
�

�

�

�

�

�

�

�

23

Satisfiability Allows No Nontrivial Sparsification
unless the Polynomial-Time Hierarchy Collapses

HOLGER DELL, LIAFA, Université Paris Diderot, France
DIETER VAN MELKEBEEK, University of Wisconsin-Madison

Consider the following two-player communication process to decide a language L: The first player holds the
entire input x but is polynomially bounded; the second player is computationally unbounded but does not
know any part of x; their goal is to decide cooperatively whether x belongs to L at small cost, where the cost
measure is the number of bits of communication from the first player to the second player.

For any integer d ≥ 3 and positive real ε, we show that, if satisfiability for n-variable d-CNF formulas
has a protocol of cost O(nd−ε), then coNP is in NP/poly, which implies that the polynomial-time hierarchy
collapses to its third level. The result even holds when the first player is conondeterministic, and is tight
as there exists a trivial protocol for ε = 0. Under the hypothesis that coNP is not in NP/poly, our result
implies tight lower bounds for parameters of interest in several areas, namely sparsification, kernelization
in parameterized complexity, lossy compression, and probabilistically checkable proofs.

By reduction, similar results hold for other NP-complete problems. For the vertex cover problem on n-
vertex d-uniform hypergraphs, this statement holds for any integer d ≥ 2. The case d = 2 implies that no
NP-hard vertex deletion problem based on a graph property that is inherited by subgraphs can have kernels
consisting of O(k2−ε) edges unless coNP is in NP/poly, where k denotes the size of the deletion set. Kernels
consisting of O(k2) edges are known for several problems in the class, including vertex cover, feedback vertex
set, and bounded-degree deletion.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures and
Classes—Relations among complexity classes

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Sparsification, kernelization, parameterized complexity,
probabilistically checkable proofs, satisfiability, vertex cover, feedback vertex set, hereditary graph
properties, vertex deletion problems, arithmetic progression free sets

ACM Reference Format:
Dell, H. and van Melkebeek, D. 2014. Satisfiability allows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. J. ACM 61, 4, Article 23 (July 2014), 27 pages.
DOI:http://dx.doi.org/10.1145/2629620

1. INTRODUCTION

Satisfiability of Boolean formulas constitutes one of the most central problems in com-
puter science. It has attracted a lot of applied and theoretical research because of its
immediate relevance in areas like AI and verification and as the seminal NP-complete

An extended abstract of this article appeared in the Proceedings of the 42nd Annual ACM Symposium on
Theory of Computing (STOC 2010).
H. Dell was supported by the Deutsche Forschungsgemeinschaft within the research training group
“Methods for Discrete Structures” (GRK 1408). D. van Melkebeek was partially supported by NSF awards
CCF-0728809, CCF-1017597, and CCF-1319822, and by the Humboldt Foundation.
Research was mostly done while D. van Melkebeek was visiting the Humboldt University of Berlin.
Authors’ addresses: H. Dell, LIAFA - Case 7014, Université Paris Diderot, 75205 Paris Cedex 13,
France; email: holger.dell@gmail.com; D. van Melkebeek, Department of Computer Sciences, University of
Wisconsin, 1210 West Dayton Street, Madison, WI 53706-1685; email: dieter@cs.wisc.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
2014 Copyright held by Owner/Author. Publication rights licensed to ACM. 0004-5411/2014/07-ART23
$15.00
DOI:http://dx.doi.org/10.1145/2629620

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:2 H. Dell and D. van Melkebeek

problem. Of particular interest is d-SAT, the satisfiability problem for d-CNF formulas,
which is NP-complete for any integer d ≥ 3 [Cook 1971; Karp 1972; Levin 1973].

In this article, we investigate the complexity of d-SAT and other NP-complete prob-
lems in a communication setting that captures several transformations studied in the
theory of computing. Assuming the polynomial-time hierarchy does not collapse, we
show that a trivial communication protocol is essentially optimal for d-SAT. Under the
same hypothesis, the result implies tight lower bounds for parameters of interest in
several areas. We first discuss those areas and then state our result for d-SAT.

Sparsification. The satisfiability of d-CNF formulas chosen by uniformly at random
picking m clauses out of all possible clauses on n variables seems to exhibit a phase
transition as a function of the ratio m/n. We know that the probability of satisfia-
bility jumps from almost zero to almost one when the ratio m/n crosses a very nar-
row region around 2d ln 2, and the existence of a single threshold point is conjectured
[Achlioptas and Moore 2007; Achlioptas and Peres 2004; Friedgut and Bourgain 1999].
Experiments also suggest that known SAT solvers have the hardest time on randomly
generated instances when the ratio m/n lies around the threshold, and in some cases,
rigorous analyses corroborate the experiments.

Nevertheless, from a complexity-theoretic perspective these results fall short of es-
tablishing sparse formulas as the hardest instances. This is because formulas that
express problems like breaking random RSA instances exhibit a lot of structure and
therefore have a negligible contribution to the uniform distribution. An interesting
complexity-theoretic formalization would be a reduction from arbitrary formulas to
formulas on the same number of variables that are sparse. Impagliazzo et al. [2001]
developed such reductions but they run in subexponential time. In polynomial time,
we can trivially reduce a d-CNF formula to one with m = O(nd) clauses. Since there
are only 2d · (n

d

) = O(nd) distinct d-clauses on n variables, it suffices to remove dupli-
cate clauses. Is there a polynomial-time reduction that maps a d-CNF formula on n
variables to one on n variables and m = O(nd−ε) clauses for some positive constant ε?

Kernelization. Parameterized complexity investigates the computational difficulty of
problems as a function of the input size and an additional natural parameter, k, which
often only takes small values in instances of practical interest. A good example – and
one we will return to soon – is deciding whether a given graph has a vertex cover of
size at most k. The holy grail in parameterized complexity are algorithms with running
times of the form O(f (k) · sc) on instances of size s and parameter k, where f denotes
an arbitrary computable function and c a constant. Kernelization constitutes an im-
portant technique for realizing such running times: Reduce in time polynomial in s to
an instance of size bounded by some computable function g of the parameter k only,
and then run a brute-force algorithm on the reduced instance; the resulting algorithm
has a running time of the form O(sc + f (k)). In order to obtain good parameterized
algorithms, the functions f and g should not behave too badly, which justifies the quest
for kernels of polynomial or smaller size g(k).

The number of variables n forms a natural parameter for satisfiability. In the case
of d-CNF formulas, n is effectively polynomially related to the size of the input, which
makes the existence of kernels of polynomial size trivial. Nevertheless, the quest for
a small kernel is a relaxation of the quest for sparsification in polynomial time. Elim-
inating duplicate clauses yields a kernel of bitlength O(nd log n). Does satisfiability of
n-variable d-CNF formulas have kernels of size O(nd−ε)?

Lossy Compression. Harnik and Naor [2010] introduced a notion of compression with
the goal of succinctly storing instances of computational problems for resolution in the

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:3

future, where there may be more time and more computational power available. The
compressed version need not be an instance of the original problem, and the original
instance need not be recoverable from the compressed version. The only requirement is
that the solution be preserved. In the case of decision problems, this simply means the
yes/no answer. In an analogy to image compression, one can think of the Harnik-Naor
notion of compression as a “lossy compression”, where the only aspect of the scenery
that is guaranteed not to be lost is the solution to the problem.

Harnik and Naor [2010] applied their notion to languages in NP and showed the
relevance to problems in cryptography when the compression is measured as a function
of the bitlength of the underlying witnesses. In the case of satisfiability, the latter
coincides with the number of variables of the formula. This way lossy compression
becomes a relaxation of the notion of kernelization – we now want a polynomial-time
mapping reduction to any problem, rather than to the original problem, such that
the reduced instances have small bitlength as a function of n. For d-CNF formulas,
bitlength O(nd) is trivially achievable – simply map to the characteristic vector that
for each possible d-clause on n variables indicates whether it is present in the given
formula. Can we lossily compress to instances of bitlength O(nd−ε)?

Probabilistically Checkable Proofs. A somewhat different question deals with the
size of probabilistically checkable proofs (PCPs). A PCP for a language L is a random-
ized proof system in which the verifier only needs to read a constant number of bits of
the proof in order to verify that a given input x belongs to L. Completeness requires
that, for every input x in L, there exists a proof which the verifier accepts with probabil-
ity one. Soundness requires that, for any input x outside of L, no proof can be accepted
with probability above some constant threshold less than one. For satisfiability of
Boolean formulas, Dinur [2007] constructed PCPs of bitlength O(s · poly log s), where s
denotes the size of the formula. For d-CNF formulas on n variables, Dinur’s construc-
tion yields PCPs of bitlength O(nd ·poly log n). On the other hand, standard proofs only
contain n bits. Do n-variable d-CNF formulas have PCPs of bitlength O(nd−ε)?

1.1. Our Results for Satisfiability

We give evidence that the answer to all four of these questions is negative: If any
answer is positive, then coNP is in NP/poly. The latter is considered unlikely as it
means the existence of a nonuniform polynomial-time proof system for tautologies,
or equivalently, that coNP has polynomial-size nondeterministic circuits, and implies
that the polynomial-time hierarchy collapses to its third level [Yap 1983].

We obtain those statements as corollaries to a more general result, in which we
consider the following communication process to decide a language L.

Definition 1 (Oracle Communication Protocol). An oracle communication protocol
for a language L is a communication protocol between two players. The first player
is given the input x and has to run in time polynomial in the length of the input; the
second player is computationally unbounded but is not given any part of x. At the end
of the protocol, the first player should be able to decide whether x ∈ L. The cost of
the protocol is the number of bits of communication from the first player to the second
player.

We often refer to the second player as the oracle. Note that the bits sent by the oracle
do not contribute towards the cost. By default the players in an oracle communication
protocol are deterministic, but one can consider variants in which one or both players
are randomized, nondeterministic, etc.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:4 H. Dell and D. van Melkebeek

Satisfiability of n-variable d-CNF formulas has a trivial protocol of cost O(nd). The
following result implies that there is no protocol of cost O(nd−ε) unless the polynomial-
time hierarchy collapses. In fact, the result even holds when the first player is conon-
deterministic, that is, when the first player can have multiple valid moves to choose
from in any given step, possibly leading to different conclusions about the satisfiability
of a given input formula ϕ, but such that (i) if ϕ is satisfiable then every valid execution
comes to that conclusion, and (ii) if ϕ is not satisfiable then at least one valid execution
comes to that conclusion.

THEOREM 1. Let d ≥ 3 be an integer and ε a positive real. If coNP �⊆ NP/poly,
there is no protocol of cost O(nd−ε) to decide whether an n-variable d-CNF formula is
satisfiable, even when the first player is conondeterministic.

The corollaries about sparsification, kernelization, and lossy compression follow by
considering deterministic single-round protocols in which the polynomial-time player
acts as a mapping reduction, sends the reduced instance to the computationally
unbounded player, and the latter answers this query as a membership oracle. The
corollary about probabilistically checkable proofs follows by considering a similar
single-round protocol in which the first player is conondeterministic. Note that
Theorem 1 can handle more general reductions, in which multiple queries are made
to the oracle over multiple rounds. These corollaries can be strengthened correspond-
ingly. In fact, Theorem 1 is even more general as it allows the oracle to play a more
active role that goes beyond answering queries from the polynomial-time player. We
will discuss this potential further in the article.

1.2. Our Results for Other NP-Complete Problems

By reducibility the lower bounds from Theorem 1 carry over to other parameterized
NP-complete problems, where the tightness depends on how the reduction affects the
parameterization. In fact, we derive Theorem 1 from a similar result for the vertex
cover problem on d-uniform hypergraphs.

