0, 1\} r for some r = poly(n):

1. There exists a randomized mapping f : X \mapsto \rightarrow X computable in logspace such
that for every input x \in X

(5.6) Pr
\rho 
[ f\rho satisfies the pruning requirement on input x ] \geq p.

2. There exist randomized mappings \omega : X \times Y\times \mapsto \rightarrow \BbbN and \mu : X \mapsto \rightarrow \BbbN that are
computable in logspace such that for every x \in L(\Pi )

(5.7) Pr
\rho 
[ \omega \rho (x, \cdot ) is min-isolating for x and \mu \rho (x) = \omega \rho (x) ] \geq p.

Proof. Let us first focus on the instances of \Pi that have at most one solution.
Consider the predicate T defined as follows on input of (z\ast , x) where \Pi (z\ast ) = \{ y\ast \} 
and q denotes a fraction to be set:

(5.8) T (z\ast , x)\leftrightarrow 
\biggl\{ 

Pr\rho [ right-hand side of (5.4) holds ] > q for part 1,
Pr\rho [ right-hand side of (5.5) holds ] > q for part 2,

where \rho \in \{ 0, 1\} r is chosen uniformly at random for some r = poly(n) and is used as
the randomness for all randomized mappings involved.

Claim 5.5. Both (5.1) and (5.2) hold for q = 1/3 as long as p > 2/3, where D
represents the set of all instances of \Pi with at most one solution.

Proof. We argue by contradiction that T satisfies condition (5.1). Consider part
1 first, and suppose that neither T (x, z\ast ) nor T (z\ast , x) hold for some x, z\ast \in D\cap L(\Pi ).
Then with probability at most 2q the translation of the unique solution for at least
one of x or z\ast is not a solution for f(x\ast ), where x\ast .

= min(x, z\ast ) \sqcup max(x, z\ast ). By
complementing, with probability at least 1 - 2q it is the case that both translations are
solutions for f(x\ast ), which therefore has at least two distinct solutions. Thus, f fails
the pruning condition on input x\ast with probability at least 1 - 2q, which contradicts
the hypothesis that f has success probability p as long as q < p/2. In the case of part
2, a similar argument by contradiction leads to the conclusion that with probability
at least 1  - 2q two distinct solutions for x\ast achieve the value \mu (x\ast ) under \omega , which
contradicts the hypothesis (5.7) as long as q < p/2.

We argue condition (5.2) by contradiction also. For part 1, consider z\ast \in D\cap L(\Pi )
and x \in D \setminus L(\Pi ), and let x\ast .

= min(x, z\ast ) \sqcup max(x, z\ast ). Suppose for contradiction
that T (z\ast , x) holds. Then the translation of the unique solution of z\ast is not a solution
of f(x\ast ) with probability more than q. Since x \not \in L(\Pi ), this tells us that f fails the
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pruning property on x\ast with probability more than q, which contradicts the hypothesis
(5.6) as long as q \geq 1  - p. For part 2, a similar argument leads to a contradiction
with the hypothesis (5.7) as long as q \geq 1 - p.

The conditions q < p/2 and q \geq 1  - p imply that p > 2/3, which is where the
bound of 2/3 in the statement of the lemma comes from. Setting q = 1/3 satisfies
both requirements when p > 2/3. This finishes the proof of Claim 5.5.

Note that the statement of the lemma entails some leeway in that p does not just
exceed 2/3 but does so by some margin, namely p \geq 2

3 +
1

poly(n) . We now exploit this

leeway to replace the randomness in the definition of T by advice. More specifically,
an application of the Chernoff bound shows that a subset R of a sufficiently large
polynomial number of random strings \rho \in \{ 0, 1\} r has the following property with
high probability: All of the conditions (5.6) (in the case of part 1) or (5.7) (in the
case of part 2) hold for all inputs x of length n simultaneously when the uniform
distribution of \rho over \{ 0, 1\} r is replaced by the uniform distribution over R, and p is
replaced by \~p for some \~p = 2

3 +
1

poly(n) . By fixing a good set R and giving it as advice,

the predicates (5.8) become computable in logspace.
This shows the existence of an algorithm A that runs in logspace with polynomial

advice and correctly decides L(\Pi ) on instances x \in X with at most one solution. In
order to handle all instances x \in X we employ the randomized disambiguation g to
reduce to the case of at most one solution.

