Satisfiability Allows No Nontrivial Sparsification
Unless The Polynomial-Time Hierarchy Collapses

Holger Dell”

Humboldt University of Berlin, Germany
dell@informatik.hu-berlin.de

ABSTRACT

Consider the following two-player communication process to
decide a language L: The first player holds the entire input x
but is polynomially bounded; the second player is computa-
tionally unbounded but does not know any part of x; their
goal is to cooperatively decide whether x belongs to L at
small cost, where the cost measure is the number of bits of
communication from the first player to the second player.

For any integer d > 3 and positive real € we show that if
satisfiability for n-variable d-CNF formulas has a protocol of
cost O(n?¢) then coNP is in NP /poly, which implies that
the polynomial-time hierarchy collapses to its third level.
The result even holds when the first player is conondeter-
ministic, and is tight as there exists a trivial protocol for
e = 0. Under the hypothesis that coNP is not in NP /poly,
our result implies tight lower bounds for parameters of in-
terest in several areas, namely sparsification, kernelization
in parameterized complexity, lossy compression, and proba-
bilistically checkable proofs.

By reduction, similar results hold for other NP-complete
problems. For the vertex cover problem on n-vertex d-
uniform hypergraphs, the above statement holds for any in-
teger d > 2. The case d = 2 implies that no NP-hard vertex
deletion problem based on a graph property that is inher-
ited by subgraphs can have kernels consisting of O(k?™¢)
edges unless coNP is in NP /poly, where k denotes the size
of the deletion set. Kernels consisting of O(k?) edges are
known for several problems in the class, including vertex
cover, feedback vertex set, and bounded-degree deletion.

Categories and Subject Descriptors

F.1.3 [Computation by Abstract Devices|: Complexity
Measures and Classes—Relations among complexity classes

*Supportcd by the Deutsche Forschungsgemeinschaft within the re-
search training group “Methods for Discrete Structures” (GRK 1408).
TRcscarch mostly done while visiting the Humboldt University of

Berlin. Partially supported by the Humboldt Foundation and by NSF
award CCF-0728809.

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

STOC’10,June 5-8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

. T
Dieter van Melkebeek
University of Wisconsin-Madison, USA

dieter@cs.wisc.edu

General Terms
Algorithms, Theory

1. INTRODUCTION

Satisfiability of Boolean formulas constitutes one of the
most central problems in computer science. It has attracted
a lot of applied and theoretical research because of its im-
mediate relevance in areas like Al and verification and as
the seminal NP-complete problem. Of particular interest is
d-SAT, the satisfiability problem for d-CNF formulas, which
is NP-complete for any integer d > 3 [15, 35, 31].

In this paper we investigate the complexity of d-SAT and
other NP-complete problems in a communication setting
that captures several transformations studied in the theory
of computing. Assuming the polynomial-time hierarchy does
not collapse, we show that a trivial communication protocol
is essentially optimal for d-SAT. Under the same hypothesis
the result implies tight lower bounds for parameters of in-
terest in several areas. We first discuss those areas and then
state our result for d-SAT.

Sparsification.

The satisfiability of d-CNF formulas chosen by uniformly
at random picking m clauses out of all possible clauses on n
variables seems to exhibit a phase transition as a function of
the ratio m/n. We know that the probability of satisfiability
jumps from almost zero to almost one when the ratio m/n
crosses a very narrow region around 2¢In2, and the exis-
tence of a single threshold point is conjectured [25, 1, 2].
Experiments also suggest that known SAT solvers have the
hardest time on randomly generated instances when the ra-
tio m/n lies around the threshold, and in some cases rigorous
analyses corroborate the experiments.

Nevertheless, from a complexity-theoretic perspective
these results fall short of establishing sparse formulas as
the hardest instances. This is because formulas that ex-
press problems like breaking random RSA instances exhibit
a lot of structure and therefore have a negligible contribu-
tion to the uniform distribution. An interesting complexity-
theoretic formalization would be a reduction from arbitrary
formulas to formulas on the same number of variables that
are sparse. Impagliazzo et al. [30] developed such reduc-
tions but they run in subexponential time. In polynomial
time we can trivially reduce a d-CNF formula to one with
m = O(n%) clauses. Since there are only 2¢ - () = O(n%)
distinct d-clauses on n variables, it suffices to remove du-
plicate clauses. Is there a polynomial-time reduction that



maps a d-CNF formula on n variables to one on n variables
and m = O(n?"°) clauses for some positive constant €?

Kernelization.

Parameterized complexity investigates the computational
difficulty of problems as a function of the input size and
an additional natural parameter, k, which often only takes
small values in instances of practical interest. A good exam-
ple — and one we will return to soon — is deciding whether a
given graph has a vertex cover of size at most k. The holy
grail in parameterized complexity are algorithms with run-
ning times of the form O(f(k)-s®) on instances of size s and
parameter k, where f denotes an arbitrary computable func-
tion and c¢ a constant. Kernelization constitutes an impor-
tant technique for realizing such running times: Reduce in
time polynomial in s to an instance of size bounded by some
computable function g of the parameter k only, and then run
a brute-force algorithm on the reduced instance; the result-
ing algorithm has a running time of the form O(s® + f(k)).
In order to obtain good parameterized algorithms the func-
tions f and g should not behave too badly, which justifies
the quest for kernels of polynomial or smaller size g(k).

The number of variables n forms a natural parameter for
satisfiability. In the case of d-CNF formulas, n is effectively
polynomially related to the size of the input, which makes
the existence of kernels of polynomial size trivial. Neverthe-
less, the quest for a small kernel is a relaxation of the quest
for sparsification in polynomial time. Eliminating duplicate
clauses yields a kernel of bitlength O(nd logn). Does sat-
isfiability of n-variable d-CNF formulas have kernels of size
O(n=9)?

Lossy Compression.

Harnik and Naor [28] introduced a notion of compression
with the goal of succinctly storing instances of computa-
tional problems for resolution in the future, where there may
be more time and more computational power available. The
compressed version need not be an instance of the original
problem, and the original instance need not be recoverable
from the compressed version. The only requirement is that
the solution be preserved. In the case of decision problems
this simply means the yes/no answer. In analogy to im-
age compression one can think of the Harnik-Naor notion
of compression as a “lossy compression”, where the only as-
pect of the scenery that is guaranteed not to be lost is the
solution to the problem.

Harnik and Naor applied their notion to languages in NP
and showed the relevance to problems in cryptography when
the compression is measured as a function of the bitlength
of the underlying witnesses. In the case of satisfiability
the latter coincides with the number of variables of the for-
mula. This way lossy compression becomes a relaxation of
the notion of kernelization — we now want a polynomial-
time mapping reduction to any problem, rather than to
the original problem, such that the reduced instances have
small bitlength as a function of n. For d-CNF formulas
bitlength O(n?) is trivially achievable — simply map to the
characteristic vector that for each possible d-clause on n vari-
ables indicates whether it is present in the given formula.
Can we lossily compress to instances of bitlength O(n?=¢)?

Probabilistically Checkable Proofs.