THEOREM 2. Let d ≥ 2 be an integer and ε a positive real. If coNP �⊆ NP/poly, there
is no protocol of cost O(nd−ε) to decide whether a d-uniform hypergraph on n vertices
has a vertex cover of at most k vertices, even when the first player is conondeterministic.

The cases of Theorem 2 with d ≥ 3 are equivalent to the corresponding cases of
Theorem 1. Note, though, that Theorem 2 also holds for d = 2, that is, for standard
graphs.

Similar to Theorem 1, Theorem 2 can be interpreted in terms of (graph) spar-
sification, kernelization, lossy compression, and probabilistically checkable proofs.
Regarding kernelization, Theorem 2 has an interesting implication for the vertex cover
problem parameterized by the size of the vertex cover – one of the prime examples
of a parameterized problem that is NP-hard but fixed-parameter tractable. Kernel-
izations for this problem have received considerable attention. For standard graphs,
S. Buss [Buss and Goldsmith 1993] came up with a kernelization before the term was
coined. He observed that any vertex of degree larger than k must be contained in any
vertex cover of size k, should it exist. This gives rise to a kernelization with O(k2) ver-
tices and O(k2) edges. Subsequently, several researchers tried to reduce the size of the
kernel. Various approaches based on matching, linear programming, and crown reduc-
tions (see Guo and Niedermeier [2007] for a survey) led to kernels with O(k) vertices,
but the resulting kernels are all dense. It remains open to find kernels with O(k2−ε)
edges. Since k ≤ n, the case d = 2 of Theorem 2 implies that such kernels do not exist
unless the polynomial-time hierarchy collapses.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:5

In fact, a similar result holds for a wide class of problems known as vertex deletion
problems. For a fixed graph property �, the corresponding vertex deletion problem
asks whether removing at most k vertices from a given graph G can yield a graph
that satisfies �. A host of well-studied specific problems can be cast as the vertex dele-
tion problem corresponding to some graph property � that is inherited by subgraphs.
Examples besides the vertex cover problem include the feedback vertex set problem
and the bounded-degree deletion problem (see Section 5 for the definitions of these
problems and for more examples).

If only finitely many graphs satisfy � or if all graphs satisfy �, the vertex deletion
problem is trivially decidable in polynomial time. For all other graph properties � that
are inherited by subgraphs, Lewis and Yannakakis [1980] showed that the problem
is NP-hard.1 They did so by constructing a mapping reduction from the vertex cover
problem. By improving their reduction such that it preserves the size of the deletion
set up to a constant factor, we obtain the following result.

THEOREM 3. Let � be a graph property that is inherited by subgraphs, and is sat-
isfied by infinitely many but not all graphs. Let ε be a positive real. If coNP �⊆ NP/poly,
there is no protocol of cost O(k2−ε) for deciding whether a graph satisfying � can be
obtained from a given graph by removing at most k vertices, even when the first player
is conondeterministic.

Theorem 3 implies that problems like feedback vertex set and bounded-degree dele-
tion do not have kernels consisting of O(k2−ε) edges unless the polynomial-time hier-
archy collapses. For both problems, the result is tight in the sense that kernels with
O(k2) edges exist. For feedback vertex set, we argue that a recent kernelization by
Thomassé [2010] does the job; for bounded-degree deletion, kernels with O(k2) edges
were known to exist [Fellows et al. 2011].

1.3. Techniques and Related Work

At a high level, our approach refines the framework developed by Bodlaender et al.
[2009a] to show that certain parameterized NP-hard problems are unlikely to have
kernels of polynomial size. Harnik and Naor [2010] realized the connection between
their notion of lossy compression and kernelization and PCPs for satisfiability of gen-
eral Boolean formulas, and Fortnow and Santhanam [2011] proved the connection
with the hypothesis coNP �⊆ NP/poly in the superpolynomial setting. Several au-
thors subsequently applied the framework in that setting [Binkele-Raible et al. 2012;
Bodlaender et al. 2009b; Chen et al. 2007; Dom et al. 2009; Kratsch and Wahlström
2010, 2013].

We develop the first application of the framework in the polynomial setting, that is,
to problems that do have kernels of polynomial size, or more generally, oracle com-
munication protocols of polynomial cost. Under the same hypothesis, we show that
problems like d-SAT and vertex cover do not have protocols of polynomial cost of de-
gree less than the best known. The following lemma captures the refinement of the
framework we use in order to do so. The statement refers to the OR operator on lan-
guages. For a given language L, the language OR(L) consists of all tuples (x1, . . . , xt)
such that xi ∈ L for at least one i ∈[t].

LEMMA 1. Suppose that a parameterized problem � has the following property
for some constant c: For some NP-complete language L, there exists a polynomial-time
mapping reduction from OR(L) to � that maps an instance (x1, . . . , xt) of OR(L) in

1In fact, Lewis and Yannakakis [1980] showed this to be the case even for graph properties that are inherited
by induced subgraphs only.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:6 H. Dell and D. van Melkebeek

which each xi has size at most s to an instance of � with parameter k ≤ t1/c+o(1) ·poly(s).
Then, � does not have a communication protocol of cost O(kc−ε) for any constant ε > 0
unless coNP ⊆ NP/poly, even when the first player is conondeterministic.

In particular, the conclusion of Lemma 1 implies that � does not have kernels of size
O(kc−ε) for any constant ε > 0 unless coNP ⊆ NP/poly.

In order to obtain tight results, we need to construct the reductions in the hypothesis
of Lemma 1 for optimal values of c. Our main result, Theorem 2, deals with the vertex
cover problem on d-uniform hypergraphs, or equivalently, with the clique problem on
such graphs, parameterized by k = n, the number of vertices. Since the clique prob-
lem on d-uniform hypergraphs is NP-complete for any integer d ≥ 2, without loss of
generality we can take L in Lemma 1 to be this language. Thus, we need to reduce the
question whether at least one of t given graphs has a clique of a given size into a single
instance of the clique problem on a d-uniform hypergraph with few vertices n.

As observed by Harnik and Naor [2010], the disjoint union of the given hypergraphs
provides such a reduction. However, the number of vertices is n = s · t, which does
not allow us to handle any value c > 1. As a critical piece in our proof, we present a
reduction that only needs n = s · t1/d+o(1) vertices, where d is the size of the hyperedges
in the given hypergraphs. This way, we can handle any c up to c = d.

Our reduction hinges on a graph packing that is based on high-density subsets of
the integers without nontrivial arithmetic progressions of length three. After we de-
veloped our construction, we have learned about other applications of those sets in the
theory of computing, including three-party communication protocols [Chandra et al.
1983], the asymptotically fastest algorithms for matrix multiplication [Coppersmith
and Winograd 1990; Davie and Stothers 2013; Stothers 2010; Vassilevska Williams
2012], the soundness analysis of graph tests for linearity [Håstad and Wigderson
2003], and lower bounds for property testing [Alon 2002; Alon et al. 2000, 2008; Alon
and Shapira 2004, 2005, 2006]. The latter two applications as well as ours implicitly
or explicitly rely on a connection due to Ruzsa and Szemerédi [1978] between these
subsets and dense three-partite graphs whose edges partition into triangles and that
contain no other triangles. The graph packing we develop is most akin to a construc-
tion by Alon and Shapira [2005] in the context of property testing. We refer to Section 4
for a more detailed discussion of the relationships.

The core argument in the proof of Lemma 1 shows that whenever OR(L) has a cheap
protocol, the complement of L has short witnesses that can be verified efficiently with
the help of a polynomial-size advice string. We refer to the formal statement as the
Complementary Witness Lemma. Its proof involves a refined analysis and generaliza-
tion of a result by Fortnow and Santhanam [2011] that establishes the case where the
protocol implements a mapping reduction to instances of bitlength bounded by some
fixed polynomial in s. We analyze what happens for mapping reductions without the
latter restriction. We also observe that the argument generalizes to our oracle commu-
nication protocol setting. Our applications of Theorem 1 only use oracle communication
protocols that implement mapping or general reductions. However, the setting of or-
acle communication protocols is more natural and allows us to prove known results
in a simpler way. We refer to Section 6 for more details. In recent subsequent work,
the more general setting was critically used to establish a tight kernel lower bound
[Kratsch et al. 2014].

Another aspect of our techniques (and Lemma 1 in particular) that could be exploited
further, is the fact that the first player in the protocols can be conondeterministic. We
exploit it to derive our tight lower bounds for the size of probabilistically checkable
proofs. Subsequently it has been used to show kernel lower bounds for a Ramsey-type
problem [Kratsch 2012].

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:7

Also subsequent to our work but using different techniques and under a seemingly
slightly weaker hypothesis than coNP �⊆ NP/poly, Drucker [2012] was able to extend
our lower bounds for NP-hard problems to randomized compression algorithms with
two-sided error. Furthermore, his results also apply to compressive reductions from
AND(L) instead of OR(L). Lower bounds for general randomized oracle communication
protocols with two-sided error remain open.

1.4. Organization

We review some preliminaries in Section 2. Section 3 contains the proof of the main
result (Theorem 2) following the approach outlined above, modulo the packing con-
struction and the Complementary Witness Lemma. We develop the former in Section 4,
and the latter in Section 6. Section 5 expands on the implications for satisfiability
(Theorem 1 and its corollaries) and for vertex deletion problems (Theorem 3). We
conclude with some open problems in Section 7.

2. PRELIMINARIES

Most of our notation is standard (see Arora and Barak [2009] and Goldreich [2008]
for general and Downey and Fellows [1999], Flum and Grohe [2006], and Niedermeier
[2006] for parameterized complexity). We suffice with a review of some particular no-
tions and notation we use.

Problems. By a problem, we usually mean a decision problem, that is, deciding mem-
bership to a language L ⊆ {0, 1}∗. Apart from their bitlength |x|, instances x ∈ {0, 1}∗
often have another natural complexity parameter k(x), such as the number of vertices
in the case of graph problems, or the witness length in the case of NP-problems. The
function k : {0, 1}∗ → N is called parameterization and a parameterized problem is a
pair (L, k). We often write L for both the parameterized and unparameterized problem,
for example, when saying that a parameterized problem is NP-complete.

We denote the complement of L by L. The OR of a language L is the language OR(L)
that consists of all tuples (x1, . . . , xt) for which there is an i ∈[t] with xi ∈ L.

Satisfiability. A d-CNF formula on the variables x1, . . . , xn is a conjunction of clauses
where a clause is a disjunction of exactly d literals, that is, the variables xi and their
negations xi. We denote by d-SAT the problem of deciding whether a given d-CNF for-
mula has at least one satisfying assignment, that is, a truth assignment to its variables
that makes the formula evaluate to true.

Hypergraph Problems. A hypergraph G = (V(G), E(G)) consists of a finite set V(G) of
vertices and a set E(G) of subsets of V(G), the (hyper)edges. A hypergraph is d-uniform
if every edge has size exactly d. A vertex cover of G is a set S ⊆ V(G) that contains at
least one vertex from every edge of G, and d-VERTEX COVER is the problem of deciding
whether, for a given d-uniform hypergraph G and integer k, there exists a vertex cover
of G of size at most k. Similarly, a clique of G is a set S ⊆ V(G) all of whose subsets of
size d are edges of G, and d-CLIQUE is the problem of deciding whether, for given (G, k),
there exists a clique of G of size at least k. The two problems are dual to each other, in
the sense that G, the d-uniform hypergraph obtained from G by flipping the presence
of all edges of size d, has a clique of size k if and only if G has a vertex cover of size n−k.
Note that this transformation preserves the number of vertices.