Denoting by \sigma the random bit string of the randomized disambiguation g, another
application of the Chernoff bound shows that for every size n there exists a set S of
poly(n) strings of length poly(n) each such that for every instance x \in L(\Pi ) of size
n there exists at least one \sigma \in S such that x\sigma 

.
= g\sigma (x) has a unique solution, and for

instances x \not \in L(\Pi ), x\sigma \not \in L(\Pi ) for every \sigma \in S.
Consider a positive instance x \in L(\Pi ) of size n. We do not know which \sigma works,

but we do know that there is at least one and that for any one that does, the unique
solution for the instance x\sigma of \Pi is given by (\chi [h(x\sigma , i) \in L(\Pi )])n

c

i=1. Here \chi denotes
the indicator function and nc for some constant c the bitlength of solutions to instances
of \Pi of size n. This follows because if x\sigma has a unique solution, then the ith bit of
that solution is 1 if and only if there exists a solution whose ith bit is 1, which is
equivalent to h(x\sigma , i) \in L(\Pi ) by the definition of h. Moreover, the instances h(x\sigma , i)
of \Pi each have at most one solution themselves, so we can use our algorithm A to
decide L(\Pi ) on those instances and retrieve the unique solution for x\sigma as

y\sigma 
.
= (A(h(x\sigma , i)))

nc

i=1.

Finally, we try all possible \sigma \in S and check whether y\sigma is a valid solution for x\sigma .
More formally, we evaluate the predicate

(5.9)
\bigvee 
\sigma \in S

\pi (x\sigma , y\sigma ).

If x \in L(\Pi ), then we know that for at least one \sigma \in S, y\sigma is the unique solution to
x\sigma , so (5.9) evaluates to true. If x \not \in L(\Pi ), then for all \sigma \in S, x\sigma \not \in L(\Pi ) and (5.9)
evaluates to false no matter what. Thus, (5.9) correctly decides L(\Pi ) on all instances
x \in X. As all the algorithms involved run in logspace with access to their random bit
strings, which are given as advice, it follows that the predicate (5.9) can be evaluated
in logspace with polynomial advice. This concludes the proof of Lemma 5.4.

Theorem 1.3 follows from an instantiation of Lemma 5.4 with Reachability on
layered digraphs as the computational problem \Pi .



DERANDOMIZING ISOLATION IN SPACE-BOUNDED SETTINGS 1011

Proof of Theorem 1.3. Since Reachability on layered digraphs is hard for NL
under logspace mapping reductions (see Proposition 3.4), it suffices to verify that
Reachability on layered digraphs has all the properties required of the computa-
tional problem \Pi in Lemma 5.4.

\circ The properties regarding the predicate \pi and the disjoint union operator
follow from Proposition 5.3.

\circ The existence of the required randomized disambiguation g with one-sided
error follows from the Isolation Lemma (as described in the introduction on
page 985).

\circ Finally, here is how we can compute the required retrieving predicate h(x, i)
for x

.
= (G, s, t). The index i corresponds to a bit position, say the jth one,

of the label of an edge in some layer, say the \ell th one, of G. The instance
h(x, i) is obtained by removing from G all edges in layer \ell whose jth bit is
not 1. This operation can be performed in logspace.

A similar argument for Circuit Certification on shallow layered alternating
semi-unbounded circuits yields the following equivalent to Theorem 1.3.

Theorem 5.6. Either of the following hypotheses implies that LogCFL \subseteq L/ poly:
1. Circuit Certification on shallow layered alternating semi-unbounded cir-

cuits has a logspace pruning.
2. Circuit Certification on shallow layered alternating semi-unbounded cir-

cuits has a logspace weight function \omega that is min-isolating, and there exists
a logspace function \mu such that \mu (x) equals the min-weight \omega (x) of x under
\omega on positive instances x.

In fact, the conclusion holds even if the algorithms are randomized, as long as the
probability of success exceeds 2

3 + 1
poly(n) and the algorithms run in logspace when

given two-way access to the random bits.

