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Preface

Prelude

The year is 1900. The world’s most renowned mathematician, David Hilbert, proposes 10
challenging mathematical problems for the nascent century at the second international congress
in Paris. One of these problems, the Entscheidungsproblem, asks if there exists an algorithm
that decides whether a first-order statement is derivable from the axioms of first-order predicate
calculus. After more than 25 years, a young mathematician from Cambridge, Alan Turing,
discovers a solution. Moreover, a solution that will inspire researchers, several generations
later, to invent a revolutionary computational model based on quantum mechanics.

In order to solve the Entscheidungsproblem, Alan Turing formalized the notion of an algo-
rithm. His approach considered which calculations could be performed by an idealized human
computor!, a computor who follows simple rules and is not limited in time and space. Starting
from the fundamental observations of physical reality that operations must be easily imple-
mentable and only make local changes, he defined the Turing machine and formulated a thesis
which is currently known as the Church-Turing thesis?:

The class of functions computable by a Turing machine correspond exactly to the class of
functions which we would naturally regard as computable by an algorithm.

The Church-Turing thesis is a connection between the mathematical notion of an algorithm
and the intuitive notion of what is thought of as an algorithm. The Church-Turing thesis and
Turing machines allowed researchers in the '40’s and 50’s to create a theory of computability -
what is computable and what not. When computability theory was mature, starting from the
'60s, researchers started to characterize the resources needed to solve a problem, giving birth
to the active research area called complexity theory. An important concept from complexity
theory that recurs in this thesis is the notion of an efficient computation: an algorithm that
decides every possible input in time polynomial in the size of the input. Since the invention of
Turing machines, many computer scientists and mathematicians devised other computational
models such as boolean circuits, random access machines, ...and noticed that all these models
have the exact same computational power as Turing machines, thereby supporting the idea of
the Turing machine as a powerful and robust model of computation. Moreover, all these models
were proved to be polynomially equivalent to each other and Turing machines meaning that the
different computational models could efficiently simulate one another. Only probabilistic Turing
machines seemed to challenge the Church-Turing thesis since efficient randomized algorithms

!The term computor was used for people who calculated in the absence of calculating machines.

2Alonzo Church approached the Entscheidingsproblem from a different angle. Gédel, among other people,
challenged Church’s assumptions and only after Turing showed his solution to be equivalent to Church’s solution,
Godel was convinced of its applicability.
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were discovered for problems which didn’t seem to allow an efficient solution on a deterministic
Turing machine®. A relatively easy modification of the thesis is thus believed to apply: the
Strong Church-Turing thesis:

Any model of computation can be simulated on a probabilistic Turing machine with at
most a polynomial increase in the number of elementary operations.

What is interesting for our story is that Turing machines have close correspondence to phys-
ical reality. We will see that researchers at the end of the twentieth century started from more
fundamental physical observations in order to create a model of computation that is believed
to be even more powerful than a probabilistic Turing machine, a model of computation based
on quantum mechanics. From now on, the term classical computation will refer to probabilistic
Turing machines. The next section summarizes some ideas from classical computation in order
to contrast them with results from quantum computation.

Computer Science before 1994

The first problem we want to review is searching as it probably is the most important concept
for computer science. The structure of the search space dictates the speed with which a solution
can be found. For example, it is much easier to look up a phone number in a phone book given
someone’s name than it is the other way around; clearly this is because the phone book is
sorted alphabetically by name whilst the phone numbers are more or less randomly distributed
throughout the phone book. Let’s formalize the search problem a little further. A database
with one marked item, z, is represented by a function f, : F§ — Fy such that Va € F7:

pa={ {7

a—=2x

We define a query or database access as a function call which given a number a € F5 returns
fz(a). We are asked to develop an algorithm that finds = in as few queries as possible. Note
that |F5| = 2™.

If we assume that every element in F3 is as likely to be the marked item, it is safe to call this
an unstructured search space. Intuitively, knowledge of the function value of an element a # x
gives us no information whatsoever to guide our next queries. Every deterministic algorithm,
one which cannot use a random source of bits, will be programmed to run through all elements
of F in a particular order to find x. It is clear that in the worst case x could be the last element
of the programmed order forcing the algorithm to make 2" queries to find z in the database.
On average the algorithm will query the database 2! times to find . An interesting question
would be to ask whether querying at random can buy us anything? An algorithm that can
sample a € F§ from a uniform distribution has a probability of 2% to find the correct element.
In order to increase the probability of success to a constant we must sample multiple times.
Let the stochastic variable T' denote the number of times we have to query the database in
order to find z. The distribution that applies to this problem is the geometric distribution?

with a success probability of 2% We thus expect to query the database i = 2" times. If we

omn

3Recent research suggests that deterministic polynomial time algorithms are able to simulate randomized
polynomial time algorithms.

4The geometric distribution tells us how many times (T) we expect to toss a coin before we get heads given
that the success probability for a single coin toss is p: E[T] = %
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would sample from a nonuniform distribution, the probability of success would be greater than
2% for some elements but smaller for others. We therefore cannot get a worst-case speedup by
sampling from a nonuniform distribution. This analysis intuitively suggests that searching an
unstructured search space cannot be done faster than exhaustively querying all elements. A
slightly more involved argument can prove that no possible algorithm can search the space in
less than ©(2") queries.

Another problem, one which mathematicians have been struggling with for hundreds of
years, is the problem of factoring. Given a number n, can one efficiently find numbers p, ¢
such that n = pq? The apparent infeasibility of this problem is the basis for numerous cryp-
tographic algorithms. Proving an exponential lower bound on the running time appears to
be difficult and no proof is expected soon. This leaves us with some probabilistic algorithms,
based on deep number theoretical insights, which unfortunately have an exponential running
time: @(6”1/3 1°g2/3(”)) for the fastest algorithm ...

...that is until Peter Shor’s discovery of 1994 ...

Enter ... ‘The Quantum’

Assuming the strong Church-Turing thesis holds, if we can prove that a problem cannot be
solved using polynomial resources on a probabilistic Turing machine, we know that it cannot be
solved using polynomial resources on any computing device. The discovery of a factorization
algorithm for quantum computers with a running time of ©(n?log(n) loglog(n)) must come as
a rather big surprise then. It means that exponentially less elementary operations are required
in order to find a factor for a given input on this new computational model. In 1995, it was
also discovered that unstructured search on a quantum computer has a query complexity of
O(1/2"); this means that the quantum algorithm will return the desired element in significantly
fewer queries than any classical algorithm. Although the speedup for the former discovery is
spectacular, especially the latter discovery clashes with common sense.
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Chapter 1

Approach and Overview of the
Thesis

Our prelude has been imprecise in several ways. What does it mean for a quantum computer
to return a certain value? What are the elementary operations? What is a quantum model
of computation and most importantly, how is this model different from the classical model of
computation? The next chapters of this thesis will answer these questions in detail. The last
issue mentioned above eventually dictates the theme of the thesis: what is the nature of the
speedup of the quantum model of computation.

Since the discovery of different quantum algorithms there has been doubt about the nature
of their speedup over their classical counterparts. Different quantum information scientists
have different opinions but almost all agree that the answer must be sought by studying two
phenomena that make quantum computers different from classical computers: interference and
entanglement. Understanding the mechanism that causes quantum computational speedup is
important for two reasons. First of all, we want to be able to theoretically characterize the
power of quantum computers; secondly, our insights might prove useful in developing about
new quantum algorithms.

Quantum computing is not a standard ingredient of the undergraduate curriculum. My
first goal for the thesis was to master the quantum mechanical formalism and understand the
underlying mathematical principles. A next step was to work through the basics of quantum
computation, sometimes touching on the field of quantum information theory. The standard
reference [28] was an excellent introduction. If not mentioned otherwise, the basic results from
quantum computing come from [28, 26, 24, 18, 22]. Because the main question of the thesis
is still an unsolved problem and many interesting results were discovered during the past few
years, a second goal of the thesis was to acquaint myself with current research. The internet
arXiv [2] and recent journals provided all the necessary articles to accomplish this goal. The
last goal was to find an original approach to the topic and recognize open problems and possible
approaches for solving them.

Quantum computing is a technical subject. Because it is an interdisciplinary science between
theoretical physics and theoretical computer science, it takes some effort to understand the
concepts and issues of both fields. Some technical lemma’s and proofs are necessary in order
to explain the intricacies of quantum computing. Nonetheless, as I learned that concepts and
intuition are more important than technical details, I have tried to write a text that reflects
this belief.



The main matter of the thesis opens with a historic overview that led to the discovery of
quantum computing. Next up is a brief introduction to the concepts of quantum mechanics and
how they apply to quantum computing. I found that working out the exercises in [28, 24] proved
invaluable to understanding the rich structure of quantum mechanics. Nonetheless, I hope the
simple examples which are worked out in this thesis give some feel of the mathematical structure
of quantum mechanics. After the introduction, we build a formal model for quantum computers
based on classical Boolean circuits. Finally, we end the chapter with a demonstration of the
capabilities of quantum computers by explaining the Deutsch-Jozsa problem. This preliminary
chapter is not a general introduction to the theory of quantum computing: from the start it
tries to give the right intuition to understand our conclusions.

The third chapter is complementary to the second in that it intuitively explains the nature of
different phenomena in quantum computing. We first show how interference is somewhat similar
to probabilistic states. However, the use of complex amplitudes in quantum mechanics allows
for destructive interference while probabilistic states are limited to constructive interference.
Next, we show how superposition is not that special for quantum computing. Many researchers
have argued that creating a superposition over an exponential number of states and then com-
puting a function corresponds to some sort of massive parallelism. Unfortunately, this sort of
parallelism is known for probabilistic computing too. We therefore discard quantum parallelism
as a source of the speedup of quantum algorithms over classical algorithms. Next, we discuss
entanglement and how it’s discovery stunned the physics community. Different measurements
on entangled states are dependent on each other in a very intricate way. This effect has been
the source of many reductions in communication complexity for certain problems. It is therefore
natural to regard entanglement as a possible source of the speedup of quantum algorithms over
classical algorithms. We finally end the chapter by introducing the formalism from [25]. This
formalism considers every classical computation as a path in a tree which has some probability
of happening. It is clear from this formalism that once there is some probability that a certain
decision is made, this probability is bound to exist until the algorithm accepts or rejects. On
the other hand, it will be shown that every quantum computation has a complex probability
amplitude. This means that if two computations with a positive and negative probability am-
plitude end in the same state, they destructively interfere and the probability amplitude of all
other computational paths increases. What is interesting about this formalism is that the only
difference between the computational models is the norm of the state vector they preserve.

In chapter 4 we apply all the learned concepts to discuss the two main algorithms: Grover’s
search algorithm and Shor’s factoring algorithm. We start by deriving the complexity of Grover’s
search algorithm. Next, we generalize Grover’s search algorithm which gives us the amplitude
amplicitation algorithm. This algorithm amplifies the success probability of another algorithm
faster than classical probability amplification can. We then apply amplitude amplification to
a random walk algorithm for SAT. By doing this we introduce a technique which allows us to
postpone any intermediate measurement to the end of the algorithm. This will bey a key step
in our conclusion. Finally, we briefly discuss Shor’s factoring algorithm. Because the details of
it’s complexity analysis are slightly more involved and not critical to our conclusion, we skip
their formal proofs.

In chapter 5 we draw the main conclusion for this thesis by generalizing results from [34, 12].
First we note that every quantum mechanical system that is composed of n qubits is described
by a Hilbert space that is a tensor product of n two dimensional Hilbert spaces. However,
when we use the technique from section 4.2.2, which we formalize in section 5.1, we are able
to introduce a new interpretation. In section 5.2, we discuss how every tensor product Hilbert
space is isomorphic to a simple Hilbert space: a Hilbert space that is not a tensor product of
several smaller Hilbert spaces. In this simple Hilbert space we can perform a full analysis of



the algorithms and we only need interference. Entanglement cannot even be properly defined
for a simple Hilbert space. Nonetheless, section 5.3 shows that only when we need to embed
the simple Hilbert space in a real physical system, we need to decompose it in a tensor product
of smaller Hilbert spaces. We heavily rely on the ideas in [12] which prove that it is impossible
to implement a scalable quantum computer with quantum systems that aren’t composite. In
other words, our conclusion is that interference is the only phenomenon that is important
for the analysis of quantum algorithms. Only when we design quantum computers we must
be careful about how to handle entanglement. This suggests that from a computer science
perspective — with the emphasis on algorithm analysis and design — we must acquaint ourselves
with interference in order to discover and analyze new algorithms. The conlusion in chapter
four is the most important contribution to the field of quantum computing in this text.

Alas, I believe that the conclusion from chapter 5 does little to quantitatively characterize
the power of interference and more in general the power of quantum computation. Complex-
ity researchers are ultimately interested where the power of quantum computation sits in the
hierarchy of complexity classes. Therefore, our final chapter starts with section 6.1, discussing
existing results in quantum complexity theory. Section 6.2 shows how to simulate a quan-
tum computer with a classical computer. These simulation algorithms allow us to derive naive
bounds on the power of BQP. Because a more detailed characterization of BQP seems more
difficult, we continue to study certain subsets of general quantum computers for which we can
characterize their power precisely. Section 6.3 introduce a new formalism to describe quantum
state: the stabilizer formalism. Stabilizer circuits can use all but one gate from a very common
universal quantum gate set. Nonetheless, this simplification makes the mathematical analysis
of stabilizer circuits much easier and we prove that their power is equivalent to @L. Next, we
study a second subset of general quantum computers in section 6.4: the p-blocked circuits. This
subset is already more powerful than stabilizer circuits but it’s mathematical analysis is less
elegant. Finally, we end the thesis in section 6.5 with some open problems and suggests further
research towards the resolution of the general problem of quantum computational power.

Before we get started we note that all chapters assume undergraduate level knowledge of the
theory of computing; we refer to [27, 13] for introduction and reference. We use the standard
complexity theoretic assumption that SAT requires exponential lower bounds which implies that
P # NP. On the other hand, there exists an enormous philosophical debate on the interpretation
of quantum mechanics. We intentionally avoid discussing any alternative interpretations of
quantum mechanics and how they could relate to quantum computation so as to not lose
ourselves in and endless and often unscientific argument.






Chapter 2

Preliminaries

2.1 Historical Perspective

The dawn of the twentieth century gave birth to several revolutions in physics. One of these
revolutions, quantum mechanics, became the standard framework for describing matter on the
smallest scales. The brightest minds in physics - Einstein, Schrédinger, Heisenberg, and many
others - struggled for years to formalize and understand the theory of quantum mechanics; a
theory that is fundamentally different from classical physics and counterintuitive in many ways.
The applications of quantum mechanics are widespread and important, e.g., quantum mechanics
is solely responsible for the micro-electronics that permeate our daily lives.