Reductions. Unless stated otherwise, the reductions we consider are computable in
time polynomial in the bitlength of the input. We indicate this by a superscript p in the
notation ≤p for reducibility. We consider both general reductions (also known as Turing
reductions) as well as mapping reductions (also known as many-one reductions). A

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:8 H. Dell and D. van Melkebeek

mapping reduction, or ≤p
m-reduction, from L to L′ is a mapping R from {0, 1}∗ to {0, 1}∗

such that R(x) ∈ L′ if and only if x ∈ L.
A kernelization of a parameterized problem (L, k) is a ≤p

m-reduction from L to itself
that maps instances with parameter k to instances of bitlength at most g(k) for some
function g independent of the input size. Note that any parameterized NP-problem
that has a kernelization is fixed-parameter tractable, that is, it can be solved in de-
terministic time f (k) · poly(n) for some computable function f : The reduced instance
has size at most g(k) and can be solved in some time f (k) by exhaustively testing all
possible NP-witnesses.

Complexity Classes. The polynomial-time hierarchy PH is the union ∪i≥0�
p
i , where

�
p
0 = P, and �

p
i+1 = NP�

p
i for i ≥ 0. We say that the polynomial-time hierarchy col-

lapses to its ith level if PH = �
p
i . It is widely conjectured that the polynomial-time

hierarchy does not collapse to any level.
Given a class C of languages, we denote by coC the class {L | L ∈ C}. Apart from the

first few levels of the polynomial-time hierarchy and their co-classes, we make use of
complexity classes with advice. Given a class C of languages and a function � : N → N,
we denote by C/�(n) the class of languages L for which there exists a language L′ ∈ C
and a sequence a0, a1, a2, . . . of strings with |an| ≤ �(n) such that for any input x, we
have that x ∈ L if and only if 〈x, a|x|〉 ∈ L′, where 〈·, ·〉 denotes a standard pairing func-
tion. We call an the advice at length n. C/ poly is a shorthand for ∪c>0C/nc. P/ poly
consists exactly of the languages that can be decided by Boolean circuits of polynomial
size. Similarly, NP/ poly consists exactly of the languages that can be decided by non-
deterministic Boolean circuits of polynomial size. A nondeterministic circuit has two
types of inputs – the actual input x and auxiliary input y. It accepts an actual input x if
and only if there exists a setting of the auxiliary input y such that the circuit outputs 1
on the combined input x and y.

Communication Protocols. In general, a two-player communication protocol is de-
scribed by strategies that tell each of the players when and what to communicate
to the other player and how to further behave as a function of the input and the
communication history. In the specific case of our oracle communication protocols of
Definition 1, there is an asymmetry between the two players. We model the first player
as a polynomial-time Turing machine M and the second player as a function f . The ma-
chine M has a special oracle query tape, oracle query symbol, and oracle answer tape.
Whenever M writes the special oracle query symbol on the oracle query tape, in a
single computation step the contents of the answer tape is replaced by f (q), where q
represents the contents of the oracle query tape at that time. Note that the function f
is independent of M’s input x, which reflects the fact that the second player does not
have direct access to the input. The oracle query tape is one-way and is never erased,
which allows the strategy of the second player to depend on the entire communication
history.

We say that the oracle communication protocol decides a parameterized prob-
lem (L, k) if M with oracle f accepts an input x if and only if x ∈ L. The cost c(k) of
the protocol is the maximal number of bits written on the oracle query tape over all
inputs x with parameter k(x) = k.

By considering Turing machines other than the standard deterministic model for
the first player, we obtain corresponding variants of oracle communication protocols.
For example, we can let the first player be a polynomial-time conondeterministic Tur-
ing machine. The second player is always modeled as a function. Whenever there are
multiple possible valid executions (as in the case of conondeterministic protocols),

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:9

we define the cost as the maximum cost over all of them, that is, we consider the
worst case.

3. MAIN THEOREM

In this section, we establish Theorem 2 – that d-VERTEX COVER has no oracle commu-
nication protocol of cost O(nd−ε) for any positive constant ε unless coNP ⊆ NP/poly,
where n represents the number of vertices of the d-uniform hypergraph. For ease of
exposition, we actually develop the equivalent result for d-CLIQUE rather than for
d-VERTEX COVER. Theorem 2 then follows by hypergraph complementation.

We follow the approach outlined in the introduction, based on the framework cap-
tured by Lemma 1. We first develop the reduction we use in the application of the
lemma, and then establish the lemma itself.

3.1. Reduction

For some NP-complete language L, we need to translate OR(L) into an equivalent
instance of d-CLIQUE with few vertices. The choice of the NP-complete language L
does not matter. For convenience, we pick it to be 3-SAT. Thus, given t 3-CNF formulas
ϕ1, . . . , ϕt, we need to construct a d-uniform hypergraph G on few vertices n and an
integer � such that at least one of the ϕi’s is satisfiable if and only if G has a clique of
size at least �. We first apply a standard translation of the t individual 3-SAT-instances
ϕ1, . . . , ϕt, say of size s, into equivalent d-CLIQUE-instances consisting of d-uniform
hypergraphs G1, . . . , Gt on 3s vertices each, such that Gi has a clique of size s if and
only if ϕi is satisfiable. All that is left then is to turn these t instances into a single
instance of d-CLIQUE which is positive if and only if at least one of the t instances
is. If we take G as the disjoint union of the Gi’s, then G is a d-uniform hypergraph
that has a clique of size s if and only if at least one of the Gi’s has a clique of size s.
However, this G contains n = s · t vertices, which is too many for our purposes. In
order to do better, we need to pack the graphs Gi more tightly while maintaining the
properties required of the reduction. The following almost-optimal packing of cliques is
the critical ingredient in our construction and allows us to achieve the almost-optimal
lower bounds given in Theorem 2.

LEMMA 2 (PACKING LEMMA). For any integers s ≥ d ≥ 2 and t > 0, there exists a
d-uniform hypergraph P on O

(
s · max(s, t1/d+o(1))

)
vertices such that

(i) the hyperedges of P partition into t cliques K1, . . . , Kt on s vertices each, and
(ii) P contains no cliques on s vertices other than the Ki’s.

Furthermore, for any fixed d, the hypergraph P and the Ki’s can be constructed in time
polynomial in s and t.

Condition (i) in Lemma 2 formalizes the notion of a packing. The part that P contains
the t cliques Ki ensures the completeness of the reduction, that is, that G has a clique
of size s if at least one of the Gi’s does. The part that the Ki’s are edge-disjoint and
condition (ii) guarantee the soundness of the reduction, that is, that G has a clique of
size s only if at least one of the Gi’s does.

We defer the proof of Lemma 2 to Section 4. Using it as sketched here, we obtain the
following reduction.

LEMMA 3. For any integer d ≥ 2, there is a ≤p
m-reduction from OR(3-SAT)

to d-CLIQUE that maps t-tuples of instances of bitlength s each to instances on
O

(
s · max(s, t1/d+o(1))

)
vertices.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:10 H. Dell and D. van Melkebeek

PROOF. Let ϕ1, . . . , ϕt be the t instances of 3-SAT. Without loss of generality, assume
that each formula has exactly s clauses, each consisting of a sequence of 3 literals.
Let P and K1, . . . , Kt be the hypergraphs provided by Lemma 2. Along the lines of the
standard reduction from 3-SAT to 2-CLIQUE by Karp [1972], we first translate the
3-CNF formulas ϕi into d-uniform hypergraphs Gi on the vertex sets V(Ki)×[3]. For
each i, we identify the elements of V(Ki)×[3] with (positions of) literals of ϕi: The first
component selects a clause from ϕi and the second component selects a literal from the
clause. We let Gi be the d-uniform hypergraph with as edges all subsets e ⊆ V(Ki)×[3]
of size d such that no two elements of e correspond to the same clause ϕi or represent
complementary literals. Note that each such e induces a satisfying assignment of the
conjunction of the d clauses touched by e, and that Gi has a clique of size s if and only
if ϕi is satisfiable.

Let G be the union of the Gi’s, that is, the graph with V(G) = ⋃
i∈[t] V(Gi) ⊆ V(P)×[3]

and E(G) = ⋃
i∈[t] E(Gi). If ϕi has a satisfying assignment, then Gi has a clique of size s

and so has G. For the other direction, let K be a clique of size s in G. The projection K ′
of K onto the first component is a clique of size s in P. By property (ii) of Lemma 2, K ′ =
Ki for some i ∈[t]. Moreover, by property (i) of Lemma 2, the projections of E(Gi) and
E(Gj) for j �= i are disjoint. It follows that K is a clique of size s in Gi, and therefore ϕi
is satisfiable.

Thus, (G, s) ∈ d-CLIQUE if and only if (ϕ1, . . . , ϕt) ∈ OR(3-SAT). Since G and s are
computable in time polynomial in the bitlength of (ϕ1, . . . , ϕt) and |V(G)| ≤ 3|V(P)| ≤
O

(
s · max(s, t1/d+o(1))

)
, we have established the ≤p

m-reductions claimed in Lemma 3.

Subsequent to our work, Dell and Marx [2012] found a more elementary proof of
Lemma 3 that does not rely on the packing lemma and the existence of dense sets
without arithmetic progressions of length 3. On the other hand, they also use the pack-
ing lemma to establish a kernel lower bound for a different problem, where their more
elementary techniques do not seem to apply.

3.2. Framework

We now argue in general the framework given by Lemma 1. The key is the following
lemma.

LEMMA 4 (COMPLEMENTARY WITNESS LEMMA). Let L be a language and t : N →
N \ {0} be polynomially bounded such that the problem of deciding whether at least
one out of t(s) inputs of length at most s belongs to L has an oracle communication
protocol of cost O(t(s) log t(s)), where the first player can be conondeterministic. Then
L ∈ coNP/poly.

We defer the proof of Lemma 4 to Section 6 but use it now to prove the framework
lemma.

PROOF OF LEMMA 1. We show that if there exists a mapping reduction f from
OR(L) to � as given by the hypothesis, and if � has an oracle communication pro-
tocol P of cost O(kc−ε) for some constant ε > 0, then coNP ⊆ NP/poly.

Consider the following oracle communication protocol Q: On input (x1, . . . , xt), com-
pute y = f (x1, . . . , xt) and run P on input y. Since f is a polynomial-time mapping re-
duction from OR(L) to �, Q is a valid oracle communication protocol for OR(L). Since
k ≤ t1/c+o(1), the cost of Q is

O(kc−ε) = O((t1/c+o(1) · poly(s))c−ε),

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:11

which is O(t) for sufficiently large polynomials t(s). Lemma 4 then shows that L ∈
coNP/poly. Since L is NP-complete, this implies NP ⊆ coNP/poly, or equivalently,
coNP ⊆ NP/poly.

3.3. Proof of the Theorem

Having described all ingredients, the formal proof of Theorem 2 follows.

PROOF OF THEOREM 2. Let � denote d-VERTEX COVER parameterized by the
number of vertices, i.e., k = n. Lemma 3 shows that � has the property in the hy-
pothesis of Lemma 1 with c = d. The conclusion of Lemma 1 then coincides with the
statement of the theorem.

4. THE PACKING LEMMA

In this section, we establish Lemma 2, which is a critical ingredient in the proof of
Theorem 2. We first develop the construction for the case d = 2, that is, for standard
graphs, and then show how to generalize it to d-uniform hypergraphs for arbitrary
d ≥ 2. We also discuss the relationship of our construction to earlier ones.

4.1. Our Construction

We need to construct a graph P on few vertices such that

(i) the edges of P partition into t cliques K1, . . . , Kt on s vertices each, and
(ii) P contains no other cliques on s vertices.

We first focus on realizing condition (i) and then see how to modify the construction
to also realize (ii).

