An Improved Time-Space Lower Bound
for Tautologies

Scott Diehl'*, Dieter van Melkebeek? **, and Ryan Williams3* * *

1 Computer Science Department, Siena College, Loudonville, NY 12211
sfdiehl@siena.edu
2 Computer Sciences Department, University of Wisconsin, Madison, WI 53706
dieter@cs.wisc.edu
3 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540
ryanw@ias.edu

Abstract. We show that for all reals ¢ and d such that c?d < 4 there
exists a real e > 0 such that tautologies of length n cannot be decided by
both a nondeterministic algorithm that runs in time n°, and a nondeter-
ministic algorithm that runs in time n? and space n®. In particular, for
all d < ¥/4 there exists an e > 0 such that tautologies cannot be decided
by a nondeterministic algorithm that runs in time n? and space n®.

1 Introduction

Proof complexity studies the NP versus coNP problem — whether tautologies
can be recognized efficiently by nondeterministic machines. Typical results in
proof complexity deal with specific types of nondeterministic machines that im-
plement well-known proof systems, such as resolution. They establish strong
(superpolynomial or even exponential) lower bounds for the size of any proof of
certain families of tautologies within that system, and thus for the running time
of the corresponding nondeterministic machine deciding tautologies.

Another, more generic, approach to the NP versus coNP problem follows
along the lines of the recent time-space lower bounds for satisfiability on deter-
ministic machines [4]. Similar arguments yield lower bounds for satisfiability on
conondeterministic machines, or equivalently, for tautologies on nondeterminis-
tic machines. Those results show that no nondeterministic algorithm can decide
tautologies in time n¢ and space n¢ for interesting combinations of d and e. The
lower bounds obtained are very robust with respect to the model of computation
and apply to any proof system. However, the arguments only work in the poly-
nomial time range (constant d) and sublinear space range (e < 1). For example,
Fortnow [1] proved that we must have d > 1 whenever e < 1, and Fortnow and

* Research partially supported by NSF award CCR-0728809 and a Cisco Systems
Distinguished Graduate Research Fellowship while at the University of Wisconsin.
** Research partially supported by NSF award CCR-0728809 and partially performed
while visiting the Weizmann Institute of Science.
*** Research partially supported by NSF award CCF-0832797.

Van Melkebeek [3] (see also [2]) showed a time lower bound of n? for any d < v/2
in the case of subpolynomial space bounds (e = o(1)).

In this paper we build on these generic techniques and boost the exponent
in the time lower bound for subpolynomial-space nondeterministic algorithms
recognizing tautologies from /2 ~ 1.414 to /4 ~ 1.587.

Theorem 1. For every real d < V4 there erists a positive real e such that
tautologies cannot be decided by nondeterministic algorithms running in time n
and space n.

The earlier result of Fortnow and Van Melkebeek [3] can be refined to rule out
either nondeterministic algorithms solving tautologies in time n¢ (regardless of
space) or nondeterministic algorithms solving tautologies in simultaneous time
n® and space n® for certain combinations of ¢, d, and e. More precisely, for
every ¢ and d such that (¢ — 1)d < ¢, there is an e > 0 satisfying the lower
bound. For example, tautologies cannot have both a nondeterministic algorithm
using n'*+°() time and a nondeterministic algorithm using logarithmic space [1].

Correspondingly, our argument yields the following refinement.

Theorem 2. For all reals ¢ and d such that c>d < 4, there exists a positive real
e such that tautologies of length n cannot be solved by both

(i) a nondeterministic algorithm that runs in time n° and
(ii) a nondeterministic algorithm that runs in time n® and space n®.

The interesting range of parameters in Theorem 2 is d > ¢ > 1, since an
algorithm of type (ii) is a special case of an algorithm of type (i) for d < ¢,
and a sublinear-time algorithm can be ruled out unconditionally by simple di-
agonalization. The condition due to this paper, c?d < 4, is less restrictive for
values of d that are close to c. In particular, for ¢ = d, our condition requires
d < /4 ~ 1.587, whereas that of [3] requires d < V/2 & 1.414; this setting is the
improvement stated in Theorem 1.