The story of quantum computation starts in the early eighties with physicist Richard Feyn-
man. Richard Feynman grew an interest in computation and asked himself whether a classical
computer can efficiently simulate physical reality: given an initial state and its evolution equa-
tions, can a computer efficiently predict what the final state of the physical system will be?
When we limit physical reality to classical systems obeying Newton’s equations, the answer is
in principle yes: computers are able to calculate orbits of satellites, simulate aerodynamic flows,
.... We say in principle as some systems are very sensitive to slight changes in initial condition
and as computers only have a finite precision, there are some technical difficulties here. This
phenomenon is known as chaos.

A positive answer to the question whether quantum systems could be simulated on a classical
computer would be a tremendous discovery as chemists, pharmacists, biologists, to name a few,
would be able to simulate experiments that involve risk, efficiently on a computer. Alas, the
answer is no: a quantum state needs an exponential number of variables to be represented on a
classical computer. Updating an exponential number of variables certainly takes an exponential
amount of time. Therefore, an efficient simulation of a complete description of a quantum
system is impossible. The interesting observation made by Richard Feynman states that the
quantum system itself efficiently solves its own evolution equations! This is unfortunate for the
chemist who wants to simulate a dangerous experiment. Nonetheless, if we could ‘program’
a difficult problem in a quantum evolution, we might be able to find a quantum system that
solves it more efficiently than a classical computer. The search for such problems is on.

Around the same time as Richard Feynman’s discoveries, a good friend of his, Edward
Fredkin, showed that classical computers can be simulated using classical physics. Edward
Fredkin, together with his student Tomasso Toffoli constructed the billiard ball computer. They
showed how to simulate a Boolean logic circuit with billiard balls and carefully placed bouncing
walls in a plane, modulo friction and chaos. What is remarkable about their achievement is
how they worked around the time reversibility that is inherent in classical physics. Boolean



logic circuits are not necessarily reversible: given the output to the circuit it is often impossible
to tell what the input is. Still Fredkin and Toffoli managed to transform any possible Boolean
logic circuit into a billiard ball computer. This discovery links classical physics to the strong
Church-Turing thesis which we defined in the preface.

Summarizing, we find that classical physics can be simulated by Turing machines and Turing
machines can be simulated by carefully designed classical experiments. This implies that the
strong Church-Turing thesis is in some sense equivalent to classical physics. On the other
hand, there exist physical realizable systems that transcend the realm of classical computation.
In hindsight the obvious question to ask is whether there exists an even stronger form of the
Church-Turing thesis that incorporates the power of quantum mechanics. David Deutsch started
to investigate the fundamental question whether other physical theories would mean different
computational models and found the first problems that can be programmed into quantum
mechanics and be solved more efficiently [16].

A final development that stimulated research in quantum computing came from Moore’s law.
This law states that the number of transistors on a microchip doubles every eighteen months.
Of course, the size of atoms limits this miniaturization process and if this trend continuous, one
expects to reach the realm of quantum mechanics by the year 2020. Classical electromagnetic
theory does not suffice to predict what happens to electric currents at this scale. Two typical
quantum mechanical effects prohibit reliable micro-electronics to perform their work correctly.
The first effect occurs when measuring the state of a quantum system: the measurement disturbs
the state and possibly moves it to a different state. A computer accesses the value of a bit all
the time and it is inconceivable that some of those measurements would randomly flip the bit.
The second effect allows a quantum system to exist in several different states at once. It is
meaningless for reliable computation to have a bit that is both 0 and 1 at the same time.

These theoretical and practical motivations led to the formulation of a computational model
based on quantum mechanics. We will now briefly introduce the quantum mechanical principles
and a model for classical computation. From there on, we can define a quantum model of
computation and describe our first ‘quantum algorithm’.

2.2 Quantum Mechanics

We refer to [28] for a full overview of quantum mechanics; our introduction treats quantum
mechanics as a mathematical formalism. Although these principles might seem simple to the
mathematician or computer scientist, the reader must remember that it took decades for many
of the brightest minds and thousands of experiments to discover these principles and test them.
There are an infinite amount of mathematical formalisms, some differing only very little from
others, from which a physicist can choose to describe reality, but only very few give correct
predictions. In this section we will simplify and abstract quantum mechanics and use four
postulates that allow us to build a model for quantum computers.

Before we move on to the postulates of quantum mechanics we introduce a common and
convenient notation for vectors: the Dirac bra-ket notation. A vector, say v, in this notation is
represented by a ket, |v). The dual to this vector is represented by a bra, (v|. The scalar product
of a vector and its dual is thus represented as (v|v) while their outer product corresponds to
a matrix and is represented by |v)(v|. A linear combination of two vectors is represented by
alv) + bjw) while the tensor product of two vectors is both represented as |v) ® |w) and |vw).

Back to quantum mechanics. The first postulate concerns the state in which physical systems
can be in.



Postulate 2.1. [28] Associated to any isolated physical system is a complex vector space with an
inner product (a Hilbert space) known as the state space of the system. The system is completely
described by its state vector, which by convention is a unit vector in the state space.

The simplest quantum system, analogue to the classical bit, is the 2-dimensional complex
Hilbert space, commonly called the quantum bit or qubit. In order for us to describe different
states, we always fix an orthogonal basis in this Hilbert space which we call the standard basis,

-~}

The first postulate implies that any linear combination of basis vectors, itself a vector in Hilbert
space, corresponds to a physically realizable state!. These linear combinations are called super-
positions and in our example are of the form,

V) = a|0) + 5|1) = [g} with «, 5 € C. (2.1)

The condition that |¥) be a unit vector implies that [|¥)] = \/(¥|¥) = 1 or |a|? + |B]? = 1.
Note that because «, 3 € C, a qubit’s state has continuous values while the classical bit has only
discrete values. We often call «, 5 the amplitudes of the corresponding components, |0),|1), of
the state.

Example 2.1. Suppose we have a qubit in state,

0y —il1) _ H

The |0) component has an amplitude of % while the |1) component has an amplitude of \7—%

V2
It is clear that,

2 .12 ..
I il D S S
V2V2 V22

7 1.

7

Our next postulate defines how we must approach composite quantum systems.

Postulate 2.2. [28] The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. Moreover, if we have n systems, and system i
is prepared in state |V;), then the joint state of the system is in a state |Vp) @ [V1) @ -+ @ [¥,,).

Suppose we have n qubits, therefore there are 2" basis states. Take two tensor products of
n basis states, |z1) @ |z2) ® -+ ®@ |z,) and |y1) ® |y2) @ -+ @ |yn) with x;,y; € {0,1}. Their
scalar product is (z1|y1) ® (r2|y2) ®@ -+ @ (zy|yn) so if any of the z; # y;, it is 0. This implies
that the 2™ different tensor products of n basis states are all orthogonal. Therefore, the tensor
product structure implies that the dimension of our composite Hilbert space is 2™.

In order to represent the tensor product of vectors or matrices we use the Kronecker product.
Suppose we have two vectors,
T U
v

LA possible physical implementation for the qubit could be the spin of an electron.

7



The Kronecker expansion of their tensor product is,

o]

TU

by=1"1.
CEIUEE M
Yyv
A similar expansion applies for matrices,
anB appB - ai;  ai
A®B= |anB with A = |az21

Let’s give two simple examples that show what a composite system and its Kronecker product
representation looks like.

0)]1)

7 The

Example 2.2. Suppose qubit one is in a state |0) and qubit two is in state
composite system is in state,

0) +[1) _ [00) +[01)

e =7 NG

= ke

X

Example 2.3. Our next example shows a remarkable consequence of the mathematical struc-
_jo0)s1n)
= R

easy to show that this state cannot be written as a tensor product of two states. Suppose it
could be written as |¥) = (a|0) 4+ b|1)) ® (¢|0) + d|1)). Expanding the tensor product gives us
|¥) = ac|00)+ad|01)+bc|10)4-bd|11). We now recognize that it is impossible for ac = bd = 1/+/2
and ad = bc = 0.

This does not contradict the second postulate which states that the state space of a composite
system is a tensor product of state spaces of its subsystems. Our example shows that a linear
combination of vectors in the subsystems does not necessarily factor into a tensor product of
two other vectors in the subsystems.

ture of quantum mechanics. Suppose a composite system is in state |¥)

This remarkable property of certain quantum states is called an entanglement; the two
qubits do not have a separate well defined state, they exist in a joint state. We will come back
to this phenomenon in section 3.2 as it plays an important role in quantum mechanics and
possibly in quantum computing. X

A third ingredient of any physical theory describes the equations that dictate evolution.
Physicists use the Schrédinger equation or path integrals to calculate the evolution of a quantum
state. For quantum computing, a discretized time-independent version of these equations is
sufficient and leads to the following postulate.

Postulate 2.3. [28] The evolution of a closed quantum system is described by a unitary trans-
formation. Given a state |¥(t)) at time t and evolution U, at time t' the state will be |U(t")) =
Ul (t)).



Because unitary matrices are defined as matrices for which UTU = I applies, unitary matrices
have an inverse (U~! = UT). Therefore, every quantum mechanical evolution is reversible.
When we develop a model for quantum computation we will have to take this condition into
account.

Example 2.4. A very important evolution for quantum computing will be the unitary trans-
formation on a qubit represented by the Hadamard matrix,

b )

The Hadamard transformation applied to the standard basis states results in,

RN HEETAREET
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The final and most puzzling postulate defines measurement in quantum mechanics.

Postulate 2.4. [28] A measurement is described by an observable, M, a Hermitian operator
on the state space of the system being observed. The observable has a spectral decomposition

M =Y mP,, (2.2)

where Py, is the projector onto the eigenspace of M with eigenvalue m. The possible outcomes
of the measurement correspond to the eigenvalues, m, of the observable. Upon measuring the
state |U), the probability of getting result m is given by p(m) = (V|P,,|¥). Given that outcome
m occurred, the state of the quantum system immediately after the measurement is

P,|¥
m|¥) : (2.3)
p(m)
We will clarify the postulate by an example.
Example 2.5. Suppose we want to measure a quantum system with the observable,
0 1
]

X has two eigenvalues (1, —1) with corresponding eigenvectors |eg) = ’0>\J/r§|1>,|el> = ‘O>\;§|1>

The spectral decomposition of X is,

X=1F+ (—1)P1 with Py = ‘60><60‘, P = ’€1><€1’.

Let us apply this measurement on a quantum system in the standard basis state |0). The
measurement has two possible outcomes: 1, —1. The probability that outcome 1 occurs is,

1
O[PoJ0) = 3,



The state after the measurement becomes,

1 0)+ |1
Ry~ 10+ 10,
1/2 V2
A similar argument applies for outcome —1 but the state after the measurement becomes ‘0>\;§|1> .

X

The measurement postulate implies many interesting properties, our next example is an
easy consequence of the above. Let us calculate the average value of an arbitrary observable A
on a state |¥),

E[4] = Z m Pr[Measurement returned m]

m

N

= (v (Z mP;}) )

m

= (V]A]w),

with P4 the projectors corresponding to the observable A. This is a useful formula which
simplifies many calculations.

An observable induces a probability distribution on quantum states. Often we write about
a standard basis measurement, meaning that we measure an observable with eigenvectors |z) for
every x € {0,1}". The probability distribution induced by the standard basis measurement is
easy to recognize. The projector corresponding to measurement outcome |z) is |x)(x|. Therefore,
the probability of measuring a component |z) in an arbitrary superposition Zy ayly) is,

ZaZaz(y\x) (x|z) = ZaZazéyxém =ala, = |ag .
Y,z

y?z

In words, the square of the norm of a component’s amplitude is the probability that that
particular component will be measured in the standard basis. We therefore often call the
amplitude, the probability amplitude.

Example 2.6. Suppose we want to measure the state % in the standard basis. The

probability amplitudes of the different components of the standard basis are 1/v/2 for [00), |11)
and 0 for |01),[10). The probability distribution becomes:

1\2
Pr[Measurement yields |00)] = < =1/2
V2
] =

Pr[Measurement yields |10)] =

0
0
l —1
Pr[Measurement yields |11)] = < — | =1/2
v2/) \v2

Pr[Measurement yields |01

)
)
)
)

X

There are clearly two types of states: those which are eigenvectors of an observable and those
which aren’t. When measuring a system which is an eigenvector of the observable, the outcome

10



is deterministic. The measurement returns the corresponding eigenvalue with probability one
and projects the eigenvector onto itself: the system remains in the same state. Systems which
are not an eigenvector of the observable might be projected into different states with certain
probabilities. An important consequence of this is how quantum states can be distinguished.

Lemma 2.1. Nonorthogonal vectors can never reliably be distinguished.

Proof. Suppose |¥1),|¥s2) are nonorthogonal vectors. Therefore (V;|Wa) # 0 or |¥a) = a|¥;) +
B|®) with (®|¥;) =0 and o®+ 3% = 1, 3 < 1. Suppose there exist an observable with projectors
P; such that

(V1| Py |Wy) =1, (Wa| Po|Wg) = 1. (2.4)

Because >, P, =1, >, (V1| P;|¥1) = 1 and therefore (U;|P|W¥;) = 0. This implies that

(V2| |¥2) = (V1] + B(D]) Pa(ca| V1) + B|D))
= X(U1|P|U1) + aB(U1|Py| @) + (R Po|¥y) + 3°(D| Py| @)
= [X(O|P,|®).

Because 3% < 1 and (®|P,|®) < 1, this is in contradiction with equation (2.4). O

Example 2.7. Suppose we are given a quantum state |¥) and we must find out whether it is in

state |0) or % We know that w
observable which returns state |0) with a nonzero probability, always has a nonzero probability
of returning % because the latter also has a component along the |0) axis. X

= 0 and the two states are not orthogonal. Every

The famous collapse of the wavefuntion arises as a measurement projects the state of the
physical system onto an eigenvector of the observable. From a philosophical point of view
this postulate is most unsatisfactory. We already noted that unitary evolution is reversible,
nonetheless a measurement induces a projection of a state onto another state which is an
irreversible process. If we assume quantum mechanics to be a theory of physical reality, we
should regard the measurement apparatus as macroscopic quantum system. Thus, when we
use the measurement apparatus on a quantum state, they evolve according to some reversible,
unitary evolution. On the other hand, measuring a quantum state might irreversibly project it
into a different state. These two statements are certainly incompatible as one claims that the
evolution is reversible while the other claims that it is irreversible. The, almost 100 year old,
debate on this foundational problem is not over yet, but what is remarkable is that quantum
information science has contributed tremendously to possible solutions of this apparent paradox.

2.2.1 Heisenberg’s Uncertainty Relation

One of the most studied consequences of the mathematical structure of quantum mechanics is
known as Heisenberg’s uncertainty principle. The measurement principle describes how mea-
suring an observable projects a quantum system’s state into one of the eigenvectors of the
observable. Unlike in classical physics where a measurement does not interfere with the sys-
tem itself, quantum mechanical measurements in general modify the system they are measuring
upon.