We construct P as an s-partite graph and think of the s parts as the columns of a two-
dimensional array of vertices, say of size p by s. Each of the Ki’s then contains exactly
one vertex from each of the s columns. Condition (i) expresses that P is a packing of the
Ki’s. The trivial packing consists of the disjoint union and requires p = t rows, resulting
in s · t vertices in total. The trivial packing is wasteful because it leaves many of the
potential edges unused. In an ideal packing each of the p2 potential edges between
two columns of the array are assigned to some Ki. This would only require a number
of rows p = √

t and therefore s · √
t vertices. We can realize such a tight packing by

picking the vertex of Ki in column j as the value of j under a hash function hi from
a minimum 2-universal family. If p is a prime at least s, we can identify the rows as
well as the columns with elements of Fp and use the family of linear functions over Fp.
More precisely, we construct P on the vertex set V(P) = [s] ×Fp as the union of the t
cliques Ki on the vertex sets V(Ki) = {(j, hi(j)) | j ∈[s] }, where hi is a linear function
over Fp uniquely associated with Ki. See Figure 1(a). Note that there are p2 distinct
linear functions hi over Fp, so we can accommodate that many cliques Ki. Moreover,
since two points define a line, every edge of P is contained in exactly one of the Ki’s. For
arbitrary values of s and t, we can pick p to be the first prime p ≥ max(s,

√
t), resulting

in a packing with O(s · max(s,
√

t)) vertices.
Note that this P is in fact a complete s-partite graph and therefore fails to satisfy

condition (ii) miserably – every clique of size s that has one vertex from each column is
present in P, which is many more than just the Ki’s. In order to remedy that problem,
let us analyze the cliques of size s in P more closely.

Let K denote a clique of size s in P. Each of the s columns of P has to con-
tain exactly one vertex of K, that is, there exists a function h :[s] → Fp such that
V(K) = {(j, h(j)) | j ∈[s] }. We would like to ensure that K coincides with one of
the cliques Ki, or equivalently, that the function h coincides with one of the linear
functions hi.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:12 H. Dell and D. van Melkebeek

Fig. 1. (a) The placement of one of the Ki ’s. (b) Triangle on three consecutive abscissae.

Consider three consecutive columns, j, j+1, and j+2, and the triangle that K induces
between them – see Figure 1(b), where each edge is labeled by the linear function hi
defining the clique Ki to which the edge belongs. We claim that the highest-order coeffi-
cients of those linear functions have to form an arithmetic progression. This follows by
considering the two paths in Figure 1(b) that go from the vertex in column j to the one
in column j + 2. The direct path on top involves an increase in y-value of 2a2, whereas
the indirect path on the bottom involves an increase in y of a3 followed by an increase
of a1. Since both paths end up at the same point, we have that

2a2 = a1 + a3, (1)

or equivalently, that a3 − a2 = a2 − a1, or yet equivalently, that the sequence a1, a2, a3
forms an arithmetic progression. If we restrict the highest-order coefficients of the
linear functions to come from a subset A ⊆ Fp that contains no nontrivial arithmetic
progressions of length three, the arithmetic progression a1, a2, a3 has to be trivial, that
is, a1 = a2 = a3. The latter implies that the three lines in Figure 1(b) coincide. As this
implication holds for all choices of three consecutive columns, we conclude that all
vertices of K lie on a single line defined by one of the hi’s, as we wanted.

Of course, the additional restriction on the highest-order coefficients means that
we need to choose p larger. However, we only need to increase p slightly thanks to
the existence of efficiently constructible subsets A ⊆ Fp of high density that contain
no nontrivial arithmetic progressions of length three. For our purposes, the following
classical result from additive combinatorics suffices.

LEMMA 5 (AP3-FREE SETS [SALEM AND SPENCER 1942]). For every positive in-
teger p, there exists a subset A ⊆ Zp of size at least p1−o(1) which contains no nontrivial
arithmetic progressions of length three. Furthermore, such a set A can be determined in
time polynomial in p.

For completeness, we provide a proof of Lemma 5 in the Appendix. The resulting
graph P has s · p vertices where p = O

(
max

(
s,

√
t
1+o(1))).

This finishes the construction of the packing lemma for the case of standard graphs.
The generalization to d-uniform hypergraphs follows by using polynomials of degree
d − 1 instead of linear functions over Fp. Their use guarantees requirement (i) in
Lemma 2. Regarding requirement (ii), the following proof shows that the case d > 2
reduces to the case d = 2. For arbitrary d ≥ 2, we fulfill requirement (ii) by restricting

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:13

the coefficient of degree d − 1 to a set that contains no nontrivial arithmetic progres-
sions of length three, namely the set A ⊆ Fp determined in Lemma 5.

PROOF OF LEMMA 2. Let p be the smallest prime such that p ≥ s and |A| · pd−1 ≥ t,
where A denotes the set given by Lemma 5. We have that p = O(max(s, t1/d+o(1))) and
can compute p and the set A in time polynomial in s and t.

Let V(P) =[s] ×Fp. We consider polynomials of degree at most d − 1 over Fp whose
coefficient of xd−1 belongs to A. Note that there are |A| · pd−1 ≥ t such polynomials. For
i ∈[t], let hi denote the ith such polynomial in lexicographic order, and let Ki be the
complete d-uniform hypergraph on vertex set V(Ki) = {(j, hi(j)) | j ∈[s] }. We define the
d-uniform hypergraph P as the union of the t cliques Ki. The hypergraphs P and Ki
can be constructed in time polynomial in s and t.

In order to argue property (i), it suffices to observe that every hyperedge of P is
contained in at most one of the Ki’s. This follows because the requirement that a given
hyperedge of P belongs to Ki is equivalent to stipulating the value of hi on d distinct
values j ∈[s], which uniquely determines hi as a polynomial of degree at most d − 1
over Fp, and therefore determines i.

In order to argue property (ii), we need to establish the following for any function
h :[s] → Fp: If for every subset D ⊆[s] of size d there exists an i ∈[t] such that h
and hi agree on D, then there exists an i ∈[t] such that h and hi agree on all of [s]. The
property follows by applying the next claim to successive values of j ∈[s − d], where qk
denotes the polynomial hi which the hypothesis gives for the subset D =[j, j + d] \{k}.

Claim. For each k ∈[j, j + d], let qk be a polynomial of degree at most d − 1 such
that the set of coefficients of degree d − 1 of the qk’s contains no nontrivial arithmetic
progression of length three. If, for all k, � ∈[j, j +d], the polynomials qk and q� agree on
[j, j + d] \{k, �}, then the polynomials qk are all the same.

We prove the claim by induction on d. We already argued the base case d = 2,
captured by Figure 1(b), earlier in Section 4. For the inductive step, assume the claim
holds for d − 1 and let us prove it for d. Let qj, . . . , qj+d be polynomials as in the claim.
For each k ∈[j, j + d − 1], define q′

k as the difference quotient �j+d(qk), that is, q′
k :

[j, j+d−1] → Fp such that q′
k(x) = (qk(x)−qk(j+d))/(x− j−d) for x ∈[j, j+d−1]. Note

that q′
k is a polynomial of degree at most d − 2 whose coefficient of degree d − 2 equals

the coefficient of qk of degree xd−1. Moreover, for k, � ∈[j, j + d − 1], the polynomials q′
k

and q′
� agree on each x ∈[j, j + d − 1] \{k, �} because the polynomials qk and q� agree on

both x and j+d. Thus, by the induction hypothesis, all polynomials q′
k are the same. By

the definition of q′
k = �j+d(qk) and the fact that the polynomials qk for k ∈[j, j + d − 1]

agree on j + d, this implies that the polynomials qk for k ∈[j, j + d − 1] are all the same,
say q. All that remains to show is that the polynomial qj+d also coincides with q. The
latter follows because qj+d is a polynomial of degree at most d − 1, which agrees with
the polynomial q of degree at most d − 1 on all d points in [j, j + d − 1].

4.2. Related Constructions

After we developed our construction, we learned about similar applications of high-
density subsets of the integers without nontrivial arithmetic progressions of length
three.

Back in 1976, Ruzsa and Szemerédi [1978] constructed dense three-partite graphs
whose edges partition into triangles and that contain no other triangles. Their con-
struction corresponds to the case (d, s) = (2, 3) of our Packing Lemma, and appears

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:14 H. Dell and D. van Melkebeek

between any three consecutive columns of our construction for d = 2 and general s.
Our geometric derivation of the arithmetic progression condition (1), as captured in
Figure 1(b), may be new; all the derivations we have found in the literature work by
manipulating equations in a – to us – less intuitive way.

Different aspects of the Ruzsa-Szemerédi construction matter for the various appli-
cations we know of in the theory of computing. For their soundness analysis of graph
tests for linearity, Håstad and Wigderson [2003] use the interpretation that for each
of the p points in the first column, the triangles involving that point span an induced
matching of p1−o(1) edges between the other columns.

Another application area is the lower bounds for testing the graph property of being
F-free, where F is some fixed graph. An ε-tester for this property accepts all graphs
that are F-free, and rejects all graphs that are at least ε away from being F-free, that
is, from which at least εn2 edges need to be removed to make it F-free [Goldreich et al.
1998]. A strategy for proving lower bounds on the number of queries of such a tester
is to construct high-density graphs G with the following properties: (i) the edges of G
partition into copies of F, and (ii) G contains few other copies of F so the total number
of copies of F in G is significantly less than expected in a random graphs of the same
density as G [Alon 2002]. Qualitatively, (i) implies that G is far from being F-free,
and (ii) implies that testers with few queries have a small probability of detecting a
violation of F-freeness on input G. Alon and coauthors [Alon 2002; Alon and Shapira
2004, 2005, 2006; Alon et al. 2008] constructed such graphs G for various F based on
the work of Ruzsa and Szemerédi [1978].

The requirements for our application are similar but not identical to the ones for
property testing. On the one hand, we only need to consider the cases where F is a
clique; on the other hand, the graphs G cannot contain any copy of F other than those in
which the edges partition. Our actual construction is very similar to the one Alon and
Shapira [2005] develop. Their construction would also work for our purposes. Our proof
differs from theirs and makes the arithmetic progression condition more transparent.
Our construction slightly improves2 on theirs as we only restrict the highest-order
coefficient to the set A, whereas they restrict all coefficients to that set.

5. CONSEQUENCES OF THE MAIN THEOREM

Our lower bound for oracle communication protocols for d-VERTEX COVER, Theorem 2,
has two types of consequences. The first is similar lower bounds for other param-
eterized NP-complete problems, and follow from parameter-frugal reductions from
d-VERTEX COVER to these problems. The second type involves lower bounds for pa-
rameters of interest in settings that are captured by our oracle communication model.
In this section, we first cover the consequences for satisfiability and then those for
vertex deletion problems.

5.1. Satisfiability

Theorem 1, our tight oracle communication lower bound for d-SAT parameterized by
the number of variables of the formula, immediately follows from Theorem 2 and the
next lemma.

LEMMA 6. For every d ≥ 3, there is a ≤p
m-reduction from d-VERTEX COVER to

d-SAT that maps d-uniform hypergraphs on n vertices to d-CNF formulas on O(n)
variables.

2This allows us to relax the condition q(ε) = max{m : (f (m))k ≥ ε} in Lemma 4.1 of Alon and Shapira [2005]
to q(ε) = max{m : f (m) ≥ ε}.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:15

PROOF. Let (G, k) be an n-vertex instance of d-VERTEX COVER. The following d-
CNF formula on variables xv for v ∈ V(G) has as satisfying assignments precisely the
characteristic vectors of vertex covers of G:

ϕ :=
∧

e∈E(G)

∨
v∈e

xv.

Using at most O(n) new variables, we construct a 3-CNF formula ψ that is satisfied by
all assignments in which at most k distinct xv are set to true. Then, ϕ ∧ ψ is satisfiable
if and only if G has a vertex cover of size at most k.