A somewhat different question deals with the size of prob-

abilistically checkable proofs (PCPs). A PCP for a lan-
guage L is a randomized proof system in which the verifier
only needs to read a constant number of bits of the proof
in order to verify that a given input = belongs to L. Com-
pleteness requires that for every input x in L there exists a
proof which the verifier accepts with probability one. Sound-
ness requires that for any input = outside of L no proof can
be accepted with probability above some constant thresh-
old less than one. For satisfiability of Boolean formulas,
Dinur [18] constructed PCPs of bitlength O(s - poly log s),
where s denotes the size of the formula. For d-CNF for-
mulas on n variables, Dinur’s construction yields PCPs of
bitlength O(n? - polylogn). On the other hand, standard
proofs only contain n bits. Do n-variable d-CNF formulas
have PCPs of bitlength O(n?=)?

Our Results for Satisfiability.

We give evidence that the answer to all four of the above
questions is negative: If any answer is positive then coNP is
in NP/poly. The latter is considered unlikely as it means the
existence of a nonuniform polynomial-time proof system for
tautologies, or equivalently, that coNP has polynomial-size
nondeterministic circuits, and implies that the polynomial-
time hierarchy collapses to its third level [40].

We obtain those statements as corollaries to a more gen-
eral result, in which we consider the following communica-
tion process to decide a language L.

Definition 1 (Oracle Communication Protocol). An

oracle communication protocol for a language L is a com-
munication protocol between two players. The first player
is given the input x and has to run in time polynomial in
the length of the input; the second player is computationally
unbounded but is not given any part of x. At the end of
the protocol the first player should be able to decide whether
x € L. The cost of the protocol is the number of bits of
communication from the first player to the second player.

We often refer to the second player as the oracle. Note that
the bits sent by the oracle do not contribute towards the
cost. By default the players in an oracle communication
protocol are deterministic, but one can consider variants in
which one or both players are randomized, nondeterministic,
etc.

Satisfiability of n-variable d-CNF formulas has a trivial
protocol of cost O(n?). The following result implies that
there is no protocol of cost O(n?~¢) unless the polynomial-
time hierarchy collapses. In fact, the result even holds when
the first player is conondeterministic, i.e., when the first
player can have multiple valid moves to choose from in any
given step, possibly leading to different conclusions about
the satisfiability of a given input formula ¢, but such that
(1) if ¢ is satisfiable then every valid execution comes to that
conclusion, and (ii) if ¢ is not satisfiable then at least one
valid execution comes to that conclusion.

Theorem 1. Let d > 3 be an integer and € a positive real.
If coNP Z NP /poly, there is no protocol of cost O(n?~¢) to
decide whether an n-variable d-CNF formula is satisfiable,
even when the first player is conondeterministic.

The corollaries about sparsification, kernelization, and lossy
compression follow by considering deterministic single-round
protocols in which the polynomial-time player acts as a map-
ping reduction, sends the reduced instance to the computa-
tionally unbounded player, and the latter answers this query



as a membership oracle. The corollary about probabilisti-
cally checkable proofs follows by considering a similar single-
round protocol in which the first player is conondeterminis-
tic. Note that Theorem 1 can handle more general reduc-
tions, in which multiple queries are made to the oracle over
multiple rounds. The above corollaries can be strengthened
correspondingly. In fact, Theorem 1 is even more general
as it allows the oracle to play a more active role that goes
beyond answering queries from the polynomial-time player.

Our Results for Other NP-Complete Problems.

By reducibility the lower bounds from Theorem 1 carry
over to other parameterized NP-complete problems, where
the tightness depends on how the reduction affects the pa-
rameterization. In fact, we derive Theorem 1 from a simi-
lar result for the vertex cover problem on d-uniform hyper-
graphs.

Theorem 2. Let d > 2 be an integer and € a positive real.
If coNP ¢ NP /poly, there is no protocol of cost O(n®~¢) to
decide whether a d-uniform hypergraph on n wvertices has a
vertex cover of at most k vertices, even when the first player
is conondeterministic.

The cases of Theorem 2 with d > 3 are equivalent to the
corresponding cases of Theorem 1. Note, though, that The-
orem 2 also holds for d = 2, i.e., for standard graphs.

Similar to Theorem 1, Theorem 2 can be interpreted in
terms of (graph) sparsification, kernelization, lossy compres-
sion, and probabilistically checkable proofs. Regarding ker-
nelization, Theorem 2 has an interesting implication for the
vertex cover problem parameterized by the size of the vertex
cover — one of the prime examples of a parameterized prob-
lem that is NP-hard but fixed-parameter tractable. Ker-
nelizations for this problem have received considerable at-
tention. For standard graphs S. Buss [11] came up with a
kernelization avant la lettre. He observed that any vertex of
degree larger than k must be contained in any vertex cover
of size k, should it exist. This gives rise to a kernelization
with O(k?) vertices and O(k?®) edges. Subsequently, several
researchers tried to reduce the size of the kernel. Various ap-
proaches based on matching, linear programming, and crown
reductions (see [27] for a survey) led to kernels with O(k)
vertices, but the resulting kernels are all dense. It remains
open to find kernels with O(k?~¢) edges. Since k < n, the
case d = 2 of Theorem 2 implies that such kernels do not
exist unless the polynomial-time hierarchy collapses.

In fact, a similar result holds for a wide class of prob-
lems known as vertex deletion problems. For a fixed graph
property II, the corresponding vertex deletion problem asks
whether removing at most k vertices from a given graph G
can yield a graph that satisfies II. A host of well-studied
specific problems can be cast as the vertex deletion problem
corresponding to some graph property Il that is inherited
by subgraphs. Examples besides the vertex cover problem
include the feedback vertex set problem and the bounded-
degree deletion problem (see Section 5 for the definitions of
these problems and for more examples).

If only finitely many graphs satisfy II or if all graphs sat-
isfy II, the vertex deletion problem is trivially decidable in
polynomial time. For all other graph properties II that are
inherited by subgraphs, Lewis and Yannakakis [36] showed

that the problem is NP-hard.! They did so by constructing
a mapping reduction from the vertex cover problem. By im-
proving their reduction such that it preserves the size of the
deletion set up to a constant factor, we obtain the following
result.

Theorem 3. Let 11 be a graph property that is inherited
by subgraphs, and is satisfied by infinitely many but not all
graphs. Let € be a positive real. If coNP ¢ NP /poly, there
is no protocol of cost O(k*~¢) for deciding whether a graph
satisfying I1 can be obtained from a given graph by removing
at most k vertices, even when the first player is conondeter-
ministic.

Theorem 3 implies that problems like feedback vertex set
and bounded-degree deletion do not have kernels consisting
of O(k*™¢) edges unless the polynomial-time hierarchy col-
lapses. For both problems the result is tight in the sense
that kernels with O(k?) edges exist. For feedback vertex set
we argue that Thomassé’s recent kernel [39] does the job;
for bounded-degree deletion a kernel with O(k?) edges was
known to exist [21].

Techniques and Related Work.

At a high level our approach refines the framework devel-
oped by Bodlaender et al. [9] to show that certain parameter-
ized NP-hard problems are unlikely to have kernels of poly-
nomial size. Harnik and Naor [28] realized the connection
between their notion of lossy compression and kernelization
and PCPs for satisfiability of general Boolean formulas, and
Fortnow and Santhanam [24] proved the connection with the
hypothesis coNP € NP /poly in the superpolynomial setting.
Several authors subsequently applied the framework in that
setting [14, 10, 19, 22, 32, 33].