Appendix A. Checking min-isolation and computing min-weights.
This appendix presents the unambiguous logspace machines from Lemmas 3.5

and 4.7 for computing whether a given weight assignment is min-isolating, and for
computing min-weights in the case of min-isolation. The machines are used in our
unambiguous simulations: Lemma 3.5 in the proof of Theorem 1.2 in the setting of
Reachability and NL, and Lemma 4.7 in the proof of Theorem 4.5 in the setting
of Circuit Certification and LogCFL.

Both lemmas follow from the results and techniques of Reinhardt and Allen-
der [52]. The underlying machines are slight variations with improved running times,
which are necessary for Theorems 1.2 and 4.5. We present a full proof of Lemma 4.7
and sketch the proof of Lemma 3.5. In fact, we establish the following extension of
Lemma 4.7, which will aid us with the proof sketch for Lemma 3.5.

Lemma A.1. There exist unambiguous machines, denoted WeightCheck(cert)

and WeightEval(cert), each equipped with a stack that does not count towards the
space bound, such that for every layered semi-unbounded Boolean circuit C = (V,E)
of depth d with n gates, every input z for C, weight assignment w : V \mapsto \rightarrow \BbbN , and
g \in V ,

(i) WeightCheck(cert)(C, z, w) decides whether or not w is min-isolating for
(C, z), and

(ii) WeightEval(cert)(C, z, w, g) computes w(C, z, g) provided w is min-isolating
for (C, z).

Both machines run in time poly(2d, log(W ), n) and space O(d + log(W ) + log(n)),
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where W denotes on upper bound on the finite values w(C, z, v) for v \in V . Moreover,
on Reachability instances the machines do not need the stack.

The extension consists of the ``moreover"" clause, which refers to the ``Reachability
instances"" from Definition 4.9. It enables us to formally derive from Lemma A.1 a
variant of Lemma 3.5 that is sufficiently strong for the proof of Theorem 1.2. We
explain this after the proof of Lemma A.1.

The key tool in [52] is a modification of the inductive counting technique of
Immerman [34] and Szelepcsenyi [57] where in addition to computing the values

(A.1) nk
.
= | \{ g \in Vk : g(z) = 1\} | 

for k = 0, 1, . . . , we also compute the values

(A.2) sk
.
=

\sum 
g\in Vk: g(z)=1

w(C, z, g)

in sync. As in the proofs in [34, 57] that NL is closed under complementation, the
knowledge of nk allows us to cycle through all of Vk in nondeterministic logspace
(without missing anything). The additional knowledge of sk enables us to modify
that nondeterministic process so that it rejects if it ever guesses a certificate that is
not of minimum weight. This makes the process unambiguous provided the weight
assignment is min-isolating.

Inspired by the reduction from the search for a certificate of a given weight to
Circuit Certification from [30], Reinhardt and Allender [52] define the sets Vk

based on the min-weight. More precisely, their set Vk consists of all gates g for which
w(C, z, g) \leq k. This approach necessarily involves a number of steps that is at least
W , which is superpolynomial in n for our weight assignment generator. Instead, we
use the layers of the circuit C as the sets Vk (as our notation suggests). This reduces
the number of steps down to d \leq n.

Proof of Lemma A.1. Let C, z, g, and w be as in the statement of the lemma.
Let V0, V1, . . . , Vd be the layers of C. We will maintain the invariants (A.1) and (A.2)
for each k \in JdK.

We first show how the knowledge of nk and sk allows us to efficiently and unam-
biguously compute w(C, z, g) for g \in Vk provided w is min-isolating for (C, z, Vk).

Claim A.2. The nondeterministic machine PromiseWeightEval given in Al-
gorithm 2 computes the problem of its specification and is unambiguous on all inputs
satisfying the promise. Equipped with a stack that does not count towards the space
bound, the machine runs in time poly(2d, log(W ), n) and space O(log(W ) + log(n)).
PromiseWeightEval does not need the stack on Reachability instances.

Proof of Claim A.2. We first argue correctness and unambiguity. Consider an
input as in the specification, satisfying the promise. The machine returns an output
if and only if n = nk and s = sk at the end of the loop in line 12. We argue that
n = nk holds in that line if and only if all nondeterministic guesses in line 3 were
correct and the algorithm guessed a valid certificate every time it executed line 5. In
the case of a false positive, i.e., an incorrect guess in line 3 for a gate v with v(z) = 0,
the machine will fail to find a certificate in line 5 as no certificate exists. In the case
of a false negative, i.e., an incorrect guess in line 3 for a gate v with v(z) = 1, it has
to be the case that n < nk in line 12 if that line is reached at all. Therefore, the
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Algorithm 2: PromiseWeightEval(C, z, w, k, nk, sk, g).