For the construction of ψ , we use a Boolean circuit of constant fan-in that has at
most O(n) gates and checks whether at most k of the n input variables are set to true.
Such circuits can be constructed for any symmetric function in time polynomial in n
when given oracle access to the function [Wegener 1987, Theorem 4.1]. Once we have
that circuit, we construct ψ in a standard way by introducing a new variable for each
gate, and letting ψ be the conjunction of clauses that express the correct behavior of
each of the gates, and the clause stipulating that the output gate is set.

PROOF OF THEOREM 1. Suppose there exists an oracle communication protocol of
cost O(nd−ε) for n-variable instances of d-SAT. By combining the ≤p

m-reduction from
Lemma 6 with the former, we obtain an oracle communication protocol of cost O(nd−ε)
for n-vertex instances of d-VERTEX COVER. By Theorem 2, the latter implies that
coNP ⊆ NP/poly.

The following corollary to Theorem 1 embodies the consequences for sparsification,
kernelization, and lossy compression.

COROLLARY 1. Let d ≥ 3 be an integer. If coNP �⊆ NP/poly, then there is no
polynomial-time reduction from d-SAT to any problem that makes at most O(nb) queries
and only queries strings of bitlength O(nc), where b and c are any nonnegative reals
with b + c < d.

In particular, under the hypothesis that coNP �⊆ NP/poly, Corollary 1 implies
that ≤p

m-reductions cannot reduce the density of n-variable d-SAT instances to O(nc)
clauses for any constant c below the trivial c = d. This is what the title of this article
refers to, and contrasts the situation at the subexponential-time level. The sparsifica-
tion lemma of Impagliazzo et al. [2001] gives a reduction which, on input an n-variable
d-CNF formula and a rational ε > 0, runs in time 2εn · poly(n) and makes 2εn non-
adaptive queries, each of which are d-CNF formulas with at most f (d, ε) · n clauses.
The best-known bound on the sparsification constant f (d, ε) is (d/ε)3d [Calabro et al.
2006]. The sparsification lemma implies that sparse instances of d-SAT are hard under
subexponential-time reductions while Corollary 1 suggests that such a result is impos-
sible under ≤p

m-reductions. Interpretations of Corollary 1 in terms of kernelization and
lossy compression follow along the same lines.

Another consequence of Theorem 1 deals with the size of probabilistically check-
able proofs for satisfiability. Recall that Dinur [2007] constructed such PCPs of size
O(s · poly log s), where s denotes the bitlength of the formula. Based on a connection
due to Harnik and Naor [2010] between PCPs and lossy compression, Fortnow and
Santhanam [2011] showed that satisfiability of Boolean formulas does not have PCPs
of size bounded by a polynomial in the number of variables only, unless coNP ⊆
NP/poly. Plugging in our lower bound for d-SAT into their argument shows that
d-SAT does not have q-query PCPs of size O(nd/q−ε) unless coNP ⊆ NP/poly. Since
q ≥ 3 this bound is not tight. Using a different argument and exploiting the fact that

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:16 H. Dell and D. van Melkebeek

Theorem 1 also holds for conondeterministic protocols, we can close the gap between
the upper and lower bound.

COROLLARY 2. Let d ≥ 3 be an integer and ε a positive real. If coNP �⊆ NP/poly,
then d-SAT does not have probabilistically checkable proofs of bitlength O(nd−ε) where
n denotes the number of variables of the input formula.

PROOF. Suppose that d-SAT has PCPs of size s = O(nc) that make q nonadaptive
queries, where c and q are constants. We claim that this implies a conondetermin-
istic multivalued mapping reduction from d-SAT to q-SAT that maps formulas on n
variables to instances of bitlength O(nc log n) in the following sense: There exists a
nondeterministic polynomial-time Turing machine M which outputs a q-CNF formula
on each computation path (where the formula may depend on the input and the com-
putation path) such that (i) if the input is in d-SAT then every output is in q-SAT, and
(ii) otherwise at least one output is not in q-SAT. For c < d, Theorem 1 then shows that
coNP ⊆ NP/poly.

All that remains is to argue the claim. For a given formula ϕ on n variables, introduce
s new variables y, namely one for each bit position in a candidate PCP of size s. If the
PCP system reads at most q bits of the proof, each condition the PCP system checks can
be expressed efficiently as a q-CNF. By picking a condition according to the distribution
of the PCP system and a clause of the corresponding q-CNF formula uniformly at
random, we obtain a polynomial-time randomized procedure that produces a q-clause
on the variables y with the property that if ϕ is satisfiable, then all q-clauses produced
are simultaneously satisfiable, and otherwise less than a constant fraction ρ < 1 is.
By averaging, the latter implies that for every collection of candidate PCPs of size s
for an unsatisfiable input ϕ, there exists a produced q-clause that is violated by more
than a fraction 1 − ρ of the collection. Since there are 2s candidate PCPs of size s in
total, this means that there is a set of s/ log(1/ρ) produced q-clauses that cannot be
satisfied by any PCP of size s. The reduction nondeterministically guesses s/ log(1/ρ)
many q-clauses that are produced by the PCP system on input ϕ, and outputs their
conjunction. The conjunction has bitlength O(nc log n), is always satisfiable if ϕ is, and
is not satisfiable on at least one computation path otherwise.

5.2. Vertex Cover and Other Vertex Deletion Problems

Theorem 2 yields applications for d-VERTEX COVER similar to Corollaries 1 and 2 for
d-SAT, using the number of vertices n as the parameter. A more natural parameter
for d-VERTEX COVER is the size k of the vertex cover. We now investigate the conse-
quences of Theorem 2 for this parameterization, first for the case d = 2, that is, for
standard graphs, and then for d-uniform hypergraphs for general d.

Result for Standard Graphs. We consider the following generalization of the vertex
cover problem. Recall that a graph property is a predicate on graphs that is invariant
under graph isomorphism.

Definition 2 (Vertex Deletion). Fix a graph property �. The �-VERTEX DELETION
problem is to decide, for a given graph G and integer k, whether there exists a subset S
of at most k vertices such that G \ S satisfies �.

We say that a graph property � is inherited by subgraphs if whenever a graph G
satisfies �, every subgraph of G also satisfies �. The following natural graph problems
are special cases of �-VERTEX DELETION for a graph property � that is inherited by
subgraphs.

— VERTEX COVER. Can we delete k vertices to destroy all edges?

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:17

Fig. 2. Replacement of an edge e = {u, v} in the transformation from G to G′ in the proof of Lemma 7. (a)
FEEDBACK VERTEX SET. (b) BOUNDED-DEGREE DELETION. (c) The general case.

— FEEDBACK VERTEX SET. Can we delete k vertices to destroy all cycles?
— BOUNDED-DEGREE DELETION. Can we delete k vertices to get a maximum

degree of d?
— NON-PLANAR DELETION. Can we delete k vertices to make the graph planar?
— Can we delete k vertices to make the graph embeddable into some surface?
— Can we delete k vertices to make the graph exclude any fixed set of minors?

As mentioned in the introduction, if only finitely many graphs satisfy � or if all
graphs satisfy �, �-VERTEX DELETION is trivially decidable in polynomial time.
For all other graph properties � that are inherited by subgraphs, Theorem 3 im-
plies that �-VERTEX DELETION does not have kernels with O(k2−ε) edges unless
coNP ⊆ NP/poly.

We now prove Theorem 3 by constructing a ≤p
m-reduction from VERTEX COVER to

�-VERTEX DELETION that blows up the size of the deletion set by no more than a
constant factor. In order to develop some intuition, we first consider the standard re-
duction from VERTEX COVER to FEEDBACK VERTEX SET [Karp 1972]. The reduction
replaces every edge e of a VERTEX COVER-instance G by a cycle of length three using
an additional new vertex, as depicted in Figure 2(a). Let us denote the resulting graph
by G′. Since every cycle in G′ contains two vertices that are adjacent in G, every vertex
cover of G hits every cycle of G′ and therefore is a feedback vertex set of G′. Conversely,
every feedback vertex set of G′ contains a vertex of every triangle we created, and can
therefore be turned into a vertex cover of G of at most the same size. Thus, G has a
vertex cover of size k if and only if G′ has a feedback vertex set of size k.

As another example, consider the case of BOUNDED-DEGREE DELETION. In the
known reduction from VERTEX COVER to this problem [Krishnamoorthy and Deo
1979], d new edges are attached to every vertex of G (see Figure 2(b)). Removing any
vertex cover of G from G′ reduces the maximum degree to d. Vice-versa, any set that
reduces the maximum degree in G′ to d can be transformed into a vertex cover of G of
at most the same size.

Next consider the more general case in which the minimal graphs that violate �
are connected. Generalizing these two examples we obtain G′ by replacing every edge
of the VERTEX COVER-instance G by a copy of a fixed connected graph F violating �.
We refer to F as a “forbidden” graph since no graph satisfying � can contain F as a
subgraph. Thus, any deletion set in G′ has to pick at least one vertex from every copy
of F. Projecting the deletion set back onto the graph G yields a vertex cover of size no
more than the deletion set. This way we can guarantee the soundness of the reduction
– if G′ has a deletion set of size at most k then G has a vertex cover of size at most k.

For the completeness of the reduction, we would like to ensure that removing a
vertex cover S of G from G′ leaves a graph G′ \S satisfying �. This is not automatically
the case because G′ \ S may contain components of the form depicted in Figure 3(a),
where the bullets are vertices of G and the hashed vertices are part of the vertex
cover S (and are therefore not part of G′ \ S) but the center vertex is not. Such a

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:18 H. Dell and D. van Melkebeek

Fig. 3. Connected component C′ that might remain after removing a vertex cover S of G from G′, cen-
tered around a vertex c that has degree 3 in G and does not belong to S. (a) Naı̈ve construction. (b) Final
construction.

component could contain a copy of F, in which case G′ \S would not satisfy �. However,
by attaching the copies of F in an appropriate way we can make sure that the connected
components of G′ \ S are all “simpler” than F. Picking F to be a “simplest” connected
graph that violates � then does the job as long as all minimal graphs violating � are
connected.

More generally, consider a graph F violating � whose most complex connected com-
ponent C is as simple as possible among all graphs violating �. If F has no other
connected component of the same complexity as C, then the above construction still
works, using a copy of C to replace every edge in G and including a copy of F \ C for
every vertex of G.

In the most general case, where minimal graphs violating � can have multiple com-
ponents of the same complexity, we use a slightly different construction that involves
multiple copies of G. The graph F now becomes a “simplest” graph for which the num-
ber of disjoint copies of F that satisfies � is bounded. The reduction is no longer param-
eter preserving in general, but the parameter k′ for G′ is still linearly bounded by the
parameter k for G. The latter ensures that the lower bound for �-VERTEX DELETION
is as strong as for VERTEX COVER modulo a constant factor.

The simplicity measure we use is the same as the one of Lewis and Yannakakis
[1980] but the construction is a bit different: their construction blows up the parameter
k′ to
(nk), but a straightforward modification reduces k′ to
(k2). We further reduce
k′ to
(k) using a matching argument.

LEMMA 7. Let � be a graph property that is inherited by subgraphs, and is satisfied
by infinitely many but not all graphs. There is a ≤p

m-reduction from VERTEX COVER
to �-VERTEX DELETION that maps instances with parameter k to instances with
parameter O(k).

PROOF. We start by spelling out the simplicity measure for graphs. We first consider
a connected graph C. For any vertex s of C, we define the character of C relative to s
as the sequence χ = (χi)i∈N where χi denotes the number of connected components
of C \ {s} that have exactly i vertices. We compare two characters χ and η using the
colexicographical order, that is, χ < η if there exists a positive integer i such that
χj = ηj for all integers j > i and χi < ηi. The corresponding relation ≤ defines a well-
order on the set of characters, that is, a total order in which every nonempty subset has
a smallest element. We define the character of C as a smallest character of C relative
to s over all vertices s of C.