We develop the first application of the framework in the
polynomial setting, i.e., to problems that do have kernels
of polynomial size, or more generally, oracle communication
protocols of polynomial cost. Under the same hypothesis we
show that problems like d-SAT and vertex cover do not have
protocols of polynomial cost of degree less than the best
known. In order to obtain these tight results, a crucial new
ingredient is the use of high-density subsets of the integers
without nontrivial arithmetic progressions of length three.

Our main result, Theorem 2, deals with the vertex cover
problem on d-uniform hypergraphs, or equivalently, with the
clique problem on such graphs, parameterized by the number
of vertices. The proof consists of two steps.

Step 1. Assuming the clique problem on n-vertex d-uniform
hypergraphs has a protocol of cost O(n®) for some con-
stant ¢ < d, some NP-complete language L has the
following property: The problem OR(L) of deciding
whether at least one of ¢ given instances x1,z2,...,%:
is in L has a protocol of cost O(tlogt) for instances
where t is a sufficiently large polynomial in s =
maxi<;<t |:EZ|

Step 2. Any language L with that property is in coNP /poly.

Combining the two steps we conclude that the hypothesis of
Step 1 fails unless coNP C NP /poly.

Since the clique problem on d-uniform hypergraphs is NP-
complete for any integer d > 2, without loss of generality we

'n fact, Lewis and Yannakakis showed this to be the case even for
graph properties that are inherited by ‘nduced subgraphs only.



can take L in Step 1 to be this language. In order to obtain a
low-cost protocol for OR(L) it suffices to reduce the question
whether at least one of ¢ given graphs has a clique of a
given size into a single instance of the clique problem on a
d-uniform hypergraph with few vertices n, and then run the
presumed protocol of cost O(n°) on the latter hypergraph.

As observed by Harnik and Naor [28], the disjoint union of
the given hypergraphs provides such a reduction. However,
the number of vertices is n = s - ¢, so even for ¢ = 1 the
cost of the resulting protocol for OR(L) is w(tlogt), which
is too much for Step 2. As a critical piece in our proof,
we present a reduction that works for an NP-hard subset of
clique instances and only needs n = s-t1/4+°() yertices. The
cost of the resulting protocol for OR(L) then goes down to
O(n®) = O((s-zﬁl/‘H‘)(l))C)7 which is O(tlog t) for sufficiently
large polynomials t(s) as ¢ < d.

Our reduction hinges on a graph packing that is based
on high-density subsets of the integers without nontrivial
arithmetic progressions of length three. After we developed
our construction, we have learned about other applications
of those sets in the theory of computing, including three-
party communication protocols [13], the asymptotically best
known algorithm for matrix multiplication [16], the sound-
ness analysis of graph tests for linearity [29], and lower
bounds for property testing [4, 3, 8, 6, 5, 7]. The latter
two applications as well as ours implicitly or explicitly rely
on a connection due to Ruzsa and Szemerédi [37] between
these subsets and dense three-partite graphs whose edges
partition into triangles and that contain no other triangles.
The graph packing we develop is most akin to a construction
by Alon and Shapira [7] in the context of property testing.
We refer to Section 4 for a more detailed discussion of the
relationships.

Step 2 shows that whenever OR(L) has a cheap protocol,
the complement of L has short witnesses that can be verified
efficiently with the help of a polynomial-size advice string.
We refer to Step 2 as the Complementary Witness Lemma.
It involves a refined analysis and generalization of a result by
Fortnow and Santhanam [24] that establishes the case where
the protocol implements a mapping reduction to instances of
bitlength bounded by some fixed polynomial in s. We ana-
lyze what happens for mapping reductions without the latter
restriction. We also observe that the argument generalizes
to our oracle communication protocol setting. Our applica-
tions of Theorem 1 only use oracle communication protocols
that implement mapping or general reductions. However,
the setting of oracle communication protocols is more natu-
ral and allows us to prove known results in a simpler way.

Organization.

We review some preliminaries in Section 2. Section 3 con-
tains the proof of the main result (Theorem 2) following the
two-step approach outlined above, and fleshes out the first
step modulo the packing construction. We develop the lat-
ter in Section 4. Section 5 expands on the implications for
satisfiability (Theorem 1 and its corollaries) and for vertex
deletion problems (Theorem 3). We provide the intuition
underlying our results and the most important formalities
here, but refer to [17] for more discussion and omitted proofs.

2. PRELIMINARIES
The OR of a language L is the language OR(L) that con-

sists of all tuples (x1, ..., ) for which there is an ¢ € [¢] with
z; € L. A mapping reduction, or <P, -reduction, from L to L’
is a polynomial-time mapping R from {0,1}" to {0,1}" such
that R(z) € L' if and only if z € L. A kernelization of a pa-
rameterized problem (L, k) consisting of a language L and a
parameterization k : {0,1}* — N is a <! -reduction from L
to itself that maps instances with parameter k to instances
of bitlength at most g(k) for some function g independent
of the input size.

A d-CNF formula on the variables x1, ..., x, is a conjunc-
tion of clauses where a clause is a disjunction of exactly d
literals, i.e., the variables z; and their negations Z;. We
denote by d-SAT the problem of deciding whether a given
d-CNF formula has at least one satisfying assignment, i.e.,
a truth assignment to its variables that makes the formula
evaluate to true.

A hypergraph G = (V(G), E(G)) consists of a finite set
V(Q) of vertices and a set E(G) of subsets of V(G), the
(hyper)edges. A hypergraph is d-uniform if every edge has
size exactly d. A wertex cover of G is a set S C V(G) that
contains at least one vertex from every edge of GG, and d-
VERTEX COVER is the problem of deciding whether, for a
given d-uniform hypergraph G and integer k, there exists a
vertex cover of G of size at most k. Similarly, a clique of G
is a set S C V(G) all of whose subsets of size d are edges
of GG, and d-CLIQUE is the problem of deciding whether, for
given (G, k), there exists a clique of G of size at least k. The
two problems are dual to each other, in the sense that G,
the d-uniform hypergraph obtained from G by flipping the
presence of all edges of size d, has a clique of size k if and
only if G has a vertex cover of size n — k. Note that this
transformation preserves the number of vertices.

3. MAIN THEOREM

In this section we establish Theorem 2 — that d-VERTEX
COVER has no oracle communication protocol of cost
O(n®~¢) for any positive constant e unless coNP C NP /poly,
where n represents the number of vertices of the d-uniform
hypergraph. For ease of exposition we actually develop the
equivalent result for d-CLIQUE rather than for d-VERTEX
CoOVER. Theorem 2 then follows by hypergraph comple-
mentation.

We follow the two-step approach outlined in the introduc-
tion. In the first step we use a presumed low-cost protocol
for d-CLIQUE to devise a low-cost protocol for the OR of
some NP-complete language L. We do so by first translat-
ing the given instance of OR(L) into an equivalent instance
of d-CLIQUE with few vertices, and then running the pre-
sumed low-cost protocol for d-CLIQUE on that instance.