Suppose now that one wants to measure the value of two observables. A theorem from linear
algebra states that if the observables commute, they have a common basis in which they are
diagonal. Say the two observable are A, B and A = UD,U" and B = UDgU" where D4, Dp

11



are diagonal matrices. Suppose we are interested in the average value when measuring both
observables. When we measure |¥) with commuting observables, it does not matter in which
order we measure because,

(AB) = (U|AB|V)
U|UDAUTUDRUT|W)

(
(
(W|UDADRUT|W)
(
(
(

U|UDDAUT|W)
U|BA|W)
BA).

On the other hand, if the observables do not commute, this might not be the case. Nonetheless,
Heisenberg’s uncertainty principle, and especially its interpretation, tells us a lot about these
noncommuting measurements.

Theorem 2.1. Suppose A and B are two Hermitian matrices corresponding to two observables
and |¥) is an arbitrary quantum state. Heisenberg’s uncertainty principle states that,

AAAB > (2.5)

(w4, Bl w)
2
The correct interpretation of equation (2.5) is that if we prepare a large number of quantum
states |W), and perform an equal number of A and B measurements. Then the standard
deviation, AA, of the A results times the standard deviation, AB, of the B results satisfies
inequality (2.5). Heisenberg’s uncertainty principle is applicable with all measurements we will
discuss in this thesis.

There is a special case of Heisenberg’s uncertainty principle which we will need later on: the
time-energy Heisenberg uncertainty principle,

AEAt = 7h. (2.6)

It is not obvious that this equation applies as it does not fit theorem 2.1’s assumptions: time
is not an observable. Unfortunately, the derivation of this form of Heisenberg’s uncertainty
principle is beyond the scope of this thesis. However, we will spend a few words on its important
interpretation [35]. If we have a system with a spread in energy of AE, it takes time at
least At = ﬁ to reliably move from one orthogonal state to another. Therefore, if we want
a quantum mechanical system with k distinguishable states, it must consist of k& orthogonal
states. If we assign each orthogonal state its own energy level, we must make a tradeoff. We
can cram the energy levels close together, but then the time to reliably evolve the system
from one orthogonal state to another increases, or, we can increase the spread in energy levels
which in turn reduces the time to evolve the system between orthogonal states. This case of
Heisenberg’s uncertainty relation will return in our conclusion about the role of interference and
entanglement in quantum computing.

2.2.2 Final Words on Quantum Mechanics

We have only very briefly introduced the formalism of quantum mechanics. Much more can be
told but we refer to [28] and other excellent books on the topic. The previous sections covered
enough quantum mechanics to introduce a model of computation based on quantum mechanics.
Nonetheless, a final remark is needed. Quantum mechanics actually is a formalism for physical
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theories rather than a physical theory itself. Given a physical system quantum mechanics does
not tell us what the state space is, which unitary operator describes its evolution nor which
Hermitian operator describes a measurement. It is the physicist’s job to find the right state
space to describe a quantum system by experimentation. Of course, most quantum information
scientists work the other way around. We start with an interesting Hilbert space, describe an
evolution on it and then look for a way to implement it in a physical system. Luckily, as we
will see in the following sections, a limited number of basic evolutions allows us to simulate an
arbitrary evolution to any degree of accuracy. Nonetheless, designing a scalable implementation
of these limited number of basic evolutions is extremely difficult.

2.3 Models for Classical Computation

We introduced the importance of Turing machines earlier but have not defined them properly.
We also discussed how boolean circuits are equivalent to Turing machines. With our aim of
defining a quantum model of computation it will be more useful to start from the boolean circuit
model of computation than from a Turing machine 2.

Let’s start with the definition of a boolean circuit from classical complexity theory [13].

Definition 2.1 (Boolean Circuit). A boolean circuit is an acyclic graph G = (V, E) where the
nodes V' are boolean gates or boolean inputs. The input nodes have indegree 0 and there is at
least one node with outdegree 0. The boolean gates are either AND (A), OR (V) or NOT (=)
gates. Input nodes are either true or false. We recursively define the value of each internal
node v(x;):

o if x; is an AND-gate and its children are xy,x;, v(x;) = v(zg) A v(xy),
o if z; is an OR-gate and its children are xy,x;, v(z;) = v(zK) V v(27),
e if x; is a NOT-gate and its child is xx, v(x;) = —v(xg).

The size of a circuit is the number of gates in it.

Definition 2.2 (Family of circuits). A family of circuits is an infinite sequence C = (Cp,C1,--+)
of boolean circuits, where C,, has n input variables.

We will be concerned with two types of boolean circuits: boolean circuits for decision prob-
lems and boolean circuits for function problems.

Definition 2.3 (Uniform polynomial circuits). We say that a language L C {0,1}* has uniform
polynomial circuits if there exists a family of circuits C = (Cp, C1,--+) such that the following
are true:

e the size of C,, is polynomial in n,

e there is a O(log(n))—space bounded Turing machine N which on input 1" outputs a de-
seription of Cy,

Uniform polynomial circuits for decision problems require in addition to the above that,

e there is exactly one node with outdegree 0, the output of C,,

2Quantum Turing machines have been defined [11] but are less intuitive and only scarcely used.
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o Vr € {0,1}*, if x € L : given x to the input nodes, the output of Cla| is true.

Uniform polynomial circuits for function problems require in addition to the first two points
above that there are exactly n nodes with outdegree 0: the output of C,,.

Basic results from complexity theory prove that all languages in P have uniform polynomial
circuits.

Example 2.8. Figure 2.1 shows how a very simple circuit consisting of two AND-gates, two
NOT-gates and one OR-gate to create an XOR-gate. X

O,
(W

Figure 2.1: Classical XOR circuits.

Notice that we allow AND, OR and NOT gates in our circuit. This is redundant as x1 Vo =
—((—x1) A (mx2)). Boolean circuits using only gates from the set {AND, NOT} can decide the
exact same languages as the boolean circuits from our standard definition. Moreover, the size
of the circuits increases only with a constant factor. We call each finite set of logic gates that
is able to decide any language or calculate any boolean function a finite universal gate set.

Boolean circuits provide the foundation from which we can start defining quantum circuits.
As our next section will show, we will switch the information carriers from bits to a qubits
and introduce quantum logic gates to replace boolean gates. In this way, it is clear that quan-
tum circuits very much resemble Boolean circuits, however, we are still one step from defining
quantum circuits. Remember that quantum mechanics is a reversible theory: every quantum
mechanical evolution has an inverse. Certainly most boolean circuits are not reversible: given
the output to the circuit it is impossible to deduce the input: e.g., our previous XOR exam-
ple. Luckily, we can make every classical boolean circuit reversible by taking two new ideas
into account. First of all, we use universal reversible gate sets instead of e.g., {AND, NOT}
which contains the irreversible AND gate. A frequently used universal gate set is the singleton
{TOFFOLI}. Figure 2.2 illustrates how the TOFFOLI gate acts on 3 bits. It is not obvious
that every irreversible circuit can be transformed into a reversible one. However, it was shown
by Fredkin and Toffoli that any circuit computing a function x — f(x) can be transformed into
a reversible circuit that computes (z,y, z) — (x,y ® f(x), z) where using z is a string of ancilla
bits. We refer to [28], chapter 3 for a more in depth treatment of reversible computation.

An interesting property of this kind of circuit is that a bit is never discarded: every gate
has the same number of inputs as outputs. In our next section we will see how this gives us a
mathematical description which makes comparison with quantum computation easier.

Before we move on to defining quantum circuits we want to make a last remark. It is not
hard to extend boolean circuits to allow for probabilistic computing. We add a RANDOM
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a —] — a
b — Toffoli — b
c — — cDab

Figure 2.2: Toffoli Gate.

gate to our universal gate set which has no inputs and outputs 0 with probability 1/2 and 1
with probability 1/2. Probabilistic computing in the context of reversible boolean circuits is
impossible as there is no acceptable way to reverse the operation of a probabilistic gate.

2.4 Models for Quantum Computation

The most widely used quantum computational model is based on classical reversible boolean
circuits: quantum circuits. The differences between both models are subtle but easy to under-
stand, yet it remains to be understood how these differences influence the computational power
of the models.

Quantum circuits are very similar to their classical counterparts but differ in their basic
building blocks: the information carrier in a quantum circuit is the qubit.

This new information carrier demands a review of our definition of gates. A quantum gate
is a valid quantum mechanical evolution on a small set of qubits®. We will now look at some
examples while introducing a convenient graphical notation to describe quantum gates and
quantum circuits.

Example 2.9. (Single Qubit Operations)

An important class of single qubit operations are the Pauli gates. The operation of these
gates on a single qubit are represented by the Pauli matrices.

O A e A ) N

It will pay off to know the intuitive effect of the different Pauli gates on an arbitrary qubit.
The identity matrix does not actually correspond to a gate but rather to a wire: it leaves every
quantum state invariant. The X-gate switches the amplitudes of the |0) and |1) basis states:
al0) +b|1) — b|0) +a|l). The Y-gate switches the amplitudes just as the X-gate but introduce
a factor —i in front of the |0) and ¢ in front of the |1) components: a|0) 4 b|1) — —ib|0) + ia|1).
The Z-gate introduces a phase of —1 in front of the |1) component: a|0) + b|1) — a|0) — b|1).

Three other gates that play an important role in quantum circuits are the Hadamard (H),
Phase (S) and 7/8 gate (T),

1= \2 E 11]’ 5= [(1) ?] r= [(1) exp((i)w/él)} (2:8)

The Hadamard gate has a very intuitive effect on the basis states, it brings both states to

an equal superposition of |0),|1): |0) — % and [1) — % The S-gate and T-gate

introduce a factor of respectively ¢ and exp(im/4) in front of the |1) component. Every single
qubit gate will be represented by a box in a quantum circuit, figure 2.3.

3There is one extra technical condition on the unitary evolutions: the evolution matrix must be efficiently
computable. If this weren’t the case, one could introduce quantum gates that computed uncomputable functions.
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Figure 2.3: Single Qubit Gate.

Example 2.10. (Controlled Operations)

Another important class of quantum gates are the so called controlled gates. The most
important representative of this class is the controlled-NOT, or CNOT-gate. It’s operation on
a pair of qubits is represented by the following matrix,

1 0 0 O
0100

CNOT = |0 o o 1l (2.9)
0010

The first qubit of the CNOT-gate is often called the control qubit while the second is called the
target qubit. The effect of the CNOT-gate on a composite system is to flip the target qubit if
the first qubit is the |1) state: |z) ® |y) — |z) ® |z ® y). We mention without proof that there
exists a construction to make a controlled version of every possible quantum gate [28]. The
CNOT-gate and controlled-U gate are shown in figure 2.4.

z) ——— )

ly) —d— ly)

Figure 2.4: CNOT and Controlled-U Gate.

X

Example 2.11. The gate in figure 2.5 is called a swap-gate and is necessary for example in
Shor’s factorization algorithm. It intends to swap two qubits and it can be implemented with
three CNOT-gates. Let us now check that it performs its intended operation. In order to prove

—N A
N\

N N N
U \d

Figure 2.5: Swap Gate.

that the swap-gate performs its intended operation we follow the evolution of the four basis
states. Linearity of quantum mechanics then assures that the swap-gate works for all other
states.

CNOT1—-2
_—

|00) |00) |00) |00),
’01> CNOT1—2 ’01> CNOT2—1 ‘11) CNOT1—2 ‘10>,
’10> CNOT1—2 ’11> CNOT2—1 ‘01> CNOT1—-2 ‘01>7
’11> CNOT1—2 ’10> CNOT2—1 |10> CNOT1—2 ‘11>
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As with classical circuits, we want to limit the number of unitary evolutions one can choose,
to design quantum circuits. We therefore introduce the notion of a universal set of quantum
gates, namely a set of gates that can be used to perform general quantum computation. We
first note that that there exist two types of universal sets of quantum gates. There are the
real universal sets which are able to exactly implement every other possible quantum gate,
e.g., {CNOT, all single qubit operations} [6, 28]. On the other hand, there are the more
practical universal sets for quantum computation, e.g., {CNOT, H, S, T}. These universal sets
of quantum gates are able to approximate any possible quantum gate to within any precision
with only little overhead. A remarkable and deep theorem by Solovay and Kitaev [5, 28] states
that approximating any single qubit gate to an accuracy of € requires only O(log®(1/€)) gates
from the set {H, S, T}. Therefore, the Solovay-Kitaev theorem implies that any quantum
circuit with m CNOT gates and single qubit gates can be approximated to an accuracy € using
only O(mlog®(1/e)) gates from the discrete set {CNOT, H, S, T}. This is interesting because
physicists and engineers need only to find physical implementation for four gates instead of
CNOT and all possible single qubit gates. Finally we note that {TOFFOLI, H} is a discrete
set of quantum gates that is universal in a third way. A result from [11] states that one
does not need complex amplitudes to achieve the full power of quantum computers. Quantum
computers which states’ are described with only real probability amplitudes are as powerfull
as general quantum computers. The set {TOFFOLI, H} is universal for this restricted type of
quantum computers [14]. What is interesting with the latter example is that the TOFFOLI
gate is universal for reversible classical computation; all that is needed for universal quantum
computation is the Hadamard gate.

A final ingredient in our quantum model of computation are measurements. We can place a
measurement device anywhere in the quantum circuit and measure any set of qubits. Figure 2.6
show how we denote the measurement device.

)

Figure 2.6: Measurement Device.

This finishes our construction of quantum circuits. From now on we are interested in finding
polynomial sized quantum circuits which given a certain standard basis state as input, outputs
the answer to a specific problem either exactly or with a high probability. We call the set of
languages that is efficiently decided with certainty on a quantum computer the class EQP, and
the class that is efficiently decided with high probability the class BQP*.

2.5 The Deutsch-Jozsa Problem

We are now ready for a first example which demonstrates the power of quantum computers. This
problem is of historical and theoretical importance because it was the first quantum algorithm
that had a provable speedup compared to any classical counterpart and it introduces some
concepts which will appear in other quantum algorithms too; unfortunately the problem it
solves is of little practical importance.

“We define that a language is BQP if its instances are correctly decided with a probability of at least 2/3 in
analogy with most definitions of BPP.
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Suppose we are given a function f : {0,1} — {0,1} as a quantum oracle. This means that
we are given a quantum operation, say Oy, that performs the following evolution on two qubits
(z,y) — (z,y ® f(x)). Note that there are exactly four possible functions:

e balanced: f(0) =0, f(1) = 1,
e balanced: f(0) =1, f(1) =0,
o constant: f(0)=1,f(1) =1,
e constant: f(0) =0, f(1) =0,

We know that the function, f, is either constant or balanced® and we must find out which is
true.