Our main technical contribution is another level of sophistication in the in-
direct diagonalization paradigm, corresponding to the transition from linear to
nonlinear dynamics. We start from the hypothesis that tautologies have ma-
chines of types (i) and (ii), and aim to derive a contradiction. Fortnow and Van
Melkebeek [3] use (ii) to obtain a nondeterministic time-space efficient simula-
tion of conondeterministic computations. Next, they speed up the space-bounded
nondeterministic computation a la Savitch [5] by introducing alternations, and
subsequently eliminate those alternations efficiently using (i). When (¢?—1)d < c,
the net effect is a speedup of generic conondeterministic computations on non-
deterministic machines, implying the sought-after contradiction.

The above argument exploits (ii) in a rather limited way, namely only in
the very first step. One could use (ii) instead of (i) to eliminate alternations.
Since d > ¢ this costs at least as much time as using (i), but the space bound
induced by (ii) allows us to run another layer of alternation-based speedups and
alternation eliminations. Due to the additional layer, the recurrence relation for
the net speedup becomes of degree two (rather than one as before) and has

nonconstant coefficients, but we can still handle it analytically. We point out
that this is the first application of nonlinear dynamics in analyzing time-space
lower bounds for satisfiability and related problems.

2 Preliminaries

2.1 Notation

For functions ¢ and s we denote by NTIME(¢) the class of languages recognized
by nondeterministic machines that run in time O(¢), and by NTISP(¢, s) those
recognized by nondeterministic machines that run in simultaneous time O(¢) and
space O(s). We use the prefix “co” to represent the complementary classes. We
often use the same notation to refer to classes of machines rather than languages.

Our results are robust with respect to the choice of machine model underly-
ing our complexity classes; for concreteness, we use the random-access machine
model as described in [4]. Note that all instances of ¢ and s in this paper are
polynomials in n, so they are easily constructible.

Recall that a space-bounded nondeterministic machine does not have two-
way access to its guess bits unless it explicitly writes them down on its worktape
at the expense of space. It is often important for us to take a finer-grained view
of such computations to separate out the resources required to write down a
nondeterministic guess string from those required to verify that the guess is
correct. To this end, we adopt the following notation.

Definition 1. Given a complexity class C and a function f, we define the class
3C to be the set of languages that can be described as

{23y € {0,1}°V =D Pz,)},

where P is a predicate accepting a language in the class C when its complexity
is measured in terms of |x| (not |x| + |y|). We analogously define ¥/C.

2.2 Tautologies versus Conondeterministic Linear Time

All known time-space lower bounds for satisfiability or tautologies hinge on the
tight connection between the tautologies problem and the class of languages
recognized by conondeterministic linear-time machines, coNTIME(n). Strong
versions of the Cook-Levin Theorem have been formulated, showing that the
tautologies problem captures the simultaneous time and space complexity of
conondeterministic linear time on nondeterministic machines, up to polyloga-
rithmic factors. As a consequence, time-space lower bounds for coNTIME(n) on
nondeterministic machines transfer to tautologies with little loss in parameters.
In particular we use the following result; see [4] for an elementary proof.

Lemma 1. For positive reals d and e, if

coNTIME(n) ¢ NTISP(n?, n¢),

then for any reals d < d and ¢’ < e,
Tautologies ¢ NTISP(nd/, ne/).

Since a lower bound for coNTIME(n) yields essentially the same lower bound
for tautologies, we shift our focus to proving lower bounds for the former.