The choice of the NP-complete language L does not mat-
ter. For convenience we pick it to be 3-SAT. Thus, given ¢
3-CNF formulas @1, . .., ¢+, we need to construct a d-uniform
hypergraph G on few vertices n and an integer k such that
at least one of the ;’s is satisfiable if and only if G has a
clique of size at least k. We first apply a standard trans-
lation of the ¢ individual 3-SAT-instances o1, ..., ¢, say of
size s, into equivalent d-CLIQUE-instances consisting of d-
uniform hypergraphs Gi,...,G: on 3s vertices each, such
that G; has a clique of size s if and only if ¢, is satisfiable.
All that is left then is to turn these ¢ instances into a single
instance of d-CLIQUE which is positive if and only if at least
one of the ¢ instances is. If we take GG as the disjoint union
of the G;’s, then G is a d-uniform hypergraph that has a



clique of size s if and only if at least one of the G;’s has a
clique of size s. However, this G contains n = s - t vertices,
which is too many for our purposes. In order to do better,
we need to pack the graphs G; more tightly while maintain-
ing the properties required of the reduction. The following
almost-optimal packing of cliques is the critical ingredient in
our construction and allows us to achieve the almost-optimal
lower bounds given in Theorem 2.

Lemma 1 (Packing Lemma). For any integers s > d > 2
and t > 0 there exists a d-uniform hypergraph P on
O(s- max(s7t1/d+°(1))) vertices such that

(i) the hyperedges of P partition into t cliques K1, ..., Ky
on s vertices each, and

(i) P contains no cliques on s vertices other than the K;’s.

Furthermore, for any fixed d, the hypergraph P and the K;’s
can be constructed in time polynomial in s and t.

Condition (i) in Lemma 1 formalizes the notion of a pack-
ing. The part that P contains the ¢ cliques K; ensures the
completeness of the reduction, i.e., that G has a clique of
size s if at least one of the G;’s does. The part that the K;’s
are edge-disjoint and condition (ii) guarantee the soundness
of the reduction, i.e., that G has a clique of size s only if at
least one of the G;’s does.

We defer the proof of Lemma 1 to Section 4. Using it as
sketched above we obtain the following reduction.

Lemma 2. For any integer d > 2, there is a <b,-reduction
from OR(3-SAT) to d-CLIQUE that maps t-tuples of instances
of bitlength s each to instances on O(s . max(s7t1/d+°(1)))
vertices.

Proof. Let ¢1,...,p: be the t instances of 3-SAT. Without
loss of generality, assume that each formula has exactly s
clauses, each consisting of a sequence of 3 literals. Let P
and Ki,..., K; be the hypergraphs provided by Lemma 1.
Along the lines of the standard reduction from 3-SAT to 2-
CLIQUE [31], we first translate the 3-CNF formulas ¢; into
d-uniform hypergraphs G; on the vertex sets V(K;) x [3].
For each i, we identify the elements of V(K;) x [3] with
(positions of) literals of ¢;: The first component selects a
clause from ¢; and the second component selects a literal
from the clause. We let G; be the d-uniform hypergraph
with as edges all subsets e C V(K;) X [3] of size d such
that no two elements of e correspond to the same clause ;
or represent complementary literals. Note that each such e
induces a satisfying assignment of the conjunction of the d
clauses touched by e, and that G; has a clique of size s if
and only if ¢; is satisfiable.

Let G be the union of the G;’s, that is, the graph with
V(G) = Usepy V(Gi) € V(P)x[3] and B(G) = U,y E(Gh)-
If ¢; has a satisfying assignment, then G; has a c]lique of
size s and so has G. For the other direction, let K be a
clique of size s in G. The projection K’ of K onto the first
component is a clique of size s in P. By property (ii) of
Lemma 1, K’ = K; for some i € [t]. Moreover, by prop-
erty (i) of Lemma 1, the projections of E(G;) and E(G;)
for j # i are disjoint. It follows that K is a clique of size s
in G;, and therefore ¢; is satisfiable.

Thus, (G,s) € d-CLIQUE if and only if (¢1,...,¢:) €
OR(3-SAT). Since G and s are computable in time poly-
nomial in the bitlength of (¢i1,...,¢:) and |[V(G)| <

3IV(P)| < O(s- max(&151/‘“"(1)))7 we have established the
<P -reductions claimed in Lemma 2. n

Lemma 2 represents the essence of the first step of the
proof of Theorem 2 — obtaining a low-cost protocol for
OR(3-SAT) out of a low-cost protocol for d-CLIQUE. The
second step shows in general how to use a low-cost protocol
for OR(L) to build a proof system with advice for L. That
step is captured in the following lemma.

Lemma 3 (Complementary Witness Lemma). Let L
be a language and t : N — N\ {0} be polynomially bounded
such that the problem of deciding whether at least one out
of t(s) inputs of length at most s belongs to L has an or-
acle communication protocol of cost O(t(s)logt(s)), where
the first player can be conondeterministic. Then L €
coNP /poly.

The proof and further discussion of Lemma 3 can be found
in [17]. Theorem 2 follows by combining Lemma 2 with
Lemma 3.

4. THE PACKING LEMMA

In this section we establish Lemma 1, which is a critical
ingredient in the proof of Theorem 2. We first develop the
construction for the case d = 2, i.e., for standard graphs, and
then show how to generalize it to d-uniform hypergraphs for
arbitrary d > 2. We also discuss the relationship of our
construction to earlier ones.

Our Construction.
We need to construct a graph P on few vertices such that

(i) the edges of P partition into ¢ cliques K1,...,K: on s
vertices each, and

(ii) P contains no other cliques on s vertices.

We first focus on realizing condition (i) and then see how to
modify the construction to also realize (ii).

We construct P as an s-partite graph and think of the s
partitions as the columns of a two-dimensional array of ver-
tices, say of size p by s. Each of the K;’s then contains ex-
actly one vertex from each of the s columns. Condition (i)
expresses that P is a packing of the K;’s. The trivial packing
consists of the disjoint union and requires p = ¢ rows, result-
ing in s - t vertices in total. The trivial packing is wasteful
because it leaves many of the potential edges unused. In
an ideal packing each of the p? potential edges between two
columns of the array are assigned to some K;. This would
only require a number of rows p = v/t and therefore s - \/%
vertices. We can realize such a tight packing by picking the
vertex of K; in column j as the value of j under a hash func-
tion h; from a minimum 2-universal family. If p is a prime
at least s, we can identify the rows as well as the columns
with elements of F, and use the family of linear functions
over F,. More precisely, we construct P on the vertex set
V(P) = [s] x Fp as the union of the ¢ cliques K; on the
vertex sets V(K;) = {(J, hi(3)) | j € [s]}, where h; is a linear
function over F, uniquely associated with K;. See Figure la.
Note that there are p? distinct linear functions h; over Fp,
so we can accommodate that many cliques K;. Moreover,
since two points define a line, every edge of P is contained
in exactly one of the K;’s. For arbitrary values of s and ¢,



Y
Y
azfﬁ+b2 0
h 777777777 |
i(s) > ~ -
hi() b= o “°? v
‘ e I | X& ° Q’N I
. I I o4 I
hi(1) |« | | | | |
L \' \; x L L - L > z
1 J o J oJ+1lj+2

Figure 1: (a) The placement of one of the K;’s. (b) Triangle
on three consecutive abscissae.

we can pick p to be the first prime p > max(s, v/1), resulting
in a packing with O(s - max(s, v/f)) vertices.

Note that this P is in fact a complete s-partite graph
and therefore fails to satisfy condition (ii) miserably — every
clique of size s that has one vertex from each column is
present in P, which is many more than just the K;’s. In
order to remedy that problem, let us analyze the cliques of
size s in P more closely.