Classically we must query the oracle (or evaluate the function) twice in order to figure out
whether f is constant or balanced. It is not hard to see that one query gives us no information
towards deciding whether it is constant or balanced. However, there is a quantum circuit that
decides the problem, querying the oracle only once, figure 2.7.

0 T —{E+—A
f

Figure 2.7: Circuit that solves the Deutsch-Jozsa problem.

Let us calculate the state of the qubits through the network,

0j0) 25 o)1)

wer, [0)+]1) 10) = [1)
V2 V2
o (=1)/9)0) + (-1)/M1) 2 10—
V2 V2
Hel 0) — 1)
— £|f(0) P f(l)  ——.
1£(0) & (1)) 7
The three first gates are fairly simple and intuitive quantum operations. The first interesting
evolution is the oracle query. Suppose we have a state |z)(|0) — |1)) and apply the oracle to
it, we get (—1)7®)|z)(|0) — |1)) because if f(z) = 0, |0) — [1) — |0) — [1) and if f(z) = 1,
|0) —|1) — |1) —]0). We will see how this concept appears again when we discuss more complex
quantum algorithms. What is interesting is after the third step, qubit one is, up to a global
phase factor, in state 7|0>\J/%‘1> if the function is constant and 7’())_2‘ ) if the function is balanced:
both states are orthogonal to each other. The final Hadamard gate on qubit one rotates the
qubit such that a measurement in the standard basis reveals |0) or |1).

Using only one query operation this quantum circuit outputs a |0) if the function is constant
and |1) if the function is balanced. On the one hand this example shows that quantum computers
can be more powerful than classical computers. On the other hand, this toy problem is not

A balanced function is a function where exactly half of the elements from the domain are mapped to 0 and
the other half are mapped to 1.

18



suitable to prove that quantum computers are more powerful than classical computers for the
interesting class of decision problems.

This ends our introduction of quantum mechanics and its corresponding model of computa-
tion. We have very briefly touched upon entanglement and one can imagine its importance for
quantum computation. Our next chapter will investigate this and other phenomena so that we
can study quantum algorithms and identify the elements that cause the speedup of quantum
algorithms over classical algorithms.
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Chapter 3

Quantum Mechanical Phenomena

When asking which phenomena are responsible for the speedup quantum algorithms have over
classical algorithms, one gets as many answers as there are quantum information scientists:
entanglement, superposition, interference, quantum parallelism, .... Where the previous chap-
ter gave us a formal idea about quantum mechanics, this chapter discusses the intuition about
quantum mechanical phenomena and compares them with classical counterparts.

3.1 Interference

Quantum mechanics harbors some of the most bizarre and counterintuitive phenomena known
in physics. One of the first phenomena to be observed was interference. This phenomenon
was already widely known in the context of waves but it came as a big surprise that matter
sometimes also behaves as a wave in addition to its particle behavior and therefore also exhibits
interference effects. Because the matter wave can spread in space, it can destructively and
constructively interfere at certain positions.

Interference in the quantum mechanical formalism is relatively easy to understand yet its
applications are stunning. We know the effect of a Hadamard transformation on the basis states,

0) = 1)
5

0) +[1)

H10) = 7

H|1) =

Now suppose we have a qubit in state

_ o+
W) = N

and we apply a Hadamard transformation. We thus get the state,

0)+11) _ HIO)+ H[1) _[0)+[1H)+1[0) —[1) _ 0).

HI) = H= 7 .

We see that in the last step the amplitudes of |1) have interfered destructively, moreover, as
the amplitudes were equal in magnitude but opposite in sign, the state H|¥) does not have a
component along |1) anymore. On the other hand, the amplitudes of the |0) state have interfered
constructively. Intuitively we call the phenomenon that occurs when there are multiple ways to
go from one state to another, in the above example |0) — |1) and |1) — |1), interference. Let
us now illustrate this with an example that is known as the Mach-Zehnder interferometer [8].
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Figure 3.1: Mach Zehnder Interferometer.

3.1.1 Mach-Zehnder Interferometer

Suppose one builds the experimental setup shown in figure 3.1. Particles that move horizontally
before the mirrors are in state |0) and those that move vertically are in state |1). After the
mirrors, the vertically moving particles are in state |0) and the horizontally moving particles
are in state |1). Therefore, the particles entering our setup from the left are in state |0).

Beamsplitter By splits the beam of particles into two beams, one going horizontally and one
going vertically, corresponding to states |0) and |1). From physics, we know that we can model
beamsplitters as Hadamard transformations, therefore,

Ba |0> + ’1>

|0y —= T

We measure the arrival of particles with detectors Dy and D;. It is clear from the state
after the beamsplitter that exactly half of the particles will be measured in Dy and the other
half in D;. Our conclusion could be that the beamsplitter sent half of the particles to the |0)
path and the other half to the |1) path. The detection of a particle at one of the detectors then
measures whether that particle traveled along the 0-path or along the 1-path. Unfortunately
this is a wrong conclusion as a modified experiment shows.

Figure 3.2: Mach Zehnder Interferometer.
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Modify the experiment by inserting another beamsplitter, Bp, identical to B4 in front of the
two detectors, figure 3.2. We also require that only one particle is in the setup at a time. This
does not modify the results of the previous experiment: with a probability of 1/2 the particle
arrives at detector Dy and with a probability of 1/2 the particle arrives at detector D;. In our
modified experiment, the second beamsplitter splits both the horizontal and vertical beam into
two new beams. Therefore, we expect the probability that a particle arrive in Dy is,

Pr[Particle along 0-path path] - Pr[Particle not deflected by Bp]

+ Pr[Particle along 1- path] - Pr[Particle deflected by Bp]
11 11 1

=53t~ %

Alas, quantum mechanics has more surprises in store for us. Because the two beams interfere
with each other at beamsplitter B we only detect particles in Dy, formally,

0y 24, ’0>;§‘1> LINT

This proves that a particle does not take one or the other path, it exists in a superposition of
travelling along the 0-path and the 1-path at once and the two components of the superposition
interfere constructively along the 0-path and destructively along the 1-path.

DO
. B
Mirm/r/ _______________ 1-Path / ____________ D,
D :
X '
""""""""" / opath/{'rror
B

Figure 3.3: Mach Zehnder Interferometer.

Finally we introduce a detector Dx along the 1-path, figure 3.3. When a particle in a
superposition arrives at Dx a measurement occurs. With probability 1/2 the particle is detected
at Dx and thus projected into state |1) and with probability 1/2 the particle is not detected and
thus projected into state |0). If the particle is free to travel further and it arrives at beamsplitter
Bp, it will again be converted to a superposition and both Dy and D; will register the arrival
of half of the particles,

By |0)+|1 . .
0) Ba, |0) +11) Dx 0) =2 % with probability 1/2
V2 1) Ba, 7|0>\;§’1> with probability 1/2
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3.1.2 Quantum Coin Flipping

Our next, more entertaining example, demonstrates quantum interference in a gedankenezrper-
iment [17]. Alice and Bob agree to play a game where they are given a black box with a coin
in it. Alice and Bob know that initially the coin is heads up. The only way to flip the coin is
to reach inside the box without looking and flip it. There are three rounds in the game, during
round one Alice can flip the coin, during round two Bob can flip the coin and in the last round
Alice can flip the coin again. Alice wins the game when the coin ends heads up and Bob wins
the game when the coin ends tails up.

It is clear that there is no obvious strategy for Alice nor Bob to win the game because Bob’s
coin in round two will be totally random oriented as well as Alice’s coin in round three. The
best strategy for Alice and Bob is to flip the coin with probability 1/2 so they will win the game
with at least 1/2 probability.

Now Quincy enters the room with a similar box, only Quincy’s box uses a quantum coin.
Again, initially the quantum coin is heads up and Bob and Quincy can reach into the box
without looking. Bob only knows classical operations and can flip the coin with his special
quantum gloves that apply a o, evolution to the quantum coin. Quincy wins the game when
the coin ends heads up and Bob wins the game when the coin ends tails up.

In this setting Quincy has a strategy with which he always wins the game. Quincy reaches
into the box and applies a Hadamard transform. He then passes on the box to Bob who might
or might not apply a o, evolution. Finally Quincy applies the Hadamard transform again and
opens the box thereby measuring the quantum state. Formally, after Quincy applied the first
Hadamard transform the coin is in state,

0) +[1)
7

This state is an eigenvector with eigenvalue 1 of o, so Bob’s coin flip acts as the identity on
the state. Therefore it doesn’t even matter whether Bob reaches inside the box or not! Because
H? = I Quincy’s second Hadamard transforms the state back to its original state. Thus Quincy
always wins the game.

With the Mach-Zehnder interferometer and our last example it should be clear that interfer-
ence is somewhat similar to probabilistic systems. A probabilistic system can also be regarded
as existing in two different states at once. Yet interference seems more general because of the
possibility of destructive interference. Note that without mentioning it explicitly we already
demonstrated the power of interference: section 2.5 on the Deutsch-Jozsa problem. The fi-
nal Hadamard gate induces constructive and destructive interference to both the |0) and |1)
component to reveal the type of function.

3.2 Entanglement

Even some of the brightest minds in the world had deep foundational problems with quantum
mechanics. Einstein may be the most famous scientist who numerous times tried to find in-
consistencies in the theory and ironically introduced an argument against his own theory of
relativity. The thought experiment Einstein, Podolsky and Rosen [19] devised against quantum
mechanics, was based on another quantum mechanical phenomenon that is currently known
as entanglement. Since the 1960’s, entanglement has played an important role in physics and
lately has been at the center of research in quantum information theory.
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Definition 3.1. A quantum state in a composite Hilbert space is entangled if it cannot be written
as a tensor product of two states.

The most famous examples of entangled states are the Bell states,

0,y = 00+ g\ 00) —[11) o\ [01) +10) _ lon) — 10y

V2 V2 V2 V2o

in honor of John S. Bell who proved a theory which we will come back to later. Note that these
four Bell states are orthogonal and therefore define a basis, the Bell basis. We already showed
in section 2.2 that these states cannot be written as a tensor product of states.

@) (3.1)

To a first approximation, entangled states can be interpreted as states where the measure-
ment results are dependent. Take an unentangled bipartite state,

(a|0) + b|1))(c|0) + d|1)) = ac|00) + ad|01) + be|10) + bd|11). (3.2)

Let us now call X the random variable corresponding to measuring qubit one in the standard
basis, and call Y the random variable corresponding to qubit 2 in the standard basis. Equation
(3.2) already reveals that the random variables X,Y are independent; Pr[X = z,Y = y] =
Pr[X = z|Pr[Y = y|. Suppose now that the bipartite state is entangled «|00) 4+ 5|01) +~|10) +
0|11). Using the same random variables we can calculate the probability distribution, table 3.1.

(VIX] 0 [ 1]
0 o? ol
1 32 52

Table 3.1: Probability distribution table.

It is not hard to show that measurements on qubit one and two are independent if and
only if the state is unentangled. The condition that the X,Y be independent means that each
column and each row has a probability corresponding to it, such that an entry in the probability
table is equal to the multiplication of the number of the respective row and column. In other
words Jz,y,u,v : o® = zu,B? = zv,v? = yu,02 = yv. That would mean that the state
could be written as xu|00) + zv|01) + yu|10) + yv|11) = (x]|0) + y|1))(u|0) + v|1)). Taking the
contrapositive of this argument states that measurements on entangled states correspond to
dependencies between the outcomes on qubit one and two.

This is a relatively simple observation but it takes us only halfway. Probabilistic computers
are able to prepare similar states with similar dependencies between the bits. So why the
fuss about entanglement? John S. Bell conceived of some elegant equations that strictly limit
the dependencies between subsystems of classical probabilistic systems. The discovery that
even the simplest entangled quantum systems violate those dependency constraints is a clear
demonstration of the departure of quantum mechanics from the realm of classical probability
theory.

3.2.1 CHSH Inequality

This section introduces us to some ideas with which John Bell revolutionized our perspective
on quantum mechanics. The following argument is slightly different from John Bell’s original
derivation but it makes its point more clearly in the context of qubits.

25



Alice Bob

Charlie

Q,R=i1 <« (p_

Y
w
_|
I
+

Figure 3.4: CHSH experiment.

Suppose Charlie prepares a |®_) state and sends qubit one to Alice and qubit two to Bob.
Alice has measurement devices Q, R and Bob has measurement devices T, S all of which return
+1. Upon receiving her qubit, Alice flips a coin and measures her qubit with Q if it is tails up
and with R if it is heads up. Bob does exactly the same but measures his qubit with T if his
coin ends tails up and with S if it ends heads up. The measurement devices measure the qubits
according to the following bases,

Q=2 S=—-, (3.3)

R=X, T:—ZT. (3.4)

There are four different measurements possible and we calculate the expected value of each
upon measuring |®_). We illustrate how to calculate the average value of @S,

0
1 10 -1 -1 1
wase) - o = a(fy 2o 7]}
0
-1 -1 0 070
1 -1 1 0 0|1
“iﬁml'ﬁo}o 0 1 1||-1
0 0 1 —1]]0
[—1
1 1
= —[0 1 -1 0
-1
1

The calculation for the other average values is similar and shown in table 3.2.

(YX| Q | R |
S 1 1
V3 2
T 51 &

Table 3.2: Measurement outcomes that violate the CHSH inequality.
Because of linearity of expectation Alice and Bob find E[QS + RS+ RT — QT] = 2v/2. This
seems acceptable were it not for the theorem by Clauser, Horne, Shimoni and Holt based on

the work by John S. Bell [28].
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Let us forget about quantum mechanics for a moment and derive an upper bound on the
value E[QS + RS + RT — QT]. By definition,

E[QS+RS+RT—QT|=> p(Q=q¢,R=r5=sT=1)(QS+RS+RT - QT).

In classical probability theory, p(Q = ¢, R = r,S = s,T = t) corresponds to the probability
that the four measurements have these four outcomes. However, we will soo see that we must
be carefull to assign outcomes to measurements we haven’t performed in quantum mechanics.
Basic algebra also tells us that QS+ RS+ RT — QT = (R+ Q)S + (R — Q)T. At least one of
@ + R or Q — R must be zero and the other +2 or —2. Therefore QS + RS + RT — QT = +2
and thus,

E[@QS+RS+RT-QT] = > pQ=qR=r5=sT=1t)(QS+RS+RT - QT)
> pQ=¢R=rS=sT=t) 2
2.