For an arbitrary graph G, we define its signature as a mapping σ from the set of
all characters to N, where σ(χ) equals the number of connected components of G with
character χ . We compare two signatures σ and τ using the colexicographical order
induced by the order on characters, that is, σ < τ if there exists a character χ such

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:19

that σ(η) = τ(η) for all characters η > χ and σ(χ) < τ(χ). The corresponding relation
≤ defines a well-order on the set of signatures.

Our simplicity measure on graphs is induced by the ≤-relation on their signatures.
We choose a graph F with the smallest signature among all graphs for which the num-
ber of disjoint copies that satisfy � is bounded. Note that F exists because not all
graphs satisfy �. Let t be the positive integer such that the disjoint union of t − 1
copies of F satisfies � but t disjoint copies do not. Let C denote a connected component
of F with largest character and let s ∈ V(C) be a witness for that character. Let L be
the subgraph of C spanned by s and the vertices of a largest connected component of
C \ {s}, and let L be the subgraph of C spanned by s and the vertices of C \ L. Note that
L contains at least one other vertex than s. Otherwise, F would consist of isolated ver-
tices only and only finitely many graphs would satisfy �. Let r be an arbitrary vertex
of L \ {s}.

We are now in position to describe the reduction transforming an instance (G, k)
of VERTEX COVER into an instance (G′, k′) of �-VERTEX DELETION such that G has
a vertex cover of size k if and only if k′ vertices can be deleted from G′ to make the
residual graph satisfy �. For the construction of G′, we start with 2t−1 disjoint copies
G1, . . . , G2t−1 of G. We replace every edge e of Gi by a copy Le of the component L such
that the endpoints of e are identified with s and r in an arbitrary way; the vertices of Le
outside of e are new. Furthermore, we attach to every vertex v ∈ V(G) a graph Rv that
consists of a copy of L and disjoint copies of F \ C; here we identify v with the vertex s
of L and create all other vertices of Rv new. See Figure 2(c). In the remainder, we show
that the reduction works when we set k′ = (2t − 1)k.

For the soundness of the reduction, let S′ be a set of k′ vertices in G′ such that G′ \ S′
satisfies �. Let S denote the projection of S′ onto V(G1) ∪ · · · ∪ V(G2t−1), where the
projection of a vertex u ∈ V(G′) is one of the vertices of e (chosen arbitrarily) in case
u ∈ V(Le)\e and the vertex v in case u ∈ V(Rv). We claim that S is at most 2t−2 vertices
away from being a vertex cover of G1 ∪ · · · ∪ G2t−1. Let M be a maximal matching in
(G1 ∪ · · · ∪ G2t−1) \ S. If M contains at least t edges, then S′ avoids at least t disjoint
subgraphs Le ∪ Ru ∪ Rv for e = (u, v). In particular, G′ \ S′ contains t copies of F as
subgraphs, which contradicts the fact that G′ \S′ satisfies �. Thus, M contains at most
t − 1 edges. Adding V(M) to S, we thus get a vertex cover of G1 ∪ · · · ∪ G2t−1 of size at
most (2t−1)k+2t−2. By averaging, there is an i with |S∩V(Gi)| ≤ �k+1− 1

2t−1� = k.
Hence, G has a vertex cover of size at most k.

For the completeness of the reduction, let S be a vertex cover of G of size at most k.
Let S′ consist of the 2t−1 copies of S in the graphs G1, . . . , G2t−1. Clearly, |S′| ≤ (2t−1)k.
Let H be obtained from G′ \ S′ by removing duplicate isomorphic copies of connected
components. Note that G′ \ S′ is a subgraph of finitely many disjoint copies of H. Thus,
if we can show that H has a strictly smaller signature than F, then any number of
disjoint copies of H satisfies � and by inheritance the subgraph G′ \ S′ also satisfies �.
Therefore, S′ is a set of at most k′ = (2t − 1)k vertices such that G′ \ S′ satisfies �.

It remains to argue that H has a strictly smaller signature than F. In order to do so
we consider the connected components of H, and we distinguish four types: (1) compo-
nents isomorphic to components of F \ C, (2) components isomorphic to components of
L \ {s, r}, (3) components isomorphic to components of L \ {s}, and (4) components as in
Figure 3(b) consisting of a single copy of L and one or more copies of L \ {s} and L \ {r}
in which all remaining copies of s and r have been identified with the vertex c. We
show that for each of the connected components of types (2), (3), and (4), the character
is strictly less than for C. Since C is the connected component of F with the largest
character and H has no duplicate isomorphic connected components, this implies that
no connected component of H has a character larger than C, and that the number of

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:20 H. Dell and D. van Melkebeek

connected components of H with the same character as C is strictly less than in F.
Therefore, the signature of H is strictly less than the one of F.

Let us first consider a connected component C′ of H of type (4). Consider removing
the vertex c in Figure 3(b). Since L \ {s} is a largest connected component of C \ {s},
no connected component of C′ \ {c} can have more vertices than L \ {s}. Moreover, the
only components in C′ \ {c} that can have |V(L \ {s})| vertices must come from the part
L\{s}. Since C = L∪L, this means that C\{s} has one more connected component with
|V(L \ {s})| vertices than C′ \ {c}. Thus, the character of C′ relative to c, and a fortiori
the character of C′, is strictly less than the character of C.

The claim that connected components of types (2) and (3) have characters strictly
less than C follows from the corresponding claim for type (4) since (2) and (3)
are subgraphs of a graph of type (4) and taking subgraphs cannot result in larger
characters.

We point out that the proof of Lewis and Yannakakis [1980] only needs inheritance
by induced subgraphs. The only step in the proof of Lemma 7 that requires the stronger
property of inheritance by subgraphs is the matching argument. That step is vacuous
when t = 1, for example, when all minimal graphs violating � are connected. The
stronger property is also not necessary when the vertex s is not connected to all vertices
of L (and we choose r as one of those vertices). In such cases, our proof can do with
inheritance by induced subgraphs.

PROOF OF THEOREM 3. Suppose that �-VERTEX DELETION parameterized by the
size of the deletion set has a cost O(k2−ε) protocol. By combining the ≤p

m-reduction
from Lemma 7 with that protocol, we obtain a cost O(k2−ε) protocol for VERTEX COVER
parameterized by the size of the vertex cover. Since k ≤ n, the case d = 2 of Theorem 2
then implies that coNP ⊆ NP/poly.

Theorem 3 applies, among others, to FEEDBACK VERTEX SET, another problem
whose kernelization has received considerable attention in parameterized complexity.
Theorem 3 implies that FEEDBACK VERTEX SET does not have kernels consisting of
O(k2−ε) edges unless coNP ⊆ NP/poly. This result is tight – a kernel with O(k2) edges
follows from recent work by Thomassé [2010]. He constructs a kernel with at most
4k2 vertices and maximum degree at most 4k. For such an instance to be positive, the
number of edges can be no larger than 8k2. Indeed, suppose that S is a feedback vertex
set of G of size at most k. Then the graph induced by V(G) \ S is a forest and has at
most 4k2 edges. All other edges of G are incident to a vertex of S. As the maximum
degree is no larger than 4k, at most 4k2 edges are incident to S. Summing up, G has at
most 8k2 edges. Thus, if G has more than 8k2 edges, we can reduce to a trivial negative
instance; otherwise, we reduce to G. This results in a kernel with O(k2) edges.

Extension to Hypergraphs. We now turn to vertex cover and related problems on d-
uniform hypergraphs. Since k ≤ n, Theorem 2 implies that d-VERTEX COVER does
not have kernels with O(kd−ε) edges unless coNP ⊆ NP/poly. We point out that ker-
nels with O(kd) edges exist for d-VERTEX COVER. This follows from a generalization of
Buss’ high-degree rule (see the introduction) and a folklore application of the sunflower
lemma (see Flum and Grohe [2006, chapter 9.1], for example). Recall that for a hyper-
graph G, a sunflower with heart h ⊆ V(G) and p petals is a set of distinct edges whose
pairwise intersection is exactly h. The kernelization proceeds by repeatedly picking a
sunflower with at least k+1 petals, removing the involved edges, and adding the heart
as a new edge to the graph. Note that in this process, edges of size less than d may be
added to G. To get back a d-uniform graph, one can complete those edges with fresh

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:21

vertices, which doesn’t affect the number of edges nor the minimum size of a vertex
cover. The process continues until no sunflower with k+1 petals exists, which is bound
to happen as the number of edges decreases in every step. The sunflower lemma of
Erdős and Rado [1960] states that any d-uniform hypergraph with more than d! ·kd

edges has a sunflower with k + 1 petals. Thus, the hypergraph that remains at the end
has at most d · d! ·kd = O(kd) edges, and has a vertex cover of size at most k if and only
if the original hypergraph does.

Regarding extensions of Theorem 3 to d-uniform hypergraphs for d > 2, we cannot
expect to rule out protocols of cost O(kd−ε) for all hypergraph properties � that are in-
herited by subgraphs and for which the deletion problem is nontrivial. This is because
the property � could only depend on the primal graph underlying the hypergraph, for
which protocols of cost O(k2) are known in some cases.

6. THE COMPLEMENTARY WITNESS LEMMA

In this section, we prove Lemma 4 and mention some applications other than the main
theorem of this article.

6.1. Proof of the Lemma

We first describe the special case of Lemma 4 where the language L is P-selective.
The simpler argument for that case provides a good starting point for the proof of the
general case.

A P-selector for a language L is a polynomial-time algorithm that takes two in-
stances x and y as input and outputs one of them, with the guarantee that, if at least
one of the inputs belongs to L, then so does the one that is output. Note that a P-
selector for L immediately yields a low-cost oracle communication protocol for deciding
OR(L) on inputs consisting of t instances of size s each – the first player uses the selec-
tor t−1 times to determine which of the instances is “most likely” to be in L, sends that
instance to the oracle, who responds with the membership of that instance to L. Since
the cost of this protocol is s, any P-selective language satisfies the promise of Lemma 4
with t = s.

Ko [1983] showed that the existence of a P-selector for L implies that L (and thus L)
can be decided by circuits of polynomial size. The key insight is the following way
to prove that an instance x belongs to L: Exhibit an instance y that is known to be
in L and which the selector S outputs when given x and y as input. We call such a
y a complementary witness. By viewing S on all pairs of a given subset F ⊆ L as a
tournament, there always exists a y ∈ F that beats at least half of the x ∈ F and
therefore can be used as a proof of membership of x to L. Starting from the set of all
instances of size s in L, we repeatedly apply this procedure to the remaining set F of
instances that have not yet been beaten by some of the y’s we picked, until the set
becomes empty. This way, we obtain a collection As of at most s elements y such that
x ∈ L if and only if there exists a y ∈ As such that S(x, y) = y. Using the set As as
advice, this shows that L ∈ P/poly. If we allow the selector S to be nondeterministic
(even multivalued), we similarly obtain that L ∈ NP/poly [Hemaspaandra et al. 1995].

Fortnow and Santhanam [2011] established the case of Lemma 4 where the protocol
implements a ≤p

m-reduction from OR(L) to some language L′ such that t-tuples consist-
ing of instances of bitlength s are mapped to an instance of bitlength bounded by some
fixed polynomial in s, independent of t. Their proof can be viewed as an extension of
the above argument. The witnesses y are now elements from L′, and the requirement
on the bitlength of the reduced instances guarantees that sufficiently popular y’s exist,
so we don’t need too many of them. The statement of Lemma 4 results from a more

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:22 H. Dell and D. van Melkebeek

careful analysis of that argument for bounds that can grow slowly with t, and from the
extension to the general setting of our oracle communication model.