Input : C = (V,E): layered semi-unbounded circuits of depth d with
layers V0, V1, . . . , Vd

z: input for C
w : V \mapsto \rightarrow \BbbN 
k \in JdK
nk, sk \in \BbbN 
g \in Vk

Promise: w is min-isolating for (C, z, Vk)
nk and sk satisfy (A.1) and (A.2)

Output : w(C, z, g)

1 n\leftarrow 0, s\leftarrow 0, \omega \leftarrow \infty ;
2 foreach v \in Vk in lex order do
3 guess whether v(z) = 1;
4 if the guess is ``yes"" then
5 guess a candidate certificate F for (C, z, v), check its validity, and

compute w(F );
6 if F is valid then
7 n\leftarrow n+ 1;
8 s\leftarrow s+ w(F );
9 if v = g then \omega \leftarrow w(F );

10 else reject;

11 end
12 if n = nk and s = sk then
13 accept and return \omega 
14 else reject;

machine reaches the end of the loop with n = nk if and only if all guesses in line 3
were correct.

Assuming the machine reaches line 12 with n = nk, s = sk holds at that point in
time if and only if each time the machine guessed a certificate in line 5, the certificate
had minimum weight. Therefore, if w is min-isolating for (C, z, Vk), there is a unique
computational path on which it reaches the end of the loop with n = nk and s = sk.
On that computation path, the machine has checked g against every gate v \in Vk for
which v(z) = 1. Thus, if it has not encountered g, then g(z) = 0 and the machine
correctly returns \omega =\infty . Otherwise, in the iteration with v = g the machine guessed
the unique min-weight certificate F for g, computed its weight w(F ), and set \omega =
w(F ), which it correctly returns at the end.

This argues that the machine satisfies its specification and behaves unambiguously
on every input satisfying the promise.

To analyze the complexity, we need to be more specific about the implementation
of line 5. We implement it as a space efficient depth-first search with the help of
the stack, while keeping track of a variable to compute w(F ) on the fly. We start by
pushing v on the stack and initialize the variable to zero. We then repeat the following
process: Pop a gate u from the stack and add w(u) to the variable. If u is an OR,
nondeterministically guess a gate that feeds into u, and push it onto the stack. If u
is an AND, then push the gates that feed into u onto the stack in lex order. If u is a
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leaf, then check whether it evaluates to 1 on z; if not, we know that F is not a valid
certificate; otherwise, continue.

The space used by the machine, other than the stack, is dominated by the space
required to keep track of the variables n and s, which is O(log(W ) + log(n)). The
running time is dominated by the space-efficient depth-first searches in line 5. They
essentially explore an expansion of the certificate as a formula, which can have size
2d. Each step involves elementary graph operations (time poly(n)) and the addition
of numbers bounded by W (time poly(log(W ))). Thus, the overall running time is
bounded by poly(2d, log(W ), n).

On Reachability instances, we can implement line 5 without using the stack,
namely by guessing a path of length k and computing its weight on the fly. This
concludes the proof of Claim A.2.

Next we build on PromiseWeightEval to efficiently and unambiguously check
whether w is min-isolating for (C, z, Vk+1) assuming that it is for (C, z, Vk), using
the values (nk, sk), and computing the values (nk+1, sk+1) along the way in case w is
indeed min-isolating for (C, z, Vk+1).

Claim A.3. The nondeterministic machine PromiseWeightCheck given in
Algorithm 3 computes the problem of its specification and is unambiguous on all in-
puts satisfying the promise. Equipped with a stack that does not count towards the
space bound, PromiseWeightCheck runs in time poly(2d, log(W ), n) and space
O(log(W ) + log(n)). PromiseWeightCheck does not need the stack on Reacha-
bility instances.

Proof of Claim A.3. We first argue correctness. Consider an input as in the spec-
ification, satisfying the promise. Note that the calls that PromiseWeightCheck
makes to PromiseWeightEval all satisfy the promise that PromiseWeightEval
requires. Thus, all these calls return the correct values on any accepting computation
path, of which there exists at least one.