IN

This is in stark contrast with Alice and Bob’s findings using the quantum mechanical for-
malism. One of quantum mechanics or our derivation must be wrong; luckily, we can let nature
decide. Real experiments have shown that quantum mechanics is correct and our derivation of
the upper bound of the expected value is wrong. A first error was introduced when we assumed
the value of p(Q = ¢, R =1r,S = s,T = t): a quantum state only has a definite value if it is mea-
sured. Remember the Heisenberg inequality 2.2.1: when pairs of observable do not commute (as
in our experiment) they cannot both have definite values. A second error is that we assume that
measuring one qubit does not instantly affect the other qubit. This assumption seems obvious
by Einstein’s theory of relativity which states that no information can travel faster than the
speed of light. The assumption that all observables have a definite value is called realism, the
assumption that measuring one qubit does not affect the other is that of locality; nature has
thus proved that quantum mechanics is a not a local realistic theory of reality.

The CHSH entanglement is one example in a series of proofs that show how quantum me-
chanics is inconsistent with our common sense. After its discovery, a whole research program to
quantitatively and qualitatively analyze entanglement was started. For bipartite entanglement
there exist complete theories to characterize entanglement; the multipartite case is a topic of
active research.

3.2.2 Faster than light communication & Superdense coding

In this section we will show that an entangled state is a joint state of the qubits involved. In other
words, the individual qubits do not have a definite value. Given one qubit, no measurement can
possibly reveal any information about the entangled state yet by applying local transformations,
we can change the joint state into several possible new joint states. This will introduce several
new communication techniques of which we describe superdense coding here. Other include
teleportation, quantum error correcting codes, ...

Suppose Bob visits Alice at the computer science department in Leuven to pick up a Bell
state. When Bob inattentively leaves Alice’s office with the Bell state he forgets the first qubit.
He only notices his mistake when he has arrives at his lab in Madison, Wisconsin. Is there
a way for Bob to know which state Alice gave him by only transforming and measuring his
qubit? The answer is no; using the density matrix formalism (appendix A) we can show that no
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transformation nor measurement on a single subsystem can reveal the state of the joint system.
The reduced density matrix for Bob’s subsystem of |0 ) is,

tri(ps,) = strp(J00)(00] + [11)(00] + 00)(11] + [11)(11])

N NN

The same calculation shows that the reduced density matrix for every Bell state is /2.
Thus, Bob has a maximally mixed state and any measurement will return a uniform probability
distribution over all possible outcomes. Unfortunately for Bob, he will have to call Alice to
know which state he currently shares with her. Luckily she doesn’t mind telling Bob that she
had prepared a |©,) state.

Because Alice and Bob now share an entangled state they decide to try out a technique
Bob read about in [28] called superdense coding. The idea of superdense coding is to send only
one qubit from one party to another thereby transferring two classical bits of information. The
prerequisite is to have a qubit entangled up front. Basically Bob does the following: he knows
that he and Alice share an entangled |0 ) state. By applying a Z-gate to his qubit he introduces
a —1 phase in front of the |11) component thereby transforming |©,) — |©_). He could also
apply an X-gate to his qubit which switches the 0 and 1 components thereby transforming
|©1) — |®4). Finally he can apply both gates thereby transforming |©,) — |®_). Basically,
by only transforming his qubit, Bob can decide which of four states he shares with Alice. The
superdense coding protocol Alice and Bob use, relate the two bit string 00 with |©4), 01 with
|©_), 10 with |®4) and 11 with |®_). When Bob finishes transforming his qubit according
to the two bit string he wants to transfer, he sends his qubit to Alice. Alice can now simply
perform a measurement in the Bell basis to know which two bit string Bob wanted to send her.

This concludes our discussion of entanglement. There is definitely something counterin-
tuitive going on about entanglement which only feeds our suspicion that it adds something
non-classical to quantum computing.

3.3 Superposition & Quantum Parallelism

The last two phenomena we look into are closely related to interference, namely superposition
and quantum parallelism. Superposition is the possibility of a quantum state to exist in two
orthogonal states at once. We say that |¥) = «|0) + |1) exists in a superposition of the |0)
and |1) state. What is interesting to note is that there exists a basis in which this state has a
definite value, namely the basis consisting of |¥) itself and the state orthonormal to |¥). States
for which this property applies are called superpositions.

The above implies the existence of an incoherent superposition. A state which is in an
incoherent superposition does not have the property that there exists a basis in which the state
has a definite value. An example of such a state is the maximally mixed state p = /2. In
appendix A it is shown that any measurement on /2 returns a uniform distribution of all
possible measurement outcomes. Therefore, we define mixed quantum states as incoherent
superpositions.

The ability to create superpositions lies at the heart of quantum parallelism. Many authors
have suggested that quantum computers are able to compute a function on an exponential
amount of inputs at once. Say we have a function fsar : {0,1}" — {0,1} which on input x
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Figure 3.5: Quantum parallelism circuit.

checks whether z is a satisfying assignment for a certain SAT instance we are interested in.
Could a quantum circuit such as in figure 3.5 bring us one step closer to solving this NPC
problem? Let us now calculate the state at each step,

1) =10)*"]0).

We then apply one Hadamard gate for each qubit,

1
\\112):\/27 Y (2o

z€{0,1}"

Our last gate is a controlled- fsat gate which flips the n 4+ 1’st qubit if the assignment encoded
by z is a satisfying assignment for our SAT instance. The circuit calculating the controlled- fsat
gate has polynomial size because verifying whether a given assignment satisfies a SAT instance
is in P and making a circuit controlled can be done in O(poly) gates. This results in,

1
V/on

(W) = >zl foar(@)).

ze{0,1}™

Unfortunately this is the end of the road. We have a circuit where each assignment in the
superposition is correlated with a qubit encoding whether the assignment is satisfying or not
but no measurement can extract any useful information out of it. Measuring the final state
in the standard basis returns a state |2)|fsar(z)) with probability 5. This can be achieved
classically too by, for example, algorithm SIMPLESAT.

Input: A SAT instance.
Output: True if the instance is satisfiable, false otherwise.

SIMPLESAT(S)
(1)  Set n the number of variables in S.
(2)  Guess a random string = of length n.

(3) Check whether x is a satisfying assignment of S.

In analogy with quantum superpositions we can define a similar classical notion of super-
position. If the state of a bit is probabilistic and exists in a probability distribution pg, p1, we
write it as pg[0] 4+ p1[1]. The superposition in step two of our algorithm can then be written as,



The final step of the algorithm then calculates whether the state from step two is a satisfying
assignment, resulting in,

> [allfsar(@)].

ze€{0,1}"

)
w\:‘ =

We then assume that a measurement occurs at the end of the circuit when the output is
presented.

This way of reasoning about probabilistic circuits shows some similarity with quantum
circuits. First of all, the concept of superposition is apparent to both. Secondly, because
probability mass must be conserved when measuring a state, both probabilistic and quantum
states must conserve a norm that depends on how the measurement is done. Our next section
formalizes these ideas.

3.4 Computational Models Compared

We will now build a framework with which we can compare deterministic, probabilistic and
quantum computation [25]. Their formal differences will become very simple and intuitive,
leading to a better understanding of their respective effect on computational power.

Suppose we have a deterministic computer that runs in time #(n) and space s(n) on input
x with |z| = n. We will use the notion of a Turing machine as our model of computation [27].
For convenience, we will assume that our Turing machines are precise, meaning that on every
input x of length n, the Turing machine halts in ezactly t(n) steps and all its working tapes
are exactly s(n) symbols long. We refer to [13] for the construction of a precise Turing machine
from an arbitrary Turing machine.

Define C' the set of all possible configurations of the computer: C' = T x S x H with
T = {0, 1}5(”) the possible tape configurations of length s(n), S the set of all states, H the set
of all head positions. Associate a vector space of dimension |C| to our computation and assign
a basis vector to every element ¢ € C. Let ¢, be the initial configuration of the Turing machine
on input x and cy be the unique accepting configuration. We define a C' x C' transition matrix
T for the Turing machine and set T'(cq,¢p) = 1 if it induces a transition from configuration a
to configuration b and T'(¢c,, ¢;) = 0 otherwise.

Observation 3.1. If the computation is reversible, every configuration has exactly one incoming
transition and exactly one outgoing transition. Therefore, there is a single one in every row and
column of the transition matriz, or, T is a permutation matriz.

Lemma 3.1. For any two configurations c, and cy, T" (cq,cp) = 1 if and only if the computation
starting in configuration a and running for r steps, is in configuration b.

Proof. The proof is a special case of the proof of lemma 3.2. O

We can define complexity classes in this formalism as follows: a language L is in P if there
exists a deterministic Turing machine corresponding to a transition matrix T' such that for all
inputs z, T"*D(¢,,c4) = 1 with t(n) a polynomial. We can represent the computation as a
tree with transition probabilities equal to 1, figure 3.6.

A very simple modification to this formalism introduces probabilistic evolution: we allow
T(ca,cp) € [0,1] and Y, T(cq,c;) = 1. We define the probability that a Turing machine in
configuration a will evolve in configuration b as Pr[c, — ¢p] = T'(cq4, ). The restriction on the
sum assures us that the computation will always evolve into some next state, in other words,
that probability mass is preserved.

30



>
0

Figure 3.6: Deterministic computation tree.

Observation 3.2. The transition matrices corresponding to a probabilistic Turing machine are
stochastic: the elements of every row sum to one.

It should be intuitively clear why the transition matrices are stochastic. A computation
starts in a starting state with a probability of one. Every transition distributes some probability
mass to one or more different subsequent states but the total probability mass should remain
one. It is unacceptable that a particular step in the computation would only keep the algorithm

running for 90 percent of the time. In terms of norms on a vector, the transition matrix must

fix the 1-norm®.

Lemma 3.2. Define Pr[c, 5 cp] as the probability that a probabilistic computation starting in
state c, ends up in state ¢y after r steps; then for any two configuration c, and cyp,

Prica > el = > T(cac1)T(cr,c2) ... T(cr1,0). (3.5)

C1,€25..,Cr—1

Proof. We will prove the lemma using induction on the number of computational steps. The
case r = 1 is clear: Pr[e, — ¢p] = T'(cq, ) by definition.
Suppose now that for any cg, ¢

Prlc, "5 )= Y. T(cac)T(er,ca)... T(cr2, ). (3.6)

C1,C2,-.,Cr—2

Using conditional probabilities, we can write Prlc, — ] = >, Prlca =, ¢r—1) Prle,—1 —
cp). We now use equation (3.6) and the definition to finish the proof of the lemma,

Prc, — ¢p] = ZPr[ca T, cr—1] Prle,—1 — )

Cq

= Z Z T(cq,c1)T(c1,¢2) ... T(cr—2,¢r—1) | - T(cr—1,p)

Ci C1,C2;-.+,Cr—2

= Z T(cq,c1)T(c1,¢2) ... T(cr_1,cp)

C1,C2;5-.-,Cr—1

O

We now define the probabilistic class BPP in this formalism: a language L is in BPP if there
exists a probabilistic Turing machine corresponding to a transition matrix 7" such that,

Ve e L, > T(ca,c1)T(c1,¢2) ... T(Cya))—1: ) = 2/3,
C15C250C(t(|2])—1
Vo ¢ L, > T(ca,c1)T(c1,e2) ... T(Cy(jap-1, ) < 1/3.

€C1,C2,+5C(1(|w])—1

'Recall that the £, norm of a vector u is defined as £,(u) = (3, |u,-|p)1/p.
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Note that there actual is an extra restriction: we must restrict the transition probabilities
to say the set {0,1/2,1}. We must do so because if we allow any possible probability dis-
tribution, we could program say the halting problem in the probability amplitudes and by
performing enough sampling extract that information. Using only transition amplitudes from
the set {0,1/2,1} is flexible enough to have the full power of BPP. We will use the short-
hand T%#D (¢c,, ) = 201762’“_70(“@')71 T(cayc1)T(c1,¢2) ... T(cy(|oy—1, ) from now on. Again,
we represent the computation as a tree, this time with transition probabilities between the
nodes, figure 3.7.

State Prob
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Figure 3.7: Probabilistic computation tree.

The computation tree clearly shows all possible computational paths. Moreover, it is easy to
calculate the probability that a certain computational path is followed: one just multiplies the
transition amplitudes corresponding to the edges of the computation path. Because probability
amplitudes are positive, once a certain path is spawned, it has a positive probability mass
which is bound to exist until the end of the computation. This will not be the case anymore
for quantum computation.

Let us briefly allow ourselves the liberty to define something as the the ‘O-norm’ as £p(u) =
(Zl |u7;\0). This definition is interesting as a computation leaving the ‘0-norm’ invariant cor-
responds to a deterministic model of computation: only one w; can be nonzero. We already
pointed out that a computational model that preserves the 1-norm corresponds to probabilistic
computation. An obvious question to ask would be whether a transition matrix preserving the
f5 norm leads to an interesting model of computation. The set of matrices preserving the fo-
norm correspond to the set of unitary matrices and thus this model captures exactly the power
of quantum computation. An example of a quantum computation represented by a computation
tree is shown in figure 3.8. What is important in this representation is that once we spawn a
certain computational path, it might have a positive or negative probability amplitude. The
final probability of measuring an outcome is therefore heavily influenced by how much these
positive and negative probability amplitudes have interfered.

We must be careful when defining classes of languages in this formalism though. Deter-
ministic and probabilistic Turing machines are relatively easy to define because the transition
amplitudes have a clear and intuitive meaning. Unfortunately, because unitary matrices allow
T(cq,cp) < 0 or even T'(cq,cp) € C, and the fact that quantum mechanics is inherently time
reversible, defining a quantum Turing machine introduces some technicalities that make it less
elegant then quantum circuits [11]. Nonetheless we introduce an interpretation for these unitary
transition matrices: we define T'(c,, ¢p) as the probability amplitude of the computation starting
from ¢, and ending in ¢;. A lemma similar to 3.2 applies.
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Figure 3.8: Quantum computation tree.

Lemma 3.3. Define Alc, 5 cp] as the probability amplitude of a quantum computation starting
in state ¢, and ending in state ¢y after r steps; then for any two configuration c, and cp,

Alea D)= > Tlca,e)T(er,c2) ... Ter 1, ). (3.7)

C1,C2;..-,Cr—1
Proof. We will prove the lemma using induction on the number of computational steps. The
case r = 1 is clear: Alc, — 3] = T'(cq, cp) by definition.
Suppose now that for any c,, ¢,—1 the probability amplitude is,
-1
Alca 7= ] = Z T(cq,c1)T(c1,c2)...T(cr—2,cp). (3.8)
C1,C2,...,Cr—2

From quantum mechanics we know that we must multiply unitary matrices with a vector of
probability amplitudes to compute an evolution. Therefore, we must write Alc, — ¢ =

> Alea LimiN cr—1]Alcr—1 — ¢]. We now use equation (3.8) and the definition to finish the
proof of the lemma,

Alca 5] = ZA Ca 1, cr—1)Alcr—1 — ¢

= Z Z A(ca, c1)A(er,c2) ... Alcr—2,¢r-1) | - Aer—1, cp)

Ci C1,C2;...,C

- Z A(Ca,Cl)A(CL c2)... A(cr-1,0p)

C1,C2,...,C

O]

Conforming to the principles of quantum mechanics, we define Pr[c, — c3] = |Afca — c3]|?.