2.3 Indirect Diagonalization

Our proofs follow the paradigm of indirect diagonalization. The paradigm works
by contradiction. In the case of Theorem 2 we assume that

coNTIME(n) € NTIME(n¢) N NTISP(n4, n¢). (1)

This unlikely assumption is used to derive more and more unlikely inclusions
of complexity classes, until some inclusion contradicts a known diagonalization
result. The main two tools we use to derive inclusions go in opposite directions:

(a) Speed up nondeterministic space-bounded computations by adding alterna-
tions, and

(b) Eliminate these alternations via assumption (1), at a moderate increase in
running time.

To envision the utility of these items, notice that (1) allows the simulation
of a conondeterministic machine by a space-bounded nondeterministic machine.
Item (a) allows us to simulate the latter machine by an alternating machine that
runs in less time. Using item (b), the alternations can be eliminated from this
simulation, increasing the running time modestly. In this way, we end up back at
a nondeterministic computation, so that overall we have derived a simulation of
a conondeterministic machine by a nondeterministic one. The complexity class
inclusion that this simulation yields is a complementation of the form

coNTIME(t) C NTIME(f(t)), (2)

where we seek to make f as small as possible by carefully compounding applica-
tions of (a) and (b). In fact, we know how to rule out inclusions of the type (2)
for small functions f, say f(t) = t'7¢, by a folklore diagonalization argument.
This supplies us with a means for deriving a contradiction.

Lemma 2. Let a and b be positive reals such that a < b, then
coNTIME(n") ¢ NTIME(n®).

Let us discuss how to achieve items (a) and (b). Item (a) is filled in by the
divide-and-conquer strategy that underlies Savitch’s Theorem [5]. Briefly, the
idea is to divide the rows in a computation tableau of a space-bounded nonde-
terministic machine M into b time blocks. Observe that M accepts in time ¢
if and only if there are b — 1 configurations Cy,Cs,...,Cy—1 at the boundaries

of these blocks such that for every block 7, 1 < i < b, the configuration at the
beginning of that block, C;_1, can reach the configuration at the end of that
block, C;, in t/b steps, where Cj is the initial configuration and Cj, is the accept-
ing configuration. This condition is implemented on an alternating machine to
realize a speedup of M as follows. First existentially guess b — 1 configurations
of M, universally guess a block number ¢, and decide if C;_; reaches C; via a
simulation of M for ¢/b steps. Thus, we can derive that

NTISP(t,s) C 3*V'°¢*NTISP(t/b, s). (3)

The above simulation runs in overall time O(bs+t/b). Choosing b = O(4/t/s)
minimizes this running time, to O(v/ts). However, this minimization produces
suboptimal results in our arguments. Instead, we apply (3) for an unspecified b
and choose the optimal value after all of our derivations.

Let us point out one important fact about the simulation underlying (3). The
final phase of this simulation, that of simulating M for ¢/b steps, does not need
access to all of the configurations guessed during the initial existential phase
— it only reads the description of two configurations, C;_1 and Cj;, in addition
to the original input x. Thus, the input size of the final stage is O(n + s), as
opposed to O(n+ bs) as the complexity-class inclusion of (3) suggests in general.
This fact has a subtle but key impact in our lower bound proof.

We now turn to item (b), that of eliminating the alternations introduced by
(3). In general, eliminating alternations comes at an exponential cost. However,
in our case we are armed with assumption (1). The assumption coNTIME(n) C
NTIME(n¢) allows us to eliminate an alternation at the cost of raising the run-
ning time to the power of c. Alternately, assuming coNTIME(n) € NTISP(n?, n®)
allows us to eliminate an alternation at the cost of raising the running time to
the power of d while at the same time maintaining the space restriction of O(n®)
on the final stage. We use both of these ideas in our argument.