Let K denote a clique of size s in P. Each of the s columns
of P has to contain exactly one vertex of K, i.e., there exists
a function h : [s] — Fp, such that V(K) = {(j, h())) | j € [s]}-
We would like to ensure that K coincides with one of the
cliques K;, or equivalently, that the function h coincides
with one of the linear functions h;.

Consider three consecutive columns, j, j + 1, and j + 2,
and the triangle that K induces between them — see Fig-
ure 1b, where each edge is labeled by the linear function h;
defining the clique K; to which the edge belongs. We claim
that the highest-order coefficients of those linear functions
have to form an arithmetic progression. This follows by con-
sidering the two paths in Figure 1b that go from the vertex
in column j to the one in column j 4 2. The direct path
on top involves an increase in y-value of 2a2, whereas the
indirect path on the bottom involves an increase in y of as
followed by an increase of ai. Since both paths end up at
the same point, we have that 2a2 = a1 + as, or equiva-
lently, that as — a2 = a2 — a1, or yet equivalently, that the
sequence a1, a2, a3 forms an arithmetic progression. If we
restrict the highest-order coefficients of the linear functions
to come from a subset A C F, that contains no nontriv-
ial arithmetic progressions of length three, the arithmetic
progression ai,az,as has to be trivial, i.e., a1 = a2 = as.
The latter implies that the three lines in Figure 1b coincide.
As this implication holds for all choices of three consecutive
columns, we conclude that all vertices of K lie on a single
line defined by one of the h;’s, as we wanted.

Of course, the additional restriction on the highest-order
coefficients means that we need to choose p larger. However,
we only need to increase p slightly thanks to the existence
of efficiently constructible subsets A C F, of high density
that contain no nontrivial arithmetic progressions of length
three. For our purposes the following classical result from
additive combinatorics suffices.

Lemma 4 (AP3-Free Sets [38]). For every positive inte-
ger p there exists a subset A C Z, of size at least p*—°W
which contains mo mnontrivial arithmetic progressions of

length three. Furthermore, such a set A can be determined
in time polynomial in p.

The resulting graph P has s - p vertices where p =

O(max(s, \/1_51+0(1) ))-

This finishes the construction of the packing lemma for the
case of standard graphs. The generalization to d-uniform
hypergraphs follows by using polynomials of degree d — 1
instead of linear functions over F,. Their use guarantees
requirement (i) in Lemma 1. Regarding requirement (ii),
the following proof shows that the case d > 2 reduces to the
case d = 2. For arbitrary d > 2, we fulfill requirement (ii) by
restricting the coefficient of degree d—1 to a set that contains
no nontrivial arithmetic progressions of length three, namely
the set A C F,, determined in Lemma 4.

Proof (of Lemma 1). Let p be the smallest prime such that
p > sand |A]|-p?~! > t, where A denotes the set given by
Lemma 4. We have that p = O(max(s,tl/‘”o(l))) and can
compute p and the set A in time polynomial in s and ¢.

Let V(P) = [s] x F,. We consider polynomials of de-
gree at most d — 1 over F,, whose coefficient of 2%~ belongs
to A. Note that there are |A| - p?~! > ¢ such polynomi-
als. For ¢ € [t], let h; denote the ith such polynomial in
lexicographic order, and let K; be the complete d-uniform
hypergraph on vertex set V(K;) = {(j, hi(j)) |j € [s]}. We
define the d-uniform hypergraph P as the union of the ¢
cliques K;. The hypergraphs P and K; can be constructed
in time polynomial in s and ¢.

In order to argue property (i), it suffices to observe that
every hyperedge of P is contained in at most one of the K;’s.
This follows because the requirement that a given hyperedge
of P belongs to K; is equivalent to stipulating the value of h;
on d distinct values j € [s], which uniquely determines h; as
a polynomial of degree at most d — 1 over F,,, and therefore
determines 1.

In order to argue property (ii), we need to establish the
following for any function h : [s] — Fp: If for every subset
D C [s] of size d there exists an ¢ € [t] such that h and h;
agree on D, then there exists an ¢ € [¢] such that h and h;
agree on all of [s]. The property follows by applying the next
claim to successive values of j € [s — d], where g denotes
the polynomial h; which the hypothesis gives for the subset

D =[j,j +d\{k}.

Claim. For each k € [j,j + d], let gx be a polynomial of
degree at most d—1 such that the set of coefficients of degree
d—1 of the ¢&’s contains no nontrivial arithmetic progression
of length three. If for all k, ¢ € [j, 7 + d], the polynomials g,
and q; agree on [j,7 + d] \ {k, £}, then the polynomials g
are all the same.

We prove the claim by induction on d. We already ar-
gued the base case d = 2, captured by Figure 1b, earlier
in Section 4. For the inductive step, assume the claim holds
for d—1 and let us prove it for d. Let g;, ..., gj+4 be polyno-
mials as in the claim. For each k € [j, j +d — 1], define g, as
the difference quotient Ajiq4(qx), ie., q; : [§,7+d—1] = TF,
such that qi.(x) = (qx(z) — qr(j +d))/(x — j — d) for = €
[4,7 +d—1]. Note that g, is a polynomial of degree at most
d — 2 whose coefficient of degree d — 2 equals the coefficient
of g, of degree z%~!. Moreover, for k,£ € [j,j + d — 1], the
polynomials ¢, and ¢, agree on each = € [j,j+d— 1]\ {k, £}
because the polynomials ¢x and g¢ agree on both z and j+d.



Thus, by the induction hypothesis, all polynomials ¢}, are the
same. By the definition of q;, = A;14(qx) and the fact that
the polynomials g for k € [j,j + d — 1] agree on j + d, this
implies that the polynomials g, for k € [j,j + d — 1] are
all the same, say ¢. All that remains to show is that the
polynomial ¢;4+4 also coincides with ¢. The latter follows
because gj+q is a polynomial of degree at most d — 1 which
agrees with the polynomial ¢ of degree at most d—1 on all d
points in [, +d — 1]. =

Related Constructions.

After we developed our construction we learned about
similar applications of high-density subsets of the integers
without nontrivial arithmetic progressions of length three.

Back in 1976, Ruzsa and Szemerédi [37] constructed dense
three-partite graphs whose edges partition into triangles and
that contain no other triangles. Their construction corre-
sponds to the case (d,s) = (2,3) of our Packing Lemma,
and appears between any three consecutive columns of our
construction for d = 2 and general s. Our geometric deriva-
tion of the arithmetic progression condition 2as = a1 + as,
as captured in Figure 1b, may be new; all the derivations we
have found in the literature work by manipulating equations
in a — to us — less intuitive way.

Different aspects of the Ruzsa-Szemerédi construction
matter for the various applications we know of in the theory
of computing. For their soundness analysis of graph tests
for linearity, Hastad and Wigderson [29] use the interpreta-
tion that for each of the p points in the first column, the
triangles involving that point span an induced matching of
plfo(l) edges between the other columns.

Another application area is the lower bounds for testing
the graph property of being F-free, where F' is some fixed
graph. An e-tester for this property accepts all graphs that
are F-free, and rejects all graphs that are at least ¢ away
from being F-free, i.e., from which at least en? edges need
to be removed to make it F-free [26]. A strategy for prov-
ing lower bounds on the number of queries of such a tester
is to construct high-density graphs G with the following
properties: (i) the edges of G partition into copies of F,
and (ii) G contains few other copies of F' so the total num-
ber of copies of F' in G is significantly less than expected
in a random graphs of the same density as G [3]. Qualita-
tively, (i) implies that G is far from being F-free, and (ii)
implies that testers with few queries have a small probabil-
ity of detecting a violation of F-freeness on input G. Alon
and coauthors [3, 8, 6, 5, 7] constructed such graphs G for
various F' based on [37].