PROOF OF LEMMA 4. Let us first consider the case of a deterministic oracle com-
munication protocol P modeled by a deterministic polynomial-time Turing machine M
and a function f (see Section 2 for the notation). In this proof, we make use of the no-
tion of a communication transcript on a given input x. Such a transcript consists of the
sequence of all queries P makes on input x (i.e., the contents of M’s oracle query tape
at the end of the protocol) as well as the answers f (q) to each of the oracle queries q.

The key ingredient of the proof is the following equivalence: An instance x of
bitlength s is in L if and only if there exists a sequence x2, . . . , xt(s) of instances of
bitlength s such that P(x, x2, . . . , xt(s)) rejects. The forward direction of the equivalence
follows from the soundness of the protocol by setting x2 = · · · = xt(s) = x, and the back-
wards direction follows from the protocol’s completeness. By including a large enough
set As of communication transcripts and the value of t(s) as advice, this leads to the
following proof system with advice for L. On input an instance x of bitlength s:

(1) guess a sequence x2, . . . , xt(s) where each xi has bitlength s;
(2) check whether there is a communication transcript τ in As that is consistent with

P on input (x, x2, . . . , xt(s)) and that P(x, x2, . . . , xt(s)) rejects. If so, accept; otherwise,
reject.

The check for a given transcript τ involves running the first player on the input
(x, x2, . . . , xt(s)). Whenever the first player sends a bit to the second player (by writing
on the oracle query tape), verify that it agrees with the corresponding bit in τ . When-
ever the first player expects a bit from the second player (by reading from the oracle
answer tape), use the corresponding bit in τ . This process continues until a discrepancy
is detected or the first player halts.

This proof system is sound as long as all communication transcripts in As are con-
sistent with the protocol P. All that remains to show is the existence of a small subset
As of such transcripts that guarantees completeness.

We construct As for a fixed s in the following greedy way. Consider instances,
x1, . . . , xt(s) of L of bitlength s, and let T(x1, . . . , xt(s)) denote the communication tran-
script of P on input (x1, . . . , xt(s)). Since the second player is not given the input
(x1, . . . , xt(s)), the transcript T(x1, . . . , xt(s)) is determined solely by the bits sent from
the first player to the second player. Therefore, the number of distinct such transcripts
is less than 2c(s)+1, where c(s) denotes the cost of the protocol on inputs consisting of
t(s) instances of bitlength s each. We say that a rejecting transcript τ covers an instance
x ∈ L of bitlength s if there exists a sequence x2, . . . , xt(s) of instances of bitlength s each
such that T(x, x2, . . . , xt(s)) = τ . We start with As empty and successively pick a reject-
ing communication transcript τ that covers the largest number of instances x ∈ L of
length s that are not covered thus far, and add τ to As. We keep doing so until there
are no more instances x ∈ L of bitlength s left to cover.

Consider one step in the construction of As and let F denote the set of uncovered
instances x ∈ L of bitlength s at the beginning of the step. Since every tuple in Ft(s) is
mapped by T to one of the rejecting transcripts and there are less than 2c(s)+1 distinct
such transcripts, there exists a rejecting transcript τ ∗ such that at least a fraction
1/2c(s)+1 of the tuples in Ft(s) are mapped by T to this particular τ ∗, that is, |T−1(τ ∗) ∩
Ft(s)| ≥ |F|t(s)/2c(s)+1. Now, each component of a tuple in T−1(τ ∗) ∩ Ft(s) is covered
by τ ∗ since we can regard the input of T as an unordered sequence. Thus, if we let G

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:23

denote the subset of F that is covered by τ ∗, we have that T−1(τ ∗) ∩ Ft(s) ⊆ Gt(s). We
conclude that

|G|t(s) ≥ |T−1(τ ∗) ∩ Ft(s)| ≥ |F|t(s)/2c(s)+1,

whence |G| ≥ ϕ(s) · |F| where ϕ(s) = 1/2(c(s)+1)/t(s).
Thus, every step covers a fraction at least ϕ(s) of the remaining instances to be

covered. Since there are at most 2s instances of bitlength s to begin with, after � steps
there are no more than (1 − ϕ(s))� · 2s ≤ exp(−ϕ(s)�) · 2s instances left to cover, so the
process ends after O(s/ϕ(s)) steps. Now, 1/ϕ(s) = 2(c(s)+1)/t(s) is polynomially bounded
in t(s) as long as c(s) = O(t(s) log t(s)). Since each transcript as well as the running time
of the proof system are polynomially bounded in s and t(s), for polynomially bounded
t(s) the resulting algorithm for L runs in NP/poly.

This finishes the proof for the case of deterministic protocols P. For conondetermin-
istic protocols we can define T(x1, . . . , xt(s)) to be an arbitrary transcript of an execution
on which P produces the correct output. The check in step (2) now involves nondeter-
minism. The fact that P has no valid rejecting executions for inputs (x1, . . . , xt(s)) in
OR(L) guarantees the soundness of the proof system, and the existence of at least one
valid rejecting execution of P on an input (x1, . . . , xt(s)) outside of OR(L) guarantees
completeness. The counting argument carries over verbatim.

6.2. Other Applications

To illustrate the use of our oracle communication model, we describe two applications
in the original framework of Bodlaender et al. [2009a].

For several NP-hard parameterized problems L there exists a ≤p
m-reduction from

OR(L) to L that maps t instances of size s each to a single instance of L of size
poly(s) · t1+o(1) and parameter k = poly(s). For example, for problems like SAT and
CLIQUE, such reductions follow from the disjoint union construction mentioned in the
introduction. For certain other problems such reductions are more involved but still ex-
ist (see Binkele-Raible et al. [2012], Bodlaender et al. [2009b], Chen et al. [2011], Dom
et al. [2009], Kratsch and Wahlström [2010, 2013], for examples). Whenever such re-
ductions exist, Lemma 4 (via Lemma 1) implies that L does not have an oracle commu-
nication protocol of cost poly(k) unless coNP ⊆ NP/poly. In particular, such problems
do not have kernels of polynomial size unless coNP ⊆ NP/poly.

Turing Kernelizations. Binkele-Raible et al. [2012] exhibit a parameterized problem
that has no standard kernel of polynomial size unless coNP ⊆ NP/poly, but does have
a “Turing kernelization” of size O(k3) in the following sense: The problem has a self-
reduction which, on inputs of size s and parameter k, makes at most s queries, all of
which are of size O(k3). Using oracle communication protocols that implement general
reductions rather than mapping reductions, Lemma 4 allows us to rule out the follow-
ing for that problem, assuming coNP �⊆ NP/poly: Reductions that, on inputs of size s
and parameter k, make at most s1−ε queries for some positive real ε and only query
instances of bitlength bounded by a polynomial in k. In particular, this shows that the
number of queries in the Turing kernel of Binkele-Raible et al. [2012] is likely to be
tight – reducing it from s to s1−ε for some positive real ε would collapse the polynomial-
time hierarchy.

Density of NP-Hard Languages. Buhrman and Hitchcock [2008] showed that a lan-
guage S that contains no more than 2no(1)

strings of any length n cannot be hard
for NP under reductions that make n1−ε queries for some positive real ε unless
coNP ⊆ NP/poly. The proof in Buhrman and Hitchcock [2008] is a modification of

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:24 H. Dell and D. van Melkebeek

the proof in Fortnow and Santhanam [2011]. As an illustration of the power of our or-
acle communication model, we show that this result immediately follows from Lemma
4 using an oracle that actively tries to extract enough information from the first player
to decide the membership to S of any query that the first player wants to make.

Suppose such an NP-hard language S does exist and consider the reduction from
SAT to S that makes n1−ε queries. Since the reduction runs in polynomial time, the
size of the queries is bounded by m = poly(n). Consider the lexicographic ordering
of all strings of length up to m. The set S breaks up this ordering into at most 2 ·
|S ∩ {0, 1}≤m| + 1 intervals on which the membership to S is constant. In order for
the oracle to decide the membership to S of a query, it suffices for the oracle to figure
out which interval the query falls in. It can do so by running a binary search with
the help of the first player, who knows the exact query. The binary search only takes
log(2·|S∩{0, 1}≤m|+1) bits of communication from the first player to the oracle. Overall,
this leads to a communication protocol for SAT of cost O(n1−ε ·log(2·|S∩{0, 1}≤m|+1)) =
O(n1−ε+o(1)). Combining this protocol with the ≤p

m-reduction from OR(SAT) to SAT
mentioned previously, we obtain an oracle communication protocol for OR(SAT) of cost
O(poly(s) · t1−ε+o(1)) on inputs consisting of t instances of size s each. As the latter
quantity is O(t log t) for t a sufficiently large polynomial in s, Lemma 4 implies that
coNP ⊆ NP/poly.

7. CONCLUSION

In this article, we introduced a model of communication that captures various set-
tings of interest in the theory of computing. For NP-complete problems like d-SAT,
d-VERTEX COVER, and d-CLIQUE we showed that trivial protocols are essentially op-
timal as function of the witness size, unless the polynomial-time hierarchy collapses.
Under the hypothesis that the latter does not happen, the result implies tight lower
bounds for parameters captured by the communication model, including the size of
PCPs, and polynomial-time sparsification, kernelization, and lossy compression. Un-
der stronger hypotheses, similar results hold for larger time bounds.

As directions for further research we suggest the development of more applications
that exploit the full power of our oracle communication model, and to relax the hypoth-
esis coNP �⊆ NP/poly to P �= NP.

APPENDIX

Appendix: Behrend’s Construction

We now prove Lemma 5, following an elegant construction due to Behrend [1946],
which improves on the original construction due to Salem and Spencer [1942].

PROOF OF LEMMA 5. Let p be a positive integer. We want to construct a set A ⊆
Zp of size p1−o(1) that contains no nontrivial arithmetic progressions of length three
over Zp.

For positive integers d, m and a real r to be chosen later, let Sr ⊆ R
d denote the

d-dimensional sphere of radius r restricted to vectors whose components are from Zm:

Sr =
{
(a1, . . . , ad) ∈ Z

d
m

∣∣∣ a2
1 + · · · + a2

d = r2
}

.

The midpoint between any two distinct points �a and �b on a sphere is not itself on the
sphere. This means that

�a + �b �= 2�c for all distinct �a, �b, �c ∈ Sr. (2)

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:25

This is the type of property we need except that we want it for a subset of integers
rather than vectors with integer coordinates. We can transform Sr into a set of integers
and maintain (2) by applying a linear mapping 〈.〉 : Nd → N that is 1-to-1 on Z

d
2m−1.

Then the set 〈Sr〉 = {〈�a〉 | �a ∈ Sr} satisfies

〈�a〉 + 〈�b〉 = 〈�a + �b〉 �= 〈2�c〉 = 2〈�c〉 for all distinct 〈�a〉, 〈�b〉, 〈�c〉 ∈ 〈Sr〉. (3)

Moreover, if

max
�a∈Zd

2m−1

〈�a〉 < p, (4)

then 〈Sr〉 ⊆ Zp and (3) implies that

〈�a〉 + 〈�b〉 �≡ 2〈�c〉 mod p for all distinct 〈�a〉, 〈�b〉, 〈�c〉 ∈ 〈Sr〉.
That is, 〈Sr〉 ⊆ Zp contains no nontrivial arithmetic progressions of length three
over Zp.

We define the function 〈.〉 by interpreting a vector �a = (a1, . . . , ad) ∈ Z
d
2m−1 as a

d-digit number in base 2m − 1, that is, 〈�a〉 = ∑d
i=1 ai(2m − 1)i−1. This yields a linear

function from N
d to N which is 1-to-1 on Z

d
2m−1 and achieves a maximum value of

(2m − 1)d − 1 on Z
d
2m−1. Thus, (4) is satisfied if (2m − 1)d ≤ p.