We can now safely define quantum complexity classes in terms of this formalism: we say a
language L is in BQP if there exists a quantum circuit with transition matrix T such that,

2
Vo e L, Z T(cayc1)T(c1,¢2) ... T(eyap—1,0) | =2/3
C1yC255C(t(|2]) — 1
2
Ve ¢ L, > T(ca,c1)T(c1,¢2) ... Tleyap—1:) | <1/3.

C1,C2,,C(t(|z]) -1
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On the other hand, an interesting result by Bernstein & Vazirani [11] states that the power of
BQP does not increase by allowing imaginary transition amplitudes. We will therefore mostly be
concerned with only real transition amplitudes. On the other hand, the remark about arbitrary
transition amplitudes applies. [3] showed that transition amplitudes from the set {-1, -4/5, -3/5,
0, 3/5, 4/5, 1} is sufficient to incorporate the full power of BQP.

It is not hard to imagine that certain components of Ac, — c;] will be positive, while others
will be negative. Suppose one could design a quantum algorithm such that given an x € L as
input, it destructively interferes for most rejecting paths. As such, the probability for a correct
answer is boosted because of conservation of probability mass. Of course it is not at all clear
how one could go about designing quantum algorithms or circuits such that these effects occur.
Our next chapter will give some intuition to accomplish this but it remains a terribly difficult
task to find new quantum algorithms that make use of interference.

Our next claim illustrates the power of our formalism.

Claim 3.1. All deterministic reversible algorithms have a quantum analogue, or, any deter-
ministic reversible classical Turing machine has an equivalent quantum Turing machine (one
that decides the same language) that runs in the same time and space constraints.

Every deterministic classical Turing machine has a reversible equivalent whose transition ma-
trix is a permutation matrix. Intuitively, permutation matrices represent permutations of input
configurations and are thus trivially fo-norm preserving. Therefore, mathematically speaking,
all classical reversible gates are also valid quantum gates. Any classical algorithm can be im-
plemented on a reversible classical circuit and therefore on a quantum circuit. Because the
same time and space constraints apply, this claim implies that P C EQP. Actually even more
applies, also nonreversible deterministic Turing machines have a corresponding quantum Turing
machine. The only issue for nonreversible machines is that we need ancilla qubits to make it
reversible before we can transform it into a quantum Turing machine; this in turn increases the
space resources.

Recent research [32, 33] has investigated how the computational power changes when tran-
sition matrices preserve arbitrary £,-norms or when measurements deviate from the |¥|* proba-
bility rule. First of all, it was discovered that transition matrices that preserve the £,-norm with
p > 2 are permutations of diagonal matrices. As this can be achieved with reversible determin-
istic computation too, unitary transition matrices are the end of the road. On the other hand,
deviating from the |¥|? probability rule introduces some ‘perverse’ consequences. For any non-
negative integer, define BQP,, similar to BQP, except that the probability of measuring a basis
state |z) equals |ag [P/, |oy[P. (Thus BQP2 = BQP.) [33] shows that PP C BQP, C PSPACE
for all constants p # 2, with BQP, = PP when p € 4,6,8,.... These models of computation
would be able to solve PP-Complete problems which are believed to be even harder than NP-
Complete problems which in turn are believed to be not efficiently solvable. It seems that no
trivial modifications to quantum mechanics lead to non-perverse models of computation.

By now we have an intuitive feeling for the different phenomena in quantum computing.
We found that the concept of interference with its related notion of superposition will play
an important role in quantum computing. Superposition in itself is not sufficient to cause any
excitement as it has been known in the context of probabilistic computation for a long time. We
therefore suggest to drop quantum parallelism from our list of potential quantum mechanical
speedups. We will see that the technique we introduced in the section on quantum parallelism
appears again in another quantum algorithm but there we show how interference distinguishes
the algorithm from any possible classical approximation.
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Entanglement seems another very likely candidate for quantum mechanical speedup. In
the context of quantum communication, this phenomenon has been under careful study and
introduces an exponential decrease in communication resources for several different problems.
Nonetheless, in our next chapter we will suggest that its role for quantum computation is only
accidental.
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Chapter 4

Quantum Algorithms

All the foundational work has been done and we are ready to investigate some real quantum
algorithms with an eye on what role interference and entanglement play in them. The two
basic algorithms, Grover’s search algorithm and the quantum Fourier transform, which forms
the basis for Shor’s factoring algorithm, are already ten years old and have been analyzed in
detail. Unfortunately relatively few new algorithms have been found and one can ask why this
is so? Peter Shor, the father of the quantum factoring algorithm proposes two answers to this
question in [30]. First of all, quantum computers operate in a manner so different from classical
computers that our techniques for designing algorithms and our intuitions for understanding
the process of computation no longer work. A second reason is that we don’t know if there
are many problems for which quantum computers offer a substantial speed-up over classical
computers. We hope that a characterization of the role interference and entanglement play in
the speedup of existing quantum algorithms will give us a hint to which new problems might
allow faster quantum algorithms.

Nonetheless, we will investigate Grover’s algorithm, a generalization called amplitude am-
plification, and the quantum Fourier transform in order to identify the potential elements that
cause the speedup of quantum algorithms over their classical counterparts. At the end of this
chapter, we will work out our own perspective on the source of the speedup.

4.1 Grover’s Search Algorithm

Grover’s algorithm searches an unordered list for a specific item. In our prelude we were rather
sloppy with our definition and never explicitly defined a robust complexity measure. Instead of
counting the number of gates, we will use the number of times the algorithm queries the search
space as the complexity of the algorithm, often called the query complexity. As we showed in
the prelude, on a classical computer, searching an unordered list with N items cannot be done
much faster than just querying all N elements. The discovery of a quantum algorithm with a
query complexity of O(v/N) in 1996 by Lov Grover came as a big surprise and the search for
even faster methods was on. Solving NPC problems can be considered as searching a (probably)
unordered search space and thus Grover’s result applies. Unfortunately, the past ten years saw
many proofs of the tightness of the square root speedup algorithm meaning that if they exists,
efficient quantum algorithms for NPC problems must use different techniques than Grover’s
algorithm.

Suppose we want to search a space X with IV items; as a convenience we take N = 2". We
assume the items are indexed with numbers ranging from 0--- N — 1, so we can represent the
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index with an n-qubit quantum register. Interpret a particular instance of a search problem as
a function f : {0,1}" — {0, 1} that partitions the set X in good and bad items, with f(z) =1
if x € X is good, and f(x) = 0 otherwise. We will limit ourselves to searching sets X with
only one good item, say u, leaving the generalization of multiple good items to the next section.
Therefore,

0 ifx#u
f(x)—{ 1 ife=u
This function can be considered as a black boz or oracle, Oy, whose internal workings should
be implemented with a quantum circuit'. We define the query complexity of an algorithm as
the number of oracle gates in the circuit.

Example 4.1. The search space of a SAT instance doesn’t seem to have any structure. The
most naive classical search algorithm therefore queries the database O(2") with n the number of
variables. Nonetheless, SAT neatly fits into the formalism needed for Grover’s search. Suppose
we interpret an n-bit string as an assignment of the n variables with 0 being false and 1 being
true. We can then interpret the oracle as a polynomial sized circuit that given an assignment
decides whether it is satisfying or not. Applying Grover’s search to this problem would reduce
the query complexity to O(2"/?). X

We require the oracle to perform an operation similar to a CNOT gate,

) @16y 25 |2) @ (b f(x)).

Before we delve into the details of the algorithm we will describe its workings from a bird’s-
eye perspective. Grover’s algorithm starts by creating a uniform superposition over all possible
items,

Ty = > agla), with Vace{(),l}":ag;:\/l—n (4.1)
ze{0,1}" 2

We have previously seen how this can be achieved. At this stage, a measurement would
reveal u with a probability of 2% Our goal is to describe an algorithm that succeeds with
a probability of at least % Grover’s algorithm accomplishes this by iteratively applying an
operator which gradually increases the probability amplitude «, . This operator, often called
a Grover iteration, consists of two smaller operations: a phase kickback (G1) and an inversion
around the average (G2). Analysis of their effects will show how many times the Grover iteration
is necessary for our algorithm to succeed with a high enough probability.

4.1.1 Phase Kickback

The first part of the Grover iteration performs what is called a phase kickback. It is a simple
trick to introduce a phase difference depending on the outcome of a function. Figure 4.1 shows
the circuit that performs the trick; note that it needs an ancilla qubit and how it resembles the
Deutsch-Jozsa algorithm we discussed previously.

!128] describes how one could go about implementing Grover search on a database with classical information.
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1)

Figure 4.1: Quantum circuit for phase kickback.

Let U = Oy which flips qubit n + 1 when the first n qubits equal u. We thus get,

I1°"H ’$>’0> — ‘1>

V2
U=0Oy (_1)f(x)|x>|0>\é|1>

L8, (L) @)y,

|)[1)

Only when the first qubit is |u), the bits of the second qubit are flipped. Flipping the bits of
|0) —|1) is the same as introducing a —1 phase. We therefore get a —1 phase in front of the state
if and only if f(z) =1 or when z = w. In all other cases f(z) = 0 and no phase is introduced.
We applied a similar trick in section 2.5 for the Deutsch-Jozsa problem.

4.1.2 Inversion Around Average

Suppose the algorithm brings the n qubit register in a superposed state,

> k),

ke{0,1}n

where a; € R. We will shortly see that this assumption is fulfilled by Grover’s algorithm.

Next, let (a) = 3= >_,c {0,1}» @z the average amplitude of the items in the superposition. An
inversion around the average transforms every amplitude a; to 2(a) — a,, and this is exactly
what the second part of Grover’s iteration does.

I o) — o, k) — =t [

Figure 4.2: Quantum circuit for Gs.

It is nowhere clear though that this operation is unitary and thus can be performed by
a quantum circuit. We will prove that the circuit shown in figure 4.2 performs the correct
transformation. As shown in figure 4.2, the inversion around average operator can be written
as,

Gy = HE"(200) (0] — H®" = 2|0) (W] — 1, (42)
with |¥) the uniform superposition such as in equation (4.1).

Lemma 4.1. The circuit in figure 4.2 performs an inversion around the average.
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Proof. Let us start from an arbitrary superposition,

. 1
> alk)  with @) = o, > .

ke{0,1}n z€{0,1}"

We then apply the inversion around average operator, equation (4.2) on the superposition,

QW =1) [ > alk) | = 2 D alO(TR) )~ > alk)

ke{0,1}" ke{0,1}" ke{0,1}n
2
= S aln)ylk) - Y axlk)
z,y,ke{0,1}" ke{0,1}n
2
= o Y gl - D> k)
z,ye{0,1}n ke{0,1}7
a
=2 Y [ X 2w Yk
z€{0,1}* \ye{0,1}n z€{0,1}"
= Y (2(a) - ap)lx).
ze{0,1}7

This ends our proof that G is unitary, performs an inversion around the average and can be
implemented by a relatively simple quantum circuit. ]

4.1.3 Grover Iteration

The next three representations intuitively show the effect of Grover’s iteration on a uniform
superposition.

T

Figure 4.3: Probability distribution.

Figure 4.3 represents the probability amplitudes of a uniform superposition. After a phase
kickback has been applied the amplitude of the u component becomes negative such as in

Figure 4.4: Probability distribution.
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It is clear that the average amplitude has decreased. A flip around the average will therefore
decrease the amplitudes of all items in the superposition except for the amplitude of u which
increases above the average, figure 4.5. It shouldn’t come as a surprise now that applying
the Grover operation multiple times increases the probability amplitude (and therefore the
probability of measuring) of v even further. However, there comes a point where the probability
amplitude of u starts decreasing again. Mathematical analysis will show just how many times
we must do so for the probability amplitude to be maximal.

u

Figure 4.5: Probability distribution.

Our final analysis of Grover’s algorithm needs only to consider a special subspace of the
full Hilbert space. We will show how the Grover iteration is a rotation in the two-dimensional
subspace spanned by |a) = ﬁ Ewe{m}n,x#u |x), a superposition of all items which we are
not looking for, and, |3) = |u) the item we are looking for. In other words, our analysis
restricted to the two-dimensional subspace is valid because the two-dimensional subspace is
stable under a Grover iteration. We will return to the generalization of looking for multiple
items later when we study amplitude amplification. The uniform superposition is a vector in
this two-dimensional space too and can be written as cos y|a) + sin 6y|3) with,

2n —1
on
1

sinfp = on (4.4)

cos g

(4.3)

Figure 4.6 shows the two-dimensional space spanned by orthogonal vectors |a) and |3). The
uniform superposition lies somewhere in between |a), |3), with a larger component along the
|ar) axis. Applying G on a superposition in the two-dimensional subspace flips the phase of the
|3) component; this is equivalent to a reflection of the two-dimensional vector around the |«)
axis. Clearly the two-dimensional subspace is stable under Gj.

G2 leaves the vector |¥) invariant but flips the phase of all other vectors orthogonal to
|¥), more in particular vector |¥1), with [U+) = —sinfy|a) + cos6|3) the vector in the
two-dimensional subspace orthogonal to |¥). Gj therefore reflects a superposition around the
|¥) axis. Again, the two-dimensional subspace is stable under Ga. Because |¥), |¥) form
an orthonormal basis for the two-dimensional subspace, we can expand the identity operator
as I = [U)(V] + | W) (WL |; therefore Gy = 2[U)(W| — I = 2[W) (V| — (|[U)(P] + |TH)(T|) =
)] [0 (w| =

(cos bgla) + sinBy|3)) (cos Oy {a| + sin Oy (B|) —
(sinfp|a) — cos bp|B)) (sin O (| — cos O (S]) -
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P |a>

Y G, ly>

Figure 4.6: Grover’s two-dimensional subspace.

Applying the Grover iteration on a state of the form cosé|a) + sinf|3) and rewriting the
terms using the expansion of |W)(¥| — ‘\IJL><\IJL

)

G (cosf|a) +sinf|3)) = G2Gy (cosb|a) + sinb|3))
= Gz (cosf|a) —sinb|f))
(W) (W| — [T (WE]) (cos b|a) — sin ] 3))
= (cosBcos 26y — sin @ sin 26p)|a) + (sin @ cos 26y + cos O sin 26)|3).

The whole operation can also be written in matrix form,

cos20y —sin26y| [cos@| [cosBcos20y —sinfsin260y|  [cos(d + 26p)
sin20y  cos20y ||sin@|  |sinfcos20p + cosfsin20y|  |sin(f + 260)

The transformation matrix has the form of a rotation over an angle 26,. This is no coincidence;
figure 4.6 shows the starting configuration of Grover’s algorithm. |¥) is the starting state and
operator G reflects the vector around the |a) axis. Next, operator Gy reflects the last vector
around the |¥) axis. From geometry we know that the composition of two reflections is a
rotation.