For an AND gate g \in Vk+1 with u and v as the gates feeding into it, we have
that w(C, z, g) = w(g)+w(C, z, u)+w(C, z, v), and w is min-isolating for (C, z, g) no
matter what, since the promise guarantees that it is min-isolating for both (C, z, u)
and (C, z, v).

What PromiseWeightCheck does in the case where g \in Vk+1 is an AND layer
is to conceptually compute w(C, z, g) as w(g) + w(C, z, u) + w(C, z, v), and if that
value is finite, increase n by one and add the value w(C, z, g) to s. As w(C, z, g) is
finite if and only if g(z) = 1, this shows that the correct contributions of g to the
quantities nk+1 and sk+1 are added to n and s, respectively.

For an OR gate g, w(C, z, g) equals w(g) plus the minimum of w(C, z, v) over all
gates v feeding into g. As the promise guarantees that w is min-isolating for (C, z, v)
for each of those gates v, it follows that w is min-isolating for g unless w(C, z, g)
is finite and there are two distinct gates, say u and v, that feed into g and satisfy
w(C, z, g) = w(g) + w(C, z, u) = w(g) + w(C, z, v).

In the case where g \in Vk+1 is an OR gate, PromiseWeightCheck does the fol-
lowing: Go over all gates v that feed into g and keep track of two quantities; currmin
is the minimum value of w(C, z, v) seen thus far, and prevmin is the next smallest
value of w(C, z, v) seen thus far, where duplicate values are taken into account, and
both quantities are initialized to \infty . After having processed all gates v, there are
three cases:

\circ currmin < prevmin: As currmin is finite, we know that w(C, z, g) = w(g)+
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Algorithm 3: PromiseWeightCheck(C, z, w, k, nk, sk).

Input : C = (V,E): layered semi-unbounded circuits of depth d with
layers V0, V1, . . . , Vd

z: input for C
w : V \mapsto \rightarrow \BbbN 
k \in Jd - 1K
nk, sk \in \BbbN 

Promise: w is min-isolating for (C, z, Vk)
nk and sk satisfy (A.1) and (A.2)

Output : (true, nk+1, sk+1) satisfying (A.1) and (A.2) if w is min-isolating
for (C, z, Vk+1)
(false, - , - ) otherwise

1 (n, s)\leftarrow (0, 0);
2 foreach g \in Vk+1 in lex order do
3 if g is an AND gate then
4 let u and v be the gates feeding into g in lex order;
5 \mu \leftarrow PromiseWeightEval(C, z, w, k, nk, sk, u);
6 \nu \leftarrow PromiseWeightEval(C, z, w, k, nk, sk, v);
7 if \mu <\infty and \nu <\infty then
8 (n, s)\leftarrow (n+ 1, s+ w(g) + \mu + \nu );

9 else \{ g is an OR gate \} 
10 (currmin, prevmin)\leftarrow (\infty ,\infty );
11 foreach gate v that feeds into g in lex order do
12 \nu \leftarrow PromiseWeightEval(C, z, w, k, nk, sk, v);
13 if \nu \leq currmin then
14 prevmin\leftarrow currmin;
15 currmin\leftarrow \nu ;

16 end
17 if currmin < prevmin then
18 (n, s)\leftarrow (n+ 1, s+ w(g) + currmin)
19 if currmin <\infty then
20 accept and return (false, - , - )
21 end
22 accept and return (true, n, s);

currmin is finite as well. We also know that w(C, z, g) = w(g)+w(C, z, v) for
only one of the gates v feeding into g. Thus, g(z) = 1 and w is min-isolating
for (C, z, g). In this case PromiseWeightCheck increases the variable n
by 1 and adds w(C, z, g) = w(g) + currmin to the variable s.

\circ currmin = prevmin < \infty : This means that g(z) = 1 and that there are
two distinct gates, say u and v, that feed into g and satisfy w(C, z, g) =
w(g) + w(C, z, u) = w(g) + w(C, z, v). Hence, w is not min-isolating for
(C, z, g). In this case, PromiseWeightCheck ends the loop over g, and
correctly returns (false, - , - ).