3 Proof of the Lower Bound

We begin with a brief discussion of the strategy used to prove the condition
(¢ —1)d < c of [3]. The relevant technical lemma from [3] can be thought of as
trading space for time within NP under the indirect diagonalization assumption
(1). More precisely, it tries to establish

NTISP(t, s) € NTIME(g(t, s)) (4)

for the smallest possible functions g, with the hope that g(¢, s) < t. In particular,
for subpolynomial space bounds (s = to(l)) and sufficiently large polynomial ¢,
[3] achieves g = te—1/cto(l)

NTISP(t,t°(V) C NTIME(t¢~ /¢ty (5)

which is smaller than ¢ when ¢ < ¢ ~ 1.618.

As an example of the utility of inclusion (5), let us sketch the nV2—o()
lower bound of [3] for subpolynomial-space nondeterministic algorithms solving
tautologies. We assume, by way of contradiction, that

coNTIME(n) C NTISP(n¢, n°M). (6)
Then, for sufficiently large polynomials ¢, we have that:

coNTIME(t) C NTISP(t¢, to(1)) [by assumption (6)]
C NTIME(t?"~1+°(M) [by trading space for time using (5)].

This contradicts Lemma 2 when ¢ < v/2, yielding the desired lower bound.

The space-for-time inclusion (5) is shown by an inductive argument that
derives statements of the type (4) for a sequence of smaller and smaller running
times {gs}. The idea can be summarized as follows. We start with a space-
bounded nondeterministic machine and apply the speedup (3), yielding

NTISP(t,s) C 3*° V°5* NTISP(t/b,) . (7)
N————

(7a)

(7b)

The inductive hypothesis is then applied to trade the space bound of the final
stage (7a) of this Ys-simulation for time:

NTISP(t,s) C 3**V'°¢*NTIME(g,_1(t/b, 5)).

Finally, we use assumption (6) to eliminate the two alternations in this simula-
tion, ending up with another statement of the form

NTISP(t, s) € NTIME(ge(t, 5)).

Notice that the above argument does not rely on the space bound in (6);
the weaker assumption that coNTIME(n) C NTIME(n®) is enough to eliminate
the alternations introduced by the speedup. Our new argument does exploit
the fact that when we transform (7a) using the assumption (6), we eliminate
an alternation and re-introduce a space-bound. This allows us to apply the
inductive hypothesis for a second time and trade the space bound for a speedup
in time once more. This way, we hope to eliminate the alternation in (7b) more
efficiently than before, yielding a smaller g, after completing the argument.

Some steps of our argument exploit the space bound while others do not. We
allow for different parameters in those two types of steps; we assume

coNTIME(n) C NTISP(n¢) N NTISP(n?, n°®),

where d > ¢ > 1. The success of our approach to eliminate the alternation
in (7b) now depends on how large d is compared with c. If d is close to ¢,
then the increased cost of complementing via the space-bounded assumption is
counteracted by the benefit of trading this space bound for time.

Two key ingredients that allow the above idea to yield a quantitative im-
provement for certain values of ¢ and d are (i) that the conondeterministic guess
at the beginning of stage (7b) is only over log b bits and (ii) the fact mentioned
in Section 2 that (7a) has input size O(n + s). Because of (i), the running time
of (7b) is dominated by that of (7a), allowing us to reduce the cost of simulating
(7b) without an alternation by reducing the cost of complementing (7a) into
coNP. Ttem (ii) is important for the latter task because the effective input size
for the computation (7a) is much smaller than the O(n + bs) bits taken by (7b);
in particular, it does not increase with b. This allows the use of larger block
numbers b to achieve greater speedups while maintaining that the final stage
runs in time at least linear in its input. The latter behavior is crucial in allow-
ing alternation removal at the expected cost — raising the running time to the
power of ¢ or d — because we can pad the indirect diagonalization assumption
(1) up (to superlinear time) but not down (to sublinear time).

Now that we have sketched the intuition and key ingredients, we proceed with
the actual argument. The following lemma formalizes the inductive process of
speeding up nondeterministic space-bounded computations on space-unbounded
nondeterministic machines.