We now have the necessary equations to find the number of Grover iterations necessary
to maximize the probability of measuring a good item. Before the first iteration, the n-qubit
register starts in the uniform superposition, cos fp|a) + sinfy|3). So far, we found that every
Grover iteration rotates the vector by an angle 26y; the n-qubit register after [ iterations thus
becomes,

cos((20 + 1)0p)|cr) + sin((21 + 1)6)|5).

It is now straightforward to derive how many Grover iterations we need in order to maximize
the probability of measuring the |3). We want the probability of measuring |3) to be as close
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to 1 as possible. This means,

sin?((20 +1)8p) ~ 1
@2l +1)8p ~ =
2
1
= ow)

Finally we find that we need I = ©(1/2") Grover iterations to find the item we are looking for.
Because every iteration performs exactly one query, the query complexity of Grover’s algorithm
is ©(v/27)

Quantum search or Grover search can be applied in a variety of ways. My current un-
derstanding is that a useful implementation will be a thing of the future. Nonetheless, the
techniques applied above are interesting from a theoretical point of view and find their way
into new quantum algorithms based on random walks. We will not go into the details why this
square root speedup is tight but several beautiful arguments have been given, showing that up
to a constant factor this algorithm is the best we can get. Next we will show a generalization of
Grover’s algorithm with which we can speed up several other classical and quantum algorithms.

Recall the definition of 6y in equation (4.3): sinfy = because sin 0y is small,fy ~

4.1.4 Interference & entanglement in Grover’s search

It is clear from the argument about the two-dimensional subspace that interference is involved.
The rotation in the two-dimensional subspace is the result of constructive interference of the
probability amplitude for the good states and destructive interference for the bad states. But
what about entanglement? The algorithm starts in an unentangled standard basis state. Be-
cause single qubit gates cannot introduce entanglement, the uniform superposition created by
the Hadamard gates, is unentangled. It seems that the phase kickback and inversion about the
average operators introduce some entanglement. Our following argument proves that entangle-
ment is necessary for Grover’s search using qubits.

Lemma 4.2. Grover’s algorithm on a search space with only one good item entangles all the
qubits.

Proof. First note that Grover’s search never introduces complex factors in the probability am-
plitudes. This will drastically simplify the following argument. Next, we define |¥) to be the

uniform superposition,
1
0)=—= > |,
2" z€{0,1}

the actual starting state of Grover’s algorithm. Let |®;) be the state after the first phase
kickback operation for the search instance where |i) is the good item we are looking for,

1 2 .
|‘pi>:ﬁ > !w>—ﬁh>-

ze{0,1}

Suppose p qubits are unentangled from the other n — p = g qubits in some arbitrary state |®;).
This means the quantum state |®;) can be written as,

|®;) = (ao|0)®P + -+ - ago_1|1)®P) (bo|0)F7 + - - - boa_1[1)®7) .
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We define p™ the number of positive probability amplitudes and p~ the number of negative
probability amplitudes in the set {ag,--- ,a_1}. We define ¢q*, ¢~ similarly. Moreover we
know that p™ 4+ p~ = 2 and ¢™ 4+ ¢~ = 29. If we expand the tensor product we know that
the number of positive probability amplitudes is m = pT¢*" +p~ ¢~ and the number of negative
probability amplitudes is n = ptq~ + p~¢". We also know that the probability amplitude of
the item we are looking for is the only which is different in sign from all the other probability
amplitudes after one of the phase kickback operators. Therefore, m or n must be 1. It is not
hard to see that this is impossible; say m = 1, then at least one of p*,¢*,p~, ¢~ must be zero.
But then some standard basis elements have a nonzero probability amplitude. However, we
know that all standard basis elements we are not looking for, have the same amplitude. This
is a contradiction and we can conclude that for no value of p, the state is a tensor product.
Therefore all qubits are entangled. O

4.2 Amplitude Amplification

Amplitude amplification is a technique that was developed in [10] and employs similar techniques
as Grover’s search to speed up other quantum algorithms. Suppose we have an algorithm,
classical or quantum, which finds a good solution with a probability a. Running the algorithm
a second time increases the probability of success. How many times do we expect to repeat the
algorithm before we find a good solution? Call T" the stochastic variable that counts the number
of times we must run the algorithm before we find a good solution. We want to calculate E[T7,

E[T] = it(lfa)t_la = ait(lfa)t_l

a(l—(l—a))2 a’

Thus, we expect to run an algorithm with a success probability of a, % times before it
succeeds. Quantum amplitude amplification reduces the expected number of runs down to ﬁ
There is one condition for amplitude amplification to work though: the underlying algorithm
must be reversible. Therefore the underlying

e deterministic algorithm must be made reversible,
e probabilistic algorithm must be made reversible using the techniques from section 4.2.2,

e quantum algorithm cannot use any measurements.

4.2.1 Algorithm & Analysis

Consider a boolean function f: X — {0, 1} that partitions a set X in good and bad elements,
with z € X good if f(z) = 1 and f(x) = 0 if bad. Consider a quantum algorithm A that
uses no measurements and on input |0) outputs a superposition )y a.|r) of elements in X.
Let a denote the probability that a good element is produced when A|0) is measured. First
the algorithm prepares the starting state A|0); next, as in Grover’s search algorithm, quantum
amplitude amplification applies an operator, @) iteratively. Again, operator () consists of two
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parts: the first part (Q; flips the phase of the good elements. The second part Q)2 performs
another reflection, Q2 = ASpA~! with Sy an operator that flips the phase of all elements
except |0).

lw>

A

QQ;lw>

\ lw>=A|0>

»  y>

/ Qlw>

Figure 4.7: Amplitude amplification two-dimensional subspace.

Let us analyze the algorithm and prove that we only need to apply @, ﬁ times. Let

us name V) = AJ0); we know that it consists of good and bad elements. We define |¥) =
cos 0| Wo) + sinOy|¥4), with |¥y) a normalized superposition of the bad elements in |¥) and
|¥;) a normalized superposition of the good elements in |¥). From our assumption about the
success probability of A we know that sin? 6y = a.

As with Grover’s algorithm, without loss of generality, we can restrict the analysis of operator
Q@ to the two-dimensional subspace spanned by |Wg),|¥;). It is clear from the definition of
|Wo), |¥1) that the starting state |¥) is in the two-dimensional subspace. We know that @1 only
flips the phase of the good elements and leaves all other vector invariant. It follows that the
two-dimensional subspace is stable under ;.

The effect of ()2 on the starting state is equal to the identity; on all other states orthogonal
to the starting state, more in particular the state in the two-dimensional subspace which is
orthogonal to the starting state, }\IIL>, it flips the phase. ‘\IIJ-> can be written as — sin 6| W) +
cos 0p|¥1). Because |¥), {\IJL> form a basis for the subspace, and @y transforms them into
the subspace again, the latter is stable under Q5. It follows that a vector starting in the
two-dimensional subspace remains in the two-dimensional subspace throughout the amplitude
amplification iterations. Note also, that we can rewrite ()9 limited to the two-dimensional
subspace as I — 2| W) (U+| = [W)(¥] — [WH) (T

The calculation of the effect of operator @ on a superposition cos 0|¥g) + sin 0| W) of good
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and bad states, is very similar to the one we did for Grover’s search.

Q (cosB|Tg) +sinf|¥1)) = Q2Q1 (cosf|¥y) + sinh|Wy))

Q2 (cos 0| Tg) —sinO|¥q))

() (W] — [T (W) (cos ] W) — sin b Wy))

= (cosfcos20y — sinfsin26y)|¥g) + (sin O cos 260y + cos 0 sin 26)| V).

The whole operation can also be written in matrix form,

cos20y —sin26p| [cosf|  [cosBcos20y —sinfsin260y|  [cos(d + 26p)
sin20y  cos26p | |sin@|  |sinfcos26y + cosfsin26g|  |sin(f + 26))

As with Grover’s search the transformation matrix rotates the state vector over an angle
of 26y. Before the first iteration, the n-qubit register starts in the uniform superposition,
|W) = cos | W) + sinby|¥;). The n-qubit register after [ iterations thus becomes,

cos((21 + 1)00)|Wo) + sin((20 + 1)00)|¥1).

Using the same argumentation as for Grover’s search algorithm, in order for sin((21+ 1)6p)

to be close to 1,l:®(%> orl:@(ﬁ).

Example 4.2. The similarity between amplitude amplification and Grover’s search algorithm
demands looking into. As a matter of fact, we can interpret Grover’s search algorithm as a
special case of amplitude amplification.

We first interpret the set of elements X as the indices used in Grover’s search. We have now
embedded the Grover search space in the amplitude amplification algorithm. Our next step is
to identify the oracle as the function that partitions the elements of X in good and bad ones.
Finally, the Hadamard gates that create a uniform superposition can be viewed as an algorithm
A that finds a good element with a success probability of Qin This shows how Grover’s search
algorithm is a generalization of amplitude amplification.

In addition to this analysis, we can also easily prove the generalized version of Grover’s
search algorithm. Suppose we know that there are k good elements in a search space. The
Hadamard gates then create a uniform superposition which when measured returns a good ele-
ment with probability © (2%) Applying the amplitude amplification algorithm, we find a good

element with high probability using © <\ / 2’2) queries. An algorithm exists to find a good item
when we don’t know k but it is beyond the scope of this work [10]. X

4.2.2 Amplitude Amplification of a Random Walk

The most archetypal representative of a language in NPC is the SAT problem. Given a boolean
propositional formula, does there exists a satisfying assignment for it. No polynomial time
algorithm has been found to solve this decision problem and it seems safe to assume that no
algorithm will be found, ever. Nonetheless, because of its wide applicability, it is useful to
search for the most efficient algorithms that solve the problem. We will consider a probabilistic
algorithm developed by [36] based on the concept of a random walk [1].
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Input: A SAT instance.
Output: True if the instance is satisfiable, false otherwise.
RANDOMWALKSAT(S)
1)  Set n the number of variables in S.
Guess a random string = of length n.
repeat 3n times:
if All clauses satisfied
return True
else
Find an unsatisfied clause, c.
Satisfy clause ¢ by uniformly picking a literal [ and making it true
by changing the value of z.
return False

- W N

AN AN AN N N N S
o ~J O Ot
— N

—~~
Ne)
~

It can be shown that this algorithm succeeds with a probability of at least ﬁn. Repeating
the algorithm 1.329" times gives an algorithm that runs in time O(1.329"poly) and succeeds
with a constant probability. It is not entirely trivial to just apply amplitude amplification to this
algorithm. Because of the guessing in step 2 and step 7, RANDOMWALKSAT isn’t a reversible
algorithm. However, we will show how to obtain reversibility while maintaining the correctness

of the algorithm.

)"

Figure 4.8: Naive quantum circuit for probabilistic choices.

The easiest quantum circuit that guesses a random n bit string as in step 2 of RAN-
DOMWALKSAT is the circuit shown in figure 4.8. Unfortunately a measurement is used which
violates our reversibility condition for amplitude amplification.

Figure 4.9 shows a circuit that resolves this issue. The circuit uses n ancilla qubits in
addition to the n qubit register we want to uniformly sample. The effect of the circuit is,

npw@n  HEIS" 1 n
0)%"0)%" o > [2)[0)® (4.5)
z€{0,1}
CNOTz@_Z' n 1
i, o > la)e). (4.6)
z€{0,1}

The last equation shows that every component of the n-qubit register is entangled with
a similar component in the n ancilla qubits. We now require that nothing is to be done to
the ancilla qubits for the rest of the algorithm. Only the n-qubit register and other ancilla
qubits can be modified. The entanglement between the first and ancilla qubits ensures that no
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Figure 4.9: Entangling quantum circuit for probabilistic choices.

interference effects can occur. Recall that interference is an effect on the probability amplitudes
of different components. Take two arbitrary components, |x)|z),|y)|y); a unitary evolution on
the n-qubit register might transform the first state |z)|z) into |y)|x) but no interference with
ly)|y) can occur due to the ancilla qubits.

Finally, at the end of the amplitude amplification algorithm we measure the n ancilla qubits
in the standard basis which induces a collapse. Suppose that the outcome of the measurement on
the ancilla qubits is |t1tg - - - t,), then we know that the first component and our random string
has been sampled as tits - --t,. All other random choices in our algorithm can be transformed
to this reversible form as long as we keep the ancilla qubits for different probabilistic choices
distinct. At the end of the amplitude amplification we can measure all ancilla qubits at once,
collapsing the whole superposition to a superposition that reveals our probabilistic choices.
Note also, that if we wanted to perform a unitary operation U depending on the measurement
outcome, we can just perform a controlled-U operation. [28] show how any unitary operation
can be transformed into a controlled-unitary operation. The entanglement ensures that no
interference between the states depending on two possible measurement outcomes occurs.

This method is rather expensive in terms of ancilla qubits but it shows an important tech-
nique that will prove useful in our perspective on the role of interference and entanglement in
quantum computing.

Theorem 4.1. Using ancilla qubits, all measurements can be postponed to the end of the algo-
rithm.

The construction from theorem 4.1 allows the amplitude amplification of the random walk
to work. RANDOMWALKSAT needs a register for n, a register for x, 3n registers for the ¢’s and
3n registers for the I’s. However, we modify RANDOMWALKSAT and add quantum gates which
entangle the register for x, the registers for the ¢’s and the registers for the I’s with an equal
number of ancilla qubits. It is clear that these extra quantum gates make RANDOMWALKSAT
invertible. Now let A be the modified RANDOMWALKSAT circuit. Next, we describe how to
implement ();. This operator should flip the phase of all satisfying assignments. We know
that checking whether a given assignment satisfies a formula can be done in polynomial time.
Therefore, we let Q1 be the polynomially sized quantum circuit that checks whether register x
is a satisfying assignment; we do not take the ancilla qubits into account. This concludes the
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description of the amplitude amplification algorithm for the classical random walk. However,
amplitude amplification as we describe it assumes that we know the success probability of
A. In our case, this depends on the number of satisfying assignments which we do not know
beforehand. We refer to [10] for a more advanced amplitude amplification algorithm that works
without knowing the success probability.