The requirements for our application are similar but not
identical to the ones for property testing. On the one hand
we only need to consider the cases where F' is a clique; on
the other hand the graphs G cannot contain any copy of F
other than those in which the edges partition. Our actual
construction is very similar to the one Alon and Shapira
develop in [7]. Their construction would also work for our
purposes. Our proof differs from theirs and makes the arith-
metic progression condition more transparent. Our con-
struction slightly improves? on theirs as we only restrict the
highest-order coefficient to the set A, whereas they restrict
all coefficients to that set.

2This allows us to relax the condition g(e) = max{m : (f(m))* > e}
in Lemma 4.1 of [7] to g(e) = max{m : f(m) > €}.

5. CONSEQUENCES OF MAIN THEOREM

Our lower bound for oracle communication protocols for d-
VERTEX COVER, Theorem 2, has two types of consequences.
The first are similar lower bounds for other parameterized
NP-complete problems, and follow from parameter-frugal re-
ductions from d-VERTEX COVER to these problems. The
second type involves lower bounds for parameters of interest
in settings that are captured by our oracle communication
model. In this section we first cover the consequences for
satisfiability and then those for vertex deletion problems.

5.1 Satisfiability

Theorem 1, our tight oracle communication lower bound
for d-SAT parameterized by the number of variables of the
formula, immediately follows from Theorem 2 and the next
lemma.

Lemma 5. For every d > 3, there is a <P, -reduction from
d-VERTEX COVER to d-SAT that maps d-uniform hyper-
graphs on n vertices to d-CNF formulas on O(n) variables.

The following corollary to Theorem 1 embodies the conse-
quences for sparsification, kernelization, and lossy compres-
sion.

Corollary 1. Let d > 3 be an integer. If coNP ¢ NP /poly,
then there is mo polynomial-time reduction from d-SAT to
any problem that makes at most O(nb) queries and only
queries strings of bitlength O(n®), where b and ¢ are any
nonnegative reals with b+ c < d.

In particular, under the hypothesis that coNP ¢ NP /poly,
Corollary 1 implies that <? -reductions cannot reduce the
density of n-variable d-SAT instances to O(n°) clauses for
any constant ¢ below the trivial ¢ = d. This is what the ti-
tle of the paper refers to, and contrasts the situation at the
subexponential-time level. The sparsification lemma of [30]
gives a reduction which, on input an n-variable d-CNF for-
mula and a rational € > 0, runs in time 2 - poly(n) and
makes 2" nonadaptive queries, each of which are d-CNF
formulas with at most f(d,€) - n clauses. The best known
bound on the sparsification constant f(d,e) is (d/¢)*¢ [12].
The sparsification lemma implies that sparse instances of d-
SAT are hard under subexponential-time reductions while
Corollary 1 suggests that such a result is impossible under
<P -reductions. Interpretations of Corollary 1 in terms of
kernelization and lossy compression follow along the same
lines.

Another consequence of Theorem 1 deals with the
size of probabilistically checkable proofs for satisfiability.
Recall that Dinur [18] constructed such PCPs of size
O(s - poly log s), where s denotes the bitlength of the for-
mula. Based on a connection due to Harnik and Naor be-
tween PCPs and lossy compression [28], Fortnow and San-
thanam [24] showed that satisfiability of Boolean formulas
does not have PCPs of size bounded by a polynomial in the
number of variables only, unless coNP C NP /poly. Plugging
in our lower bound for d-SAT into their argument shows that
d-SAT does not have g-query PCPs of size O(n%/9¢) unless
coNP C NP/poly. Since ¢ > 3 this bound is not tight. Using
a different argument and exploiting the fact that Theorem 1
also holds for conondeterministic protocols, we can close the
gap between the upper and lower bound.



Corollary 2. Let d > 3 be an integer and € a positive real.
If coNP ¢ NP /poly, then d-SAT does not have probabilisti-
cally checkable proofs of bitlength O(n®~¢) where n denotes
the number of variables of the input formula.

Proof. Suppose that d-SAT has PCPs of size s = O(n°) that
make g nonadaptive queries, where ¢ and ¢ are constants.
We claim that this implies a conondeterministic multi-valued
mapping reduction from d-SAT to ¢-SAT that maps formulas
on n variables to instances of bitlength O(n°logn) in the
following sense: There exists a nondeterministic polynomial-
time Turing machine M which outputs a ¢-CNF formula on
each computation path (where the formula may depend on
the input and the computation path) such that (i) if the
input is in d-SAT then every output is in ¢-SAT, and (ii)
otherwise at least one output is not in ¢-SAT. For ¢ < d,
Theorem 1 then shows that coNP C NP /poly.

All that remains is to argue the claim. For a given for-
mula ¢ on n variables, introduce s new variables y, namely
one for each bit position in a candidate PCP of size s. If the
PCP system reads at most g bits of the proof, each condi-
tion the PCP system checks can be expressed efficiently as
a ¢-CNF. By picking a condition according to the distribu-
tion of the PCP system and a clause of the corresponding g¢-
CNF formula uniformly at random, we obtain a polynomial-
time randomized procedure that produces a g-clause on the
variables y with the property that if ¢ is satisfiable, then
all g-clauses produced are simultaneously satisfiable, and
otherwise less than a constant fraction p < 1 is. By av-
eraging, the latter implies that for every collection of can-
didate PCPs of size s for an unsatisfiable input ¢, there
exists a produced g-clause that is violated by more than a
fraction 1 — p of the collection. Since there are 2° candi-
date PCPs of size s in total, this means that there is a set
of s/log(1/p) produced g-clauses that cannot be satisfied
by any PCP of size s. The reduction nondeterministically
guesses s/log(1/p) many g-clauses that are produced by the
PCP system on input ¢, and outputs their conjunction. The
conjunction has bitlength O(n°logn), is always satisfiable
if ¢ is, and is not satisfiable on at least one computation
path otherwise. n

5.2 \Vertex Cover and Deletion Problems

Theorem 2 yields applications for d-VERTEX COVER sim-
ilar to Corollaries 1 and 2 for d-SAT, using the number of
vertices n as the parameter. A more natural parameter for
d-VERTEX COVER is the size k of the vertex cover. We now
investigate the consequences of Theorem 2 for this parame-
terization, first for the case d = 2, i.e., for standard graphs,
and then for d-uniform hypergraphs for general d.

Result for Standard Graphs.

We consider the following generalization of the vertex
cover problem. Recall that a graph property is a predicate
on graphs that is invariant under graph isomorphism.

Definition 2 (Vertex Deletion). Fiz a graph property II.
The problem TI-VERTEX DELETION is to decide, for a given
graph G and integer k, whether there exists a subset S of at
most k vertices such that G\ S satisfies II.