Lemma 3. If
coNTIME(n) € NTIME(n¢) N NTISP(n?, n®)

for some reals ¢, d, and e then for every nonnegative integer £, time function t,
and space function s < t,

NTISP(t,s) € NTIME ((ts*) + (n + s)*)

where vo =1, ag = 1, and ¢ and ag are defined recursively for £ > 0 as follows:
Let

pe = max(ve(d + ef), eap), (8)

then
Yer1 = eyepe/ (14 Yepe), (9)

and
apr1 = cag - max(1, pug). (10)

Proof. The proof is by induction on £. The base case £ = 0 is trivial. To argue
the inductive step, £ — £+ 1, we consider a nondeterministic machine M running
in time ¢ and space s and construct a faster simulation at the cost of sacrificing
the space bound. We begin by simulating M in the third level of the polynomial-
time hierarchy via the speedup (3) using b > 0 blocks (to be determined later);
this simulation is in

3bsvlost NTISP(t/b, 5) . (11)
N————’
(11a)

We focus on simulating the computation of (11a). Recall the input to (11a)
consists of the original input « of M as well as two configuration descriptions of

size O(s), for a total input size of O(n + s). The inductive hypothesis allows the
simulation of (11a) in

NTIME ((ésf) " + (n+ s)‘”). (12)

In turn, this simulation can be complemented while simultaneously introduc-
ing a space bound via the assumption of the lemma; namely, (12) is in

coNTISP <(<%sf) " + (n+ s)‘”)d, ((%sf) " +(n+ s)‘”)e> :

where here the (n + $)* term subsumes the O(n + s) term from the input
size because ay > 1. The space bound allows for a simulation via the inductive
hypothesis once more, yielding a simulation of (11a) in

coNTIME (((45)™ + (n+5)) " s (nt s+ (4597 + (4 9))))
C coNTIME ((£s*)"" + (n + s)ehe + (n + s5)2¢).
(13)
Replacing (11a) in (11) by (13) eliminates an alternation, lowering the sim-
ulation of M to the second level of the polynomial hierarchy:

t Yele
35 los teoNTIME <(58e> + (n+)% 4 (n+ S)ae> (14)

(14a)

We now complement the conondeterministic computation of (14a) via the
assumption that NTIME(n) C coNTIME(n¢), eliminating one more alternation.
Since (14a) takes input of size O(n + bs), this places (14) in

F**NTIME (((%sf)ww + (n 4 s)* " + (n+ s)* + (bs + n))c)

C

t Yere (15)
< NTIME (-Se> H(n+)2+ (n+)2+ bs | |,
b ~
— (15b)
(15a)

where the inclusion holds by collapsing the adjacent existential phases (and
the time required to guess the O(bs) configuration bits is accounted for by the
observation that ¢ > 1).

We have now given a simulation of NTISP (¢, s) in NTIME(-); all that remains
is to choose the parameter b. Notice that the running time of (15) has one term,
(15b), that increases with b and one term, (15a), that decreases with b. The
running time is minimized up to a constant factor by choosing b to equate the
two terms, resulting in

S

b ((tsf)w) tsne)

When this value is at least 1, the running time of the simulation (15) is
o) ((tlerl)cww/(lJr'yew) + (n + S)caeuz + (n + S)ca/z) 7

resulting in the recurrences (9) and (10). If b* < 1, then b = 1 is the best we can
do; the desired bound still holds since in this case (15a) + (15b) = O(s), which
is dominated by (n + s)®¢+1. O

Applying Lemma 3, we deduce that for large enough polynomial 7,

coNTIME(7) € NTISP(r¢, 7¢) C NTIME(7(¢+¢)7 4 reac) — NTIME(7#¢),
(16)
which is a contradiction with Lemma 2 when py < 1. We now determine values
of ¢, d, and e that imply this contradiction, focusing on small values of e.

Theorem 3. For all reals ¢ and d such that c?d < 4 there exists a positive real
e such that
coNTIME(n) ¢ NTIME(n®) N NTISP(n?, n).