\circ currmin = \infty : This means that g(z) = 0, and w is vacuously min-isolating
for (C, z, g). In this case PromiseWeightCheck leaves the variables n and
s as they are.
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If the end of the loop over g is reached, we know that w is min-isolating for
(C, z, Vk+1). The variable n has been increased with the number of g \in Vk+1 for
which g(z) = 1, and s by w(C, z, g) for each such g. As both n and s are initialized to
0, this shows that the value (true, n, s) that PromiseWeightCheck returns at the
end is correct.

Regarding unambiguity, note that PromiseWeightCheck is deterministic mod-
ulo the runs of the calls to PromiseWeightEval. As the argument of each call sat-
isfies the promise of PromiseWeightEval, each of those runs is unambiguous. It
follows that PromiseWeightCheck is unambiguous (because of the understanding
that PromiseWeightCheck rejects on any computation path on which a call to
PromiseWeightEval rejects).

Modulo the calls to PromiseWeightEval, PromiseWeightCheck runs in
time poly(log(W ), n) and in space O(log(W ) + log(n)) and does not need access to
the stack. Each PromiseWeightEval call takes time poly(2d, log(W ), n) and space
O(log(W ) + log(n)) with the use of a stack. It follows that PromiseWeightCheck
runs in time poly(2d, log(W ), n) and space O(log(W )+log(n)) with the use of a stack
(as the space needed for subsequent class to PromiseWeightEval can be reused).

Since the calls to PromiseWeightEval do not need access to the stack on
Reachability instances, PromiseWeightCheck does not need access to the stack
on those instances either. This concludes the proof of Claim A.3.

Finally, we use PromiseWeightCheck and PromiseWeightEval to unam-
biguously decide whether or not w is min-isolating for (C, z) and, if so, compute
w(C, z, g). We call the machine PromiseWeightCheck iteratively to bootstrap
and construct the sequence of values (nk, nk) for k = 1, 2, . . . , d while ascertaining
the invariant that w is min-isolating for (C, z, V\leq k), aborting the construction as soon
as a violation of the invariant is detected. When we arrive at the (nk, sk) values
for the layer Vk of a given gate g for which we want to compute w(C, z, g), we call
PromiseWeightEval to evaluate w(C, z, g).

Claim A.4. The nondeterministic machine WeightCheckEval given in Algo-
rithm 4 unambiguously computes the problem in its specification. Equipped with a
stack that does not count towards the space bound, WeightCheckEval runs in time
poly(2d, log(W ), n) and space O(log(W ) + log(n)). WeightCheckEval does not
need the stack on Reachability instances.

Proof of Claim A.4. Consider an input as in the specification. WeightCheckE-
val maintains the following loop invariants (which hold each time the loop condition
in line 8 is checked):

1. isolating indicates whether w is min-isolating for (C, z, V\leq k).
2. If isolating is true, then (n, s) = (nk, sk), where nk and sk are given by (A.1)

and (A.2).
3. If isolating is true and g \in V\leq k, then \omega = w(C, z, g).

The invariants are set up in the first 7 lines for k = 0. The loop body calls the ma-
chine PromiseWeightCheck on the input (C, z, w, k, nk, sk), knowing that w is min-
isolating for (C, z, V\leq k). By the specification of PromiseWeightCheck, this means
that the call returns the values for isolating, n, and s that satisfy the first two invari-
ants for k+1. Moreover, if the call indicates that w is min-isolating for V\leq k+1 and g \in 
Vk+1, then PromiseWeightEval is called on the input (C, z, w, k+1, nk+1, sk+1, g),
and \omega is set to its return value. By the specification of PromiseWeightEval, this
means that the third invariant holds for k + 1. Thus, the body maintains all three
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Algorithm 4: WeightCheckEval(C, z, w, g).

Input : C = (V,E): layered semi-unbounded circuits of depth d with
layers V0, V1, . . . , Vd

z: input for C
w : V \mapsto \rightarrow \BbbN 
g \in V

Output : (true, w(C, z, g)) if w is min-isolating for (C, z); (false, - )
otherwise

1 (n, s)\leftarrow (0, 0);
2 foreach v \in V0 in lex order do
3 if v(z) = 1 then (n, s)\leftarrow (n+ 1, s+ w(v));
4 end
5 (isolating, k)\leftarrow (true, 0);
6 if g \in V0 then
7 if g(z) = 1 then \omega \leftarrow w(g) else \omega \leftarrow \infty ;
8 while isolating and k < d do
9 (isolating, n, s)\leftarrow PromiseWeightCheck(C, z, w, k, n, s);

10 if isolating and g \in Vk+1 then
\omega \leftarrow PromiseWeightEval(C, z, w, k + 1, n, s, g);

11 k \leftarrow k + 1;

12 end
13 if isolating then
14 accept and return (true, \omega )
15 else accept and return (false, - );

invariants.
Either the loop halts because isolating becomes false, in which case the call to

WeightCheckEval correctly returns (false, - ) by the first invariant; or else it halts
with isolating = true and k = d, in which case it correctly returns (true, w(C, g, z))
by the first and the third invariants. Thus, WeightCheckEval is correct.