We say that a graph property II is inherited by subgraphs
if whenever a graph G satisfies II, every subgraph of G also
satisfies II. The following natural graph problems are special

: }d vertices

: }d vertices

(2) (b)

Figure 2: (a) and (b) Replacement of an edge e = {u, v} in
the transformation from G to G’ in the proof of Lemma 6
for FEEDBACK VERTEX SET and BOUNDED-DEGREE DELE-
TION, respectively. (c¢) Connected component C’ that might
remain after removing a vertex cover S of GG from the naive
construction of G’, centered around a vertex c that has de-
gree 3 in G and does not belong to S.

cases of II-VERTEX DELETION for a graph property II that
is inherited by subgraphs.

o VERTEX COVER: Can we delete k vertices to destroy
all edges?

o FEEDBACK VERTEX SET: Can we delete k vertices to
destroy all cycles?

o BOUNDED-DEGREE DELETION: Can we delete k ver-
tices to get a maximum degree of d?

o NON-PLANAR DELETION: Can we delete k vertices to
make the graph planar?

o Can we delete k vertices to make the graph embeddable
into some surface?

o Can we delete k vertices to make the graph exclude
any fixed set of minors?

As mentioned in the introduction, if only finitely many
graphs satisfy II or if all graphs satisfy II, II-VERTEX DELE-
TION is trivially decidable in polynomial time. For all other
graph properties II that are inherited by subgraphs, The-
orem 3 implies that I[I-VERTEX DELETION does not have
kernels with O(k?~¢) edges unless coNP C NP /poly.

We now prove Theorem 3 by constructing a <P -reduction
from VERTEX COVER to II-VERTEX DELETION that blows
up the size of the deletion set by no more than a constant
factor. In order to develop some intuition, we first consider
the standard reduction from VERTEX COVER to FEEDBACK
VERTEX SET [31]. The reduction replaces every edge e of a
VERTEX COVER-instance G by a cycle of length three using
an additional new vertex, as depicted in Figure 2a. Let us
denote the resulting graph by G’. Since every cycle in G’
contains two vertices that are adjacent in G, every vertex
cover of G hits every cycle of G’ and therefore is a feed-
back vertex set of G'. Conversely, every feedback vertex set
of G’ contains a vertex of every triangle we created, and can
therefore be turned into a vertex cover of G of at most the
same size. Thus, G has a vertex cover of size k if and only
if G’ has a feedback vertex set of size k.

As another example, consider the case of BOUNDED-
DEGREE DELETION. In the known reduction from VERTEX
COVER to this problem [34], d new edges are attached to ev-
ery vertex of G (see Figure 2b). Removing any vertex cover



of G from G’ reduces the maximum degree to d. Vice versa,
any set that reduces the maximum degree in G’ to d can be
transformed into a vertex cover of G of at most the same
size.

Next consider the more general case in which the minimal
graphs that violate IT are connected. Generalizing the above
two examples we obtain G’ by replacing every edge of the
VERTEX COVER-instance G by a copy of a fixed connected
graph F violating II. We refer to F' as a “forbidden” graph
since no graph satisfying Il can contain F' as a subgraph.
Thus, any deletion set in G’ has to pick at least one vertex
from every copy of F. Projecting the deletion set back onto
the graph G yields a vertex cover of size no more than the
deletion set. This way we can guarantee the soundness of
the reduction — if G’ has a deletion set of size at most k
then G has a vertex cover of size at most k.

For the completeness of the reduction, we would like to
ensure that removing a vertex cover S of G from G’ leaves
a graph G’ \ S satisfying II. This is not automatically the
case because G’ \ S may contain components of the form
depicted in Figure 2c, where the bullets are vertices of G
and the hashed vertices are part of the vertex cover S (and
are therefore not part of G’ \ S) but the center vertex is
not. Such a component could contain a copy of F', in which
case G’ \ S would not satisfy II. However, by attaching
the copies of F' in an appropriate way we can make sure
that the connected components of G’ \ S are all “simpler”
than F'. Picking F' to be a “simplest” connected graph that
violates Il then does the job as long as all minimal graphs
violating Il are connected.

More generally, consider a graph F' violating II whose
most complex connected component C is as simple as pos-
sible among all graphs violating II. If F' has no other con-
nected component of the same complexity as C, then the
above construction still works, using a copy of C' to replace
every edge in G and including a copy of F'\ C for every
vertex of G.

In the most general case, where minimal graphs violat-
ing IT can have multiple components of the same complexity,
we use a slightly different construction that involves multiple
copies of G. The graph F' now becomes a “simplest” graph
for which the number of disjoint copies of F' that satisfies IT
is bounded. The reduction is no longer parameter preserv-
ing in general, but the parameter k' for G’ is still linearly
bounded by the parameter k£ for G. The latter ensures that
the lower bound for II-VERTEX DELETION is as strong as for
VERTEX COVER modulo a constant factor.

The simplicity measure we use is the same as in [36] but
the construction is a bit different. The construction in [36]
blows up the parameter k' to ©(nk). A straightforward
modification reduces k' to ©(k?). We further reduce k' to
O(k) using a matching argument.

Lemma 6. Let Il be a graph property that is inherited by
subgraphs, and is satisfied by infinitely many but not all
graphs. There is a <P -reduction from VERTEX COVER to
II-VERTEX DELETION that maps instances with parameter k
to instances with parameter O(k).

The proof of Lemma 6 can be found in [17]. Theorem 3 then
follows by combining Lemma 6 with Theorem 2.

Theorem 3 applies, among others, to FEEDBACK VERTEX
SET, another problem whose kernelization has received con-
siderable attention in parameterized complexity. Theorem 3

implies that FEEDBACK VERTEX SET does not have kernels
consisting of O(k*™¢) edges unless coNP C NP/poly. This
result is tight — a kernel with O(k?) edges follows from re-
cent work by Thomassé [39]. He constructs a kernel with
at most 4k vertices and maximum degree at most 4k. For
such an instance to be positive, the number of edges can be
no larger than 8k%. Indeed, suppose that S is a feedback
vertex set of G of size at most k. Then the graph induced
by V(G)\ S is a forest and has at most 4k edges. All other
edges of G are incident to a vertex of S. As the maximum
degree is no larger than 4k, at most 4k> edges are incident
to S. Summing up, G has at most 8k> edges. Thus, if G
has more than 8%2 edges, we can reduce to a trivial negative
instance; otherwise, we reduce to GG. This results in a kernel
with O(k?) edges.

Extension to Hypergraphs.

We now turn to vertex cover and related problems on
d-uniform hypergraphs. Since k < n, Theorem 2 implies
that d-VERTEX COVER does not have kernels with O(k?~¢)
edges unless coNP C NP/poly. We point out that kernels
with O(k%) edges exist for d-VERTEX COVER. This follows
from a generalization of Buss’ high-degree rule (see the intro-
duction) and a folklore application of the sunflower lemma
(see [23, chapter 9.1], for example). Recall that for a hyper-
graph G, a sunflower with heart h C V(G) and p petals is a
set of distinct edges whose pairwise intersection is exactly h.
The kernelization proceeds by repeatedly picking a sunflower
with at least k£ + 1 petals, removing the involved edges, and
adding the heart as a new edge to the graph. Note that in
this process, edges of size less than d may be added to G. To
get back a d-uniform graph, one can complete those edges
with fresh vertices, which doesn’t affect the number of edges
nor the minimum size of a vertex cover. The process con-
tinues until no sunflower with k + 1 petals exists, which is
bound to happen as the number of edges decreases in every
step. The sunflower lemma of Erdés and Rado [20] states
that any d-uniform hypergraph with more than d!- k% edges
has a sunflower with k + 1 petals. Thus, the hypergraph
that remains at the end has at most d-d!- k% = O(k%) edges,
and has a vertex cover of size at most k if and only if the
original hypergraph does.