Proof. The case where either ¢ < 1 or d < 1 is ruled out by Lemma 2. For ¢ > 1
and d > 1, assume (by way of contradiction) that

coNTIME(n) C NTIME(n¢) N NTISP(n?, n°)

for a value of e to be determined later. As noted above, the theorem’s assumption
in conjunction with Lemma 3 yields the complementation (16) for any integer
¢ > 0 and sufficiently large polynomial bound 7.

Our goal is now to characterize the behavior of yy in terms of ¢, d, and e. This
task is facilitated by focusing on values of e that are small enough to smooth out
the complex behavior of p; caused by (i) the appearance of the nonconstant term
el in the recurrence and (ii) its definition via the maximum of two functions.

We first handle item (i) by introducing a related, nicer sequence by substi-
tuting a real 8 (to be determined) as an upper bound for ef. Let

pe = max(y;(d + B), eay), (17)

where 7, =1, aj = 1 and

Yer1 = evoip/ (14 yopp), and
agyq = cay - max(1, pp).

As long as 8 behaves as intended, i.e., e/ < (3, we can show by induction that
Ye <, ag < a), and pg < pj. Therefore,) upper bounds p up to a value of
¢ that depends on e, and this ¢-value becomes large when e is very small. This
allows us to use p) as a proxy for p, in our analysis.

To smooth out the behavior caused by issue (ii), we point out that the first
term in the definition (17) of pj is larger than the second when e is very small.
Provided that this is the case, i, equals the sequence vy defined as follows:

vy = d+ 6
vir1 = vie(d+ B)/((d+ B) +v).

This delivers a simpler sequence to analyze. Notice that because the underlying
transformation

n— n’c(d+ B)/((d+ B) +n°)

is increasing over the positive reals, the sequence v, is monotone in this range.
It is decreasing if and only if 11 < vy, which is equivalent to (¢ — 1)(d + 5) < 1.
Furthermore, when c?(d+f) < 4, the transformation has a unique real fixed point
at 0. Since the underlying transformation is also bounded and starts positively,
the sequence vy must decrease monotonically to 0 in this case.

Therefore, when c¢2d < 4 we can choose a positive 3 such that v, becomes as
small as we want for large £. Provided that (3, e, and ¢ satisfy the assumptions
required to smooth out items (i) and (ii), this also gives us that u, is small. More
formally, let £* be the first value of ¢ such that v, < 1. Item (i) requires that

el* < B. (18)

Item (ii) requires that the first term of yj, in (17) dominates the second up to
this point, namely,
vo(d + B) > eay for all £ < ¢*. (19)

When all of these conditions are satisfied, we have that pe < pp. = vo« < 1,
and the running time of the NTIME computation in (16) for £ = ¢* is O(r#¢) =
O(#e) = O(77+).

Therefore, by choosing a small enough positive e to satisfy the finite number
of constraints in (18) and (19), we arrive at our goal of proving that p, < 1 in
(16). This is a contradiction, which proves the desired lower bound. O

We remark that our above analysis is tight, in the sense the above proof does
not work for ¢2d > 4. The details will appear in the full version of the paper.

References

1. L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and System
Sciences, 60:337-353, 2000.

2. L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lower bounds
for satisfiability. Journal of the ACM, 52:835-865, 2005.

3. L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondeterministic com-
putation. In Proceedings of the 15th IEEE Conference on Computational Complex-
ity, pages 2—13. IEEE, 2000.

4. D. van Melkebeek. A survey of lower bounds for satisfiability and related problems.
Foundations and Trends in Theoretical Computer Science, 2:197-303, 2007.

5. W. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4:177-192, 1970.

6. R. Williams. Time-space tradeoffs for counting NP solutions modulo integers.
Computational Complexity, 17:179-219, 2008.

7. R. Williams. Alternation-trading proofs, linear programming, and lower bounds.
Manuscript, 2009.