As for unambiguity, note that WeightCheckEval is deterministic modulo the
runs of the calls to PromiseWeightCheck and PromiseWeightEval. As the ar-
gument of each call satisfies the respective promises, and PromiseWeightCheck as
well as PromiseWeightEval are unambiguous on inputs that satisfy their promise,
all of those runs are unambiguous. It follows that WeightCheckEval is unambigu-
ous (because of the convention that any computation path on which a call rejects
WeightCheckEval also rejects).

Modulo the subroutine calls, WeightCheckEval runs in time poly(log(W ), n)
and in space O(log(W ) + log(n)) and does not need access to the stack. Each call to
PromiseWeightCheck takes time poly(2d, log(W ), n) and space O(log(W )+log(n))
with the use of a stack, as does the call to PromiseWeightEval. It follows that
WeightCheckEval runs in time poly(2d, log(W ), n) and space O(log(W ) + log(n))
with the use of a stack (as the space needed for subsequent calls can be reused).

Since the calls do not need access to the stack onReachability instances, neither
does the machine WeightCheckEval on those instances. This concludes the proof
of Claim A.4.

The machines WeightCheck(cert) and WeightEval(cert) in the statement of
Lemma A.1 immediately follow from the machine WeightCheckEval in the state-
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ment of Claim A.4.

Lemma A.1 trivially implies Lemma 4.7. Lemma A.1 also yields the following
variant of Lemma 3.5 in the setting of Reachability and NL.

Lemma A.5. There exist unambiguous machines WeightCheck(reach,block) and
WeightEval(reach,block) such that for every layered digraph G = (V,E) of depth
d = 2\ell for some \ell \in \BbbN and on n vertices, for every weight assignment w : V \mapsto \rightarrow \BbbN ,
and s, t \in V ,

(i) WeightCheck(reach,block)(G,w) decides whether or not w is min-isolating
for (G,A\leq \ell ) where A\leq \ell 

.
=

\bigcup 
k\leq \ell Ak and Ak is given by (4.11).

(ii) WeightEval(reach,block)(G,w, s, t) computes w(G, s, t) provided that w is min-
isolating for (G,A\leq \ell ).

Both machines run in time poly(log(W ), n) and space O(log(W ) + log(n)), where W
denotes an upper bound on the finite values of w(G, u, v) for u, v \in V .

Proof sketch. The lemma follows from Lemma A.1 via the connection between
Reachability and Circuit Certification developed in section 4.3. The ``more-
over"" part of Lemma A.1 is what allows us to eliminate the need for a stack in this
setting.

As mentioned in section 4.3, Lemma A.5 is sufficient for deriving the nonam-
biguous simulations of NL given by Theorem 1.2, for which we used Lemma 3.5 in
section 3.2. Lemma 3.5 deals with min-isolation for G, i.e., for (G,V \times V ) instead of for
(G,A\leq \ell ). It can be proved in a similar way as Lemma 4.7---the same type of similarity
as exists between the weight assignment generator constructions for Reachability
and for Circuit Certification.

In fact, the constructions in [52] carry through with the weaker requirement of
min-isolation for (G, \{ s\} \times V ). Due to the recursive nature of our weight assignment
generator (Theorem 3.3) and the stepwise selection of the seed \sigma in our unambiguous
simulations (Theorem 1.2), the requirement of min-isolation for (G, \{ s\} \times V ) does not
seem compatible with our approach. The stronger requirement of min-isolation for
(G,V \times V ) is, as is the incomparable requirement of min-isolation for (G,A\leq \ell ).

Acknowledgments. We thank the editor and the anonymous reviewers for their
careful proofreading and very helpful suggestions.
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