Regarding extensions of Theorem 3 to d-uniform hyper-
graphs for d > 2, we cannot expect to rule out protocols
of cost O(k?¢) for all hypergraph properties IT that are in-
herited by subgraphs and for which the deletion problem is
nontrivial. This is because the property II could only de-
pend on the primal graph underlying the hypergraph, for
which protocols of cost O(k?) are known in some cases.

6. CONCLUSION

In this paper we introduced a model of communication
that captures various settings of interest in the theory
of computing. For NP-complete problems like d-SAT, d-
VERTEX COVER, and d-CLIQUE we showed that trivial pro-
tocols are essentially optimal as function of the witness size,
unless the polynomial-time hierarchy collapses. Under the
hypothesis that the latter does not happen, the result implies
tight lower bounds for parameters captured by the commu-
nication model, including the size of PCPs, and polynomial-
time sparsification, kernelization, and lossy compression.



Acknowledgments

We would like to thank the following people for discussions,
comments, pointers to the literature, and guidance: Matt
Anderson, Albert Atserias, Kord Eickmeyer, Martin Grohe,
Johan Hastad, Danny Hermelin, Daniel Lokshtanov, Moritz
Miiller, Saket Saurabh, Mathias Schacht, Asaf Shapira, Luca
Trevisan, Chris Umans, Thomas Watson, Dalibor Zeleny.

7.
1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(18]

(19]

REFERENCES

D. Achlioptas and C. Moore. Random k-SAT: two
moments suffice to cross a sharp threshold. SICOMP,
36(3):740-762, 2007.

D. Achlioptas and Y. Peres. The threshold for random
k-SAT is 2¥log 2 — O(k). Journal of the AMS,
17(4):947-973, 2004.

N. Alon. Testing subgraphs in large graphs. RSA,
21(3-4):359-370, 2002.

N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy.
Efficient testing of large graphs. Combinatorica,
20(4):451-476, 2000.

N. Alon, T. Kaufman, M. Krivelevich, and D. Ron.
Testing triangle-freeness in general graphs. STAM
Journal on Discrete Mathematics, 22(2):786-819,
2008.

N. Alon and A. Shapira. Testing subgraphs in directed
graphs. JCSS, 69(3):354-382, 2004.

N. Alon and A. Shapira. Linear equations, arithmetic
progressions and hypergraph property testing. Theory
of Computing, 1(1):177-216, 2005.

N. Alon and A. Shapira. A characterization of easily
testable induced subgraphs. Combinatorics,
Probability and Computing, 15(6):791-805, 2006.

H. L. Bodlaender, R. G. Downey, M. R. Fellows, and
D. Hermelin. On problems without polynomial
kernels. JCSS, 75(8):423-434, 2009.

H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel
bounds for disjoint cycles and disjoint paths. In ESA,
pages 635-646, 2009.

J. F. Buss and J. Goldsmith. Nondeterminism

within P. SICOMP, 22(3):560-572, 1993.

C. Calabro, R. Impagliazzo, and R. Paturi. A duality
between clause width and clause density for SAT. In
CCC, pages 252-260, 2006.

A. K. Chandra, M. L. Furst, and R. J. Lipton.
Multi-party protocols. In STOC, pages 94-99, 1983.
Y. Chen, J. Flum, and M. Miiller. Lower bounds for
kernelizations. ECCC, 14(137), 2007.

S. A. Cook. The complexity of theorem-proving
procedures. In STOC, pages 151-158, 1971.

D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. Journal of
Symbolic Computation, 9(3):251-280, 1990.

H. Dell and D. van Melkebeek. Satisfiability allows no
nontrivial sparsification unless the polynomial-time
hierarchy collapses. ECCC, 17(38), 2010.

I. Dinur. The PCP theorem by gap amplification.
JACM, 54(3):12, 2007.

M. Dom, D. Lokshtanov, and S. Saurabh.
Incompressibility through colors and IDs. In ICALP,
pages 378-389, 2009.

20]

(21]

(22]

(39]

(40]

P. Erdés and R. Rado. Intersection theorems for
systems of sets. Journal of the London Mathematical
Society, 35:85-90, 1960.

M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier.
A generalization of Nemhauser and Trotter’s local
optimization theorem. In STACS, pages 409-420,
2009.

H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible,

S. Saurabh, and Y. Villanger. Kernel(s) for problems
with no kernel: On out-trees with many leaves. In
STACS, pages 421-432, 2009.

J. Flum and M. Grohe. Parameterized Complezity
Theory. Springer, 2006.

L. Fortnow and R. Santhanam. Infeasibility of
instance compression and succinct PCPs for NP. In
STOC, pages 133-142, 2008.

E. Friedgut and J. Bourgain. Sharp thresholds of
graph properties, and the k-SAT problem. Journal of
the AMS, 12(4):1017-1054, 1999.

O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connection to learning and
approximation. JACM, 45(4):653-750, 1998.

J. Guo and R. Niedermeier. Invitation to data
reduction and problem kernelization. SIGACT News,
38(1):31-45, 2007.

D. Harnik and M. Naor. On the compressibility of NP
instances and cryptographic applications. In FOCS,
pages 719-728, 2006.

J. Hastad and A. Wigderson. Simple analysis of graph
tests for linearity and PCP. RSA, 22(2):139-160, 2003.
R. Impagliazzo, R. Paturi, and F. Zane. Which
problems have strongly exponential complexity?
JCSS, 63(4):512-530, 2001.

R. M. Karp. Reducibility among combinatorial
problems. Complexity of computer computations,
43:85-103, 1972.

S. Kratsch and M. Wahlstréom. Preprocessing of min
ones problems: A dichotomy. Arziv Preprint, 2009.

S. Kratsch and M. Wahlstrém. Two edge modification
problems without polynomial kernels. In IWPEC,
pages 264-275, 2009.

M. S. Krishnamoorthy and N. Deo. Node-deletion
NP-complete problems. SICOMP, 8(4):619-625, 1979.
L. A. Levin. Universal search problems. Problemy
Peredachi Informatsii, 9(3):265-266, 1973.

J. M. Lewis and M. Yannakakis. The node-deletion
problem for hereditary properties is NP-complete.
JCSS, 20(2):219-230, 1980.

I. Z. Ruzsa and E. Szemerédi. Triple systems with no
six points carrying three triangles. In Combinatorics,
Vol. II, volume 18 of Colloquia Mathematica Societatis
Jdnos Bolyai, pages 939-945. North-Holland, 1978.

R. Salem and D. C. Spencer. On sets of integers which
contain no three terms in arithmetical progression.
Proceedings of the National Academy of Sciences,
USA, 28(12):561-563, 1942.

S. Thomassé. A quadratic kernel for feedback vertex
set. In SODA, pages 115-119, 2009.

C.-K. Yap. Some consequences of non-uniform
conditions on uniform classes. T'CSS, 26(3):287-300,
1983.



	Introduction
	Preliminaries
	Main Theorem
	The Packing Lemma
	Consequences of Main Theorem
	Satisfiability
	Vertex Cover and Deletion Problems

	Conclusion
	References