It remains to choose d, r, m such that (2m − 1)d ≤ p and |〈Sr〉| = |Sr| ≥ p1−o(1). For
this, note that the sets Sr partition the set Zd

m. The number of r for which Sr has a non-
empty intersection with Z

d
m is less than dm2. By averaging, for each m there exists an r

for which |Sr| ≥ |Zd
m|/(dm2) = md−2/d. Setting d = √

log p and m = 2
√

log p−1 ensures

that (2m − 1)d ≤ p and that md−2/d = (2
√

log p−1)(
√

log p−2)/
√

log p ≥ p1−O(1/
√

log p).
We set r∗ as the first r for which |Sr| ≥ md−2/d. We can compute r∗ and 〈Sr∗〉 in time
polynomial in p. Thus, setting A = 〈Sr∗〉 satisfies all the requirements.

We point out that the construction in the proof of Lemma 5 guarantees that the
cardinality of the set A is at least p1−O(1/

√
log p) rather than just p1−o(1). By considering

a thin annulus rather than a sphere for the set S, Elkin [2011] and Green and Wolf
[2010] recently further improved the cardinality by a factor of the form logc p for some
positive constant c. However, the analysis becomes more complicated and Behrend’s
already gives us more than we need.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their suggestions, and the following people for
discussions, comments, pointers to the literature, and guidance: Matt Anderson, Albert Atserias, Kord
Eickmeyer, Martin Grohe, Johan Håstad, Danny Hermelin, Daniel Lokshtanov, Dániel Marx, Moritz Müller,
Saket Saurabh, Mathias Schacht, Asaf Shapira, Luca Trevisan, Chris Umans, Magnus Wahlström, Thomas
Watson, Dalibor Zelený.

REFERENCES

Achlioptas, D. and Moore, C. 2007. Random k-SAT: Two moments suffice to cross a sharp threshold. SIAM
J. Comput. 36, 3, 740–762.

Achlioptas, D. and Peres, Y. 2004. The threshold for random k-SAT is 2k log 2 − O(k). J. Amer. Math. Soc. 17,
4, 947–973.

Alon, N. 2002. Testing subgraphs in large graphs. Rand. Struct. Algor. 21, 3–4, 359–370.
Alon, N., Fischer, E., Krivelevich, M., and Szegedy, M. 2000. Efficient testing of large graphs. Combinatorica

20, 4, 451–476.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

23:26 H. Dell and D. van Melkebeek

Alon, N., Kaufman, T., Krivelevich, M., and Ron, D. 2008. Testing triangle-freeness in general graphs. SIAM
J. Disc. Math. 22, 2, 786–819.

Alon, N. and Shapira, A. 2004. Testing subgraphs in directed graphs. J. Comput. Syst. Sci. 69, 3, 354–382.
Alon, N. and Shapira, A. 2005. Linear equations, arithmetic progressions and hypergraph property testing.

Theory Comput. 1, 1, 177–216.
Alon, N. and Shapira, A. 2006. A characterization of easily testable induced subgraphs. Combinat. Probab.

Comput. 15, 6, 791–805.
Arora, S. and Barak, B. 2009. Computational Complexity: A Modern Approach. Cambridge University Press,

New York.
Behrend, F. A. 1946. On sets of integers which contain no three terms in arithmetic progression. Proc. Nat.

Acad. Sci. 32, 12, 331–332.
Binkele-Raible, D., Fernau, H., Fomin, F. V., Lokshtanov, D., Saurabh, S., and Villanger, Y. 2012. Kernel(s)

for problems with no kernel: On out-trees with many leaves. ACM Trans. Algor. 8, 4, 38.
Bodlaender, H. L., Downey, R. G., Fellows, M. R., and Hermelin, D. 2009a. On problems without polynomial

kernels. J. Comput. Syst. Sci. 75, 8, 423–434.
Bodlaender, H. L., Thomassé, S., and Yeo, A. 2009b. Kernel bounds for disjoint cycles and disjoint paths.

In Proceedings of the 17th Annual European Symposium on Algorithms (ESA’09). Lecture Notes in
Computer Science, vol. 5757, Springer, 635–646.

Buhrman, H. and Hitchcock, J. M. 2008. NP-hard sets are exponentially dense unless NP is contained in
coNP/poly. In Proceedings of the 23rd IEEE Conference on Computational Complexity (CCC’08). IEEE
Computer Society, 1–7.

Buss, J. F. and Goldsmith, J. 1993. Nondeterminism within P. SIAM J. Comput. 22, 3, 560–572.
Calabro, C., Impagliazzo, R., and Paturi, R. 2006. A duality between clause width and clause density for SAT.

In Proceedings of the 21st IEEE Conference on Computational Complexity (CCC’06). IEEE Computer
Society, 252–260.

Chandra, A. K., Furst, M. L., and Lipton, R. J. 1983. Multi-party protocols. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing (STOC’83). ACM, 94–99.

Chen, Y., Flum, J., and Müller, M. 2007. Lower bounds for kernelizations. Tech report TR07-137, Electronic
Colloquium on Computational Complexity (ECCC).

Chen, Y., Flum, J., and Müller, M. 2011. Lower bounds for kernelizations and other preprocessing proce-
dures. Theory Comput. Syst. 48, 4, 803–839.

Cook, S. A. 1971. The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing (STOC’71). ACM, 151–158.

Coppersmith, D. and Winograd, S. 1990. Matrix multiplication via arithmetic progressions. J. Symb.
Computat. 9, 3, 251–280.

Davie, A. M. and Stothers, A. J. 2013. Improved bound for complexity of matrix multiplication. Proc. Roy.
Soc. Edinburgh: Sect. A, Mathematics 143, 2, 351–369.

Dell, H. and Marx, D. 2012. Kernelization of packing problems. In Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’12). SIAM, 68–81.

Dinur, I. 2007. The PCP theorem by gap amplification. J. ACM 54, 3, 12.
Dom, M., Lokshtanov, D., and Saurabh, S. 2009. Incompressibility through colors and IDs. In Proceedings

of the 36th International Colloquium on Automata, Languages and Programming (ICALP’09). Lecture
Notes in Computer Science, vol. 5555, Springer, 378–389.

Downey, R. G. and Fellows, M. R. 1999. Parameterized Complexity. Springer New York.
Drucker, A. 2012. New limits to classical and quantum instance compression. In Proceedings of the 53rd

Annual Symposium on Foundations of Computer Science (FOCS’12). 609–618.
Elkin, M. 2011. An improved construction of progression-free sets. Israel J. Math. 184, 1, 93–128.
Erdős, P. and Rado, R. 1960. Intersection theorems for systems of sets. J. Lond. Math. Soc. 35, 85–90.
Fellows, M. R., Guo, J., Moser, H., and Niedermeier, R. 2011. A generalization of Nemhauser and Trotter’s

local optimization theorem. J. Comput. Syst. Sci. 77, 6, 1141–1158.
Flum, J. and Grohe, M. 2006. Parameterized Complexity Theory. Springer.
Fortnow, L. and Santhanam, R. 2011. Infeasibility of instance compression and succinct PCPs for NP.

J. Comput. Syst. Sci. 77, 1, 91–106.
Friedgut, E. and Bourgain, J. 1999. Sharp thresholds of graph properties, and the k-SAT problem. J. Amer.

Math. Soc. 12, 4, 1017–1054.
Goldreich, O. 2008. Computational Complexity: A Conceptual Perspective. ACM New York.

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

�

�

�

�

�

�

�

�

Satisfiability Allows No Nontrivial Sparsification 23:27

Goldreich, O., Goldwasser, S., and Ron, D. 1998. Property testing and its connection to learning and approx-
imation. J. ACM 45, 4, 653–750.

Green, B. and Wolf, J. 2010. A note on Elkins improvement of Behrends construction. In Additive Number
Theory, Springer, 141–144.

Guo, J. and Niedermeier, R. 2007. Invitation to data reduction and problem kernelization. SIGACT News
38, 1, 31–45.

Harnik, D. and Naor, M. 2010. On the compressibility of NP instances and cryptographic applications. SIAM
J. Comput. 39, 5, 1667–1713.

Håstad, J. and Wigderson, A. 2003. Simple analysis of graph tests for linearity and PCP. Rand. Struct. Algor.
22, 2, 139–160.

Hemaspaandra, L. A., Hoene, A., Naik, A. V., Ogihara, M., Selman, A. L., Thierauf, T., and Wang, J. 1995.
Nondeterministically selective sets. Int. J. Found. Comput. Sci. 6, 4, 403–416.

Impagliazzo, R., Paturi, R., and Zane, F. 2001. Which problems have strongly exponential complexity?
J. Comput. Syst. Sci. 63, 4, 512–530.

Karp, R. M. 1972. Reducibility among combinatorial problems. Complex. Comput. Computat. 43, 85–103.
Ko, K.-I. 1983. On self-reducibility and weak P-selectivity. J. Comput. Syst. Sci. 26, 2, 209–221.
Kratsch, S. 2012. Co-nondeterminism in compositions: A kernelization lower bound for a Ramsey-type prob-

lem. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12).
SIAM, 114–122.

Kratsch, S., Philip, G., and Ray, S. 2014. Point line cover: The easy kernel is essentially tight. In Proceedings
of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14). SIAM, 1596–1606.

Kratsch, S. and Wahlström, M. 2010. Preprocessing of min ones problems: A dichotomy. In Proceedings of the
37th Colloquium on Automata, Languages and Programming (ICALP’10). Lecture Notes in Computer
Science, vol. 6198, Springer, 653–665.

Kratsch, S. and Wahlström, M. 2013. Two edge modification problems without polynomial kernels. Disc.
Optim.

Krishnamoorthy, M. S. and Deo, N. 1979. Node-deletion NP-complete problems. SIAM J. Comput. 8, 4,
619–625.

Levin, L. A. 1973. Universal search problems (Russian: Universal’nye perebornye zadachi). Prob. Inf. Trans.
(Russian: Problemy Peredachi Informatsii) 9, 3, 265–266.

Lewis, J. M. and Yannakakis, M. 1980. The node-deletion problem for hereditary properties is NP-complete.
J. Comput. Syst. Sci. 20, 2, 219–230.

Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford, UK.
Ruzsa, I. Z. and Szemerédi, E. 1978. Triple systems with no six points carrying three triangles. In Combina-

torics (Proceedings of the 5th Hungarian Colloquium, Keszthely, 1976), Vol. II, Colloquia Mathematica
Societatis János Bolyai, vol. 18, North-Holland, Amsterdam, 939–945.

Salem, R. and Spencer, D. C. 1942. On sets of integers which contain no three terms in arithmetical progres-
sion. Proc. Nat. Acad. Sci. 28, 12, 561–563.

Stothers, A. J. 2010. On the complexity of matrix multiplication. Ph.D. thesis, University of Edinburgh.

Thomassé, S. 2010. A 4k2 kernel for feedback vertex set. ACM Trans. Algor. 6, 2, 32:1–32:8.
Vassilevska Williams, V. 2012. Multiplying matrices faster than Coppersmith–Winograd. In Proceedings of

the 44th Annual ACM Symposium on Theory of Computing (STOC’12). ACM, 887–898.
Wegener, I. 1987. The Complexity of Boolean Functions. B. G. Teubner, and John Wiley & Sons.
Yap, C.-K. 1983. Some consequences of non-uniform conditions on uniform classes. Theoret. Comput. Sci. 26,

3, 287–300.

Received July 2010; revised February 2014; accepted April 2014

Journal of the ACM, Vol. 61, No. 4, Article 23, Publication date: July 2014.