4.3 The Quantum Fourier Transform & Shor’s Factorization Al-
gorithm

The quantum Fourier transform is the basis for several algorithms which are in some sense
related: eigenvalue estimation, Shor’s factoring algorithm and the discrete log problem. As we
discussed in the prelude, factoring is a very old problem that has resisted an efficient solution
on classical computers. Let FACTORINGD be the following problem: given an integer n and
an integer k; does n have a factor larger than &7 FACTORINGD is the decision problem
corresponding to the problem of finding a (prime) factor of a given number. FACTORINGD
is believed to be in NPI; the class of problems that is probably hard but not complete for NP
and believed to sit somewhere in between P and NPC. The discovery of Shor’s algorithm puts
FACTORINGD in the class BQP. It was conceivable at the time of the discovery in 1994,
that quantum computers would be able to solve NPC problems. Research performed during
the last ten years has tempered the optimism and it is believed that NPC problems are out
of reach even of quantum computers. Nonetheless there is still a handful of problems in NPI
which are still believed to be solvable on quantum computers: one primary candidate is GRAPH
ISOMORPHISM on which promising research has been performed.

4.3.1 The Quantum Fourier Transform

Back to the quantum Fourier transform. In order for us to focus on the role of interference
and entanglement in the algorithm we will skip some parts of the analysis referring to [28]
for more details. The quantum Fourier transform is a technique that implements a discrete
Fourier transform in an efficient way. The discrete Fourier transform takes as input a vec-
tor of N complex number, [z, 21, - ,zy—1] and outputs N transformed complex numbers,

[y()a Y1y anyl] Wlth7

The quantum Fourier transform is very similar, only it is a linear operator which on the
basis states applies a transformation,

where we assume that N = 2" to make our analysis more insightful. It will be convenient to
adopt the notation j = jijo---jn = j12" 1 + 522" 2 + --- + j, and for the binary fraction
051141 Jm = Ji/2 + Jis1/4+ -+ jm/27 7L We refer to [28] where it is shown with some
algebra that the quantum Fourier transform can be written as,

(’0) + e27ri0.jn’1>) (’0> + 627ri0.j",1jn‘1>) .. (‘0> + 627m'0.j1j2---jn’1>)
on/2 ’

g1 dn) = (4.7)
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Figure 4.10 shows a relatively simple circuit which given an n-qubit input register, prepares
the superposition in equation 4.7. The circuit introduces a new quantum gate, the controlled
Ry gate, which is represented by the unitary matrix,

1 0
0 e2mi/2F |-

1) Ry~ Bn-1 [ Bu|
o) - Ra H A
1 Rﬂ

Figure 4.10: Circuit for quantum Fourier transform.

We will work through an example to show what happens when the state |j1jo...J,) is an
input to the circuit shown in figure 4.10. By applying the Hadamard gate to the first qubit, the
state becomes,

1 0.5 . .
gia (100 + T 0) [ ),

since €2™J1 = —1 when j; = 1 and +1 otherwise. Applying the controlled Ry gate produces

the state,
1 2mi0.j1ja o
91/2 (|0>+€ ’ ’1>) |J2--']n>'

When we continue to apply the controlled R gates, the qubits are in state,

1

Next we can perform a similar procedure on the second qubit, first the Hadamard gate on
the second qubit produces the state,

272 (’0> + 627ri0-j1j2-..jn|1>) (‘0> + e?m’O.jQ‘1>) ’.]3 - ]n)
We continue applying the controlled Ry gates and find the state,

1

go73 (10) + €203 1)) ([0) + €270P2I 1) [ ).

Finally, we find that the state of the qubits just before the swap gates is,

1

W (|O> 4 627ri0.j1j2...jn’1>) (|0> 4 627ri0.j2...jn|1>) o (’0> 4 e27r7l(].jn’1>) )

The swap gates at the end of the circuit switch the qubit positions in order to produce the
quantum Fourier transform in equation (4.7). The circuit clearly shows that the wire starting

at qubit k£ has 1 Hadamard gate and n — k controlled R, gates. Summing over all qubits in the
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n qubit register we find that the circuit needs only Y ", Z;i 1 = O(n?) quantum gates to
compute the quantum Fourier transform. The fastest classical discrete Fourier transform algo-
rithms such as the fast Fourier transform need ©(n2™) gates. This clearly shows an exponential
decrease in circuit size.

Unfortunately, this does not mean that we can just use a quantum computer to compute
any Fourier transformation. The Fourier coefficients are hidden in the probability amplitude of
the state and there is no straightforward way to discover them. Nonetheless, for a certain class
of problems it is possible to unleash the power of the quantum Fourier transform and force an
exponential decrease in circuit size. We next briefly introduce one representative of this class
of algorithms, Shor’s factoring algorithm.

4.3.2 Shor’s Factoring Algorithm

Shor’s factoring algorithm consists of two parts: a quantum mechanical and a classical part.
We refer to [28] for the classical part which reduces the problem of factoring to finding the order
of an element in the group of integers modulo some number. In this section we show how to
solve this order finding part using a quantum computer.

The order-finding problem is the following. Given two numbers N, z, with no common
factors, the order of x modulo N is the least nonnegative integer r such that z” =1 mod N.
Order-finding is believed to be a hard problem on a classical computer yet figure 4.11 shows
how it can be performed using a quantum circuit.

0" — H®! FT!
)® ———&/ mod NjF———

Figure 4.11: Quantum circuit for order finding.

Let U be the quantum gate which on a state |y) operates as follows: Uly) = |ry mod N).
Then the 2/ mod N-gate is actually a set of gates that include several U gates. The eigenvectors
and eigenvalues of U will prove to important shortly,

2mis

Ulus) = exp [

r T

r—1 .
1 —2misk
}rus> with ’us>:ﬁk§0:exp[ i Mxk mod N,

The size of the quantum registers ¢, L can be adjusted to reflect the required success probability.
The first step of the order-finding circuit creates a superposition over all possible numbers from

0to 2t — 1,
2t—1

j;t S .
j=0

The next step calculates = to the order specified by the ¢-qubit register, modulo N and puts it
in the L-qubit register. We thus get a superposition of the form,

2t—1

1 .
— j)|2?  mod N).

This last state is again an example of what some researchers have called quantum parallelism.
We create a superposition of all possible powers and then calculate some function depending
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on all the components of the superposition. The output of the function is stored in an extra
register which ends up entangled with the input to the function. As we have argued in the
previous chapter, this sort of parallelism exists for classical probabilistic computation too. In
the next step, we apply the inverse quantum Fourier transform which introduces interference
effects and produces the state,

1 r—1
7 D ls/r)lus),
s=0

with |us) an eigenstate of the U operator and r the order of x modulo N. It is not trivial
to show why this is so but the important point is that we now have a superposition of two
entangled registers with register one containing some information about r. Measuring both
registers produces a state from which we can extract r using continued fractions.

We have skipped some important and non-trivial proofs. Nonetheless, and more importantly,
we have seen the different states that occur during the quantum order finding algorithm and
the quantum Fourier transform. It is clear that the t-qubit and L-qubit register from the order
finding algorithm are entangled. In contrast to the technique we introduced in section 4.2.2
on the amplitude amplification of a random walk, some elements of the L-qubit register will
be in the same state because of the periodicity of the exponentiation operation. For example,
suppose we want to factor N = 15 and we need to find the order of x = 7. After the modular
exponentiation the state of the quantum system will be,

1
NG
From equation (4.8) it is clear that because of the periodicity, some components have the same

L-qubit state. Therefore, the inverse quantum Fourier transform introduces interference effects
between the qubits of the first register for which the second register has the same value.

[0)[1) + (D7) + [2)14) + [3)[13) + [4)[1) + [5)[7) + [6)]4) +---]. (4.8)

Unfortunately, it is not easy to point out the source of the speedup of this quantum algorithm
because both entanglement and interference are present. In our next section we take a step back
and introduce a way of reasoning independent of the quantum algorithm under review to clarify
the role of both phenomena for quantum computing.
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Chapter 5

The Role of Interference and
Entanglement in Quantum
Computing

In this chapter we will develop our own original perspective on the role of interference and
entanglement in quantum computing. Considering the computation paths representation, it
should be clear by now that from a computer science perspective, destructive interference is a
powerful primitive. Probabilistic computers are able to spawn new computation paths but once
they are spawned, their probability mass is bound to exist until the end of the computation.
Destructive interference in quantum computers allows computation paths to extinguish when a
computation path with a positive and negative probability amplitude interfere with one another.
From a physics point of view, entanglement seems a rather strange and powerful primitive which
even questions the validity of Einstein’s theory of relativity. This is also how in general the
field of quantum computation is divided. On one hand there are the computer scientists who
believe that interference causes quantum mechanical speedup while on the other hand, there
are physicists who believe that entanglement is more important. This new perspective on the
problem does not claim to settle the question once and for all but is an attempt to unify and
generalize some concepts that have been suggested in the literature and provide some insight
in the problem.

5.1 The role of measurements

When we run a quantum algorithm, we are interested in the final probability distribution over
different states. Our definitions of acceptance in languages such as BPP, BQP are uniquely char-
acterized by the probability distribution of the final states. Therefore, it would be convenient
if we would only have to consider measurement outcomes at the end of the computation. This
would allow us to analyze the whole quantum algorithm in the quantum system’s Hilbert space
and then consider the probability distribution at the end of the computation. However, at first
sight, one could design a quantum algorithm with several intermediate measurements. The
outcomes of the intermediate measurements could for example influence the choice of future
quantum evolutions. Analyzing such a quantum computation requires us to switch between
the Hilbert space where the quantum evolutions occur, and another mathematical space where
classical decision are made based on measurement outcomes.

Our first goal is to simplify things and show that it is possible to transform every quantum
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algorithm to a unitary quantum evolution with one measurement as the final step of the com-
putation. We have already discussed how this transformation can be done in section 4.2.2. For
deterministic as well as probabilistic algorithms, the technique we developed showed how we
can always introduce some entanglement between the actual system and some ancilla qubits in
order to postpone the measurement to the end of the computation. Note that we also assume
that we perform only local measurements at the end of a quantum algorithm; we do not allow
measurements in arbitrary global bases for the same reasons that we only allow local gates.
Therefore, every local measurement can be transformed into a measurement in the standard
basis by introducing local unitary transformation just before the measurement. Henceforth we
can conclude that we the analysis of any quantum algorithm now reduces to an analysis in
the Hilbert space of the quantum system and the interpretation of one single standard basis
measurement at the end.

The measurement in a standard basis now induces a probability distribution over all possible
measurement outcomes. It is conceivable that certain dependencies, originating from entangle-
ment between qubits, exist. However, nothing prohibits probabilistic algorithms to end up in
the same probability distribution as the quantum algorithm. This is not in contradiction with
the CHSH-inequality from section 3.2.1: this inequality shows how the average values of four
different measurements are related in a local-realistic and quantum setting. It does not tell us
about any special properties of the probability distribution for one particular measurement.

We therefore suggest that there is little effect on the probability distribution due to entangle-
ment. Nonetheless, this does not mean that those states are not entangled, or that entanglement
plays no role in quantum computing. We will come back to this issue in the next two sections.

5.2 The role of Hilbert Spaces

Consider the analysis of Grover’s algorithm: we only require 2" orthogonal states to encode our
search space. Our analysis never assumes that these states are encoded in qubits. What we will
show in this section is that there exists an isomorphism between a 2" dimensional Hilbert space
and a Hilbert space that is 2 dimensional because it is a tensor product of n two-dimensional
Hilbert spaces. Moreover, we will show how to construct the isomorphism for any quantum
algorithm.

As a toy example, we demonstrate our ideas on a four dimensional Hilbert space. We have
always assumed that a system that needs four different states would be represented with two
[00)+11) " 1¢ e had

a physical (quantum) system that has four distinguishable states, we could have |1),|2), [3),]4)

as basis states and represent the superposition as % Of course, because this is a whole

bits or qubits. Say we want a superposition of the first and fourth state,

new physical system, implementing the unitary transformations on this system will be differ-
ent from implementing them on a qubit system. Scalability will be an issue as adding one
qubit doubles the size of the Hilbert space. One would expect that doubling the size of the
Hilbert space requires a doubling of the number of distinguishable states for a physical system
composed of a single system. In other words, if the number of qubits increases linearly, the
number of distinguishable states grows exponentially and this might introduce some scalability
issues. Nevertheless, what is interesting in this purely mathematical construction is that we
only consider one physical system. Therefore no entanglement exists as the physical system has
no system to entangle with!

Let the non-tensor product Hilbert space be called a simple Hilbert space. We now gener-
alize the previous construction and construct the isomorphism between larger Hilbert spaces.
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First we define the simple Hilbert space itself; the dimension of the simple Hilbert space is
equal to the dimension of the tensor product Hilbert space, for simplicity we assume that it
is 2". We assume a standard basis in the simple Hilbert space, |z) with x € [0---2" — 1].
This induces a trivial isomorphism between the states of both Hilbert spaces: |zixg---x,) —
|$1 2N o gp2n 2 CL‘n> We then compute the Kronecker product of the matrix represen-
tation of the different gates that are applied at the same time (using the identity if there is no
gate) and let a unitary transformation on the simple Hilbert space correspond to this matrix.

Lemma 5.1. FEvery quantum algorithm can be embedded in o simple Hilbert space where no
entanglement is involved.

The representation of the simple Hilbert space by a Hilbert space that is a tensor product of
different qubit subsystems is just one out of many possible Hilbert space decompositions. Note,
that our construction is sufficiently general that all quantum algorithms can be represented in
a simple Hilbert space. Our construction has one important consequence: because the simple
Hilbert space corresponds to one physical system, entanglement is nonexistent. It is not even
defined for a non-tensor product Hilbert space!

We now argue that because algorithms are a mathematical construct and only need a math-
ematical space and an interpretation, from the mathematical point of view, the concept of
entanglement is not necessary. Only interference effects remain in the ‘naked’ simple Hilbert
space. The interference effects influence the dynamics and might shorten the time to produce
a certain probability distribution.

Unfortunately we do not live in Hilbert space and we must find a way to efficiently represent
the Hilbert space in physical reality. Scalability will be a big concern and our next section will
show how entanglement enters the picture again.

5.3 Physical consideration for scalable quantum computation.

Our next argument is somewhat far from the computer scientist’s world, but nevertheless the
idea is intuitive. Suppose we apply the previous argument on a classical computer: instead of
using bits we use quarts, information elements that have four possible values. We could imagine
ourselves designing a computer that operated with quarts: adding two quarts would result in
something like 02+03 = 11. Where bits are usually implemented as a voltage difference between
say 0 and 2 volts, one could imagine implementing quarts using voltages 0, 2,4, 6. However, if
we push this principle even further and want to implement the computer using one information
carrier that has 2™ different states. This exponential number of different states can easily be
implemented using only a linear number of bits, however a single physical system with that
much different states will need voltages between 0 and 2" — 2. One way out of this is to demand
that the voltages always stay between 0 and 2 but should crowd exponentially close together.
In terms of classical electromagnetic theory this does not introduce a problem, yet, when our
voltage differences become sufficiently small one enters the realm of quantum mechanics. There
the Heisenberg uncertainty principle from section 2.2.1 and more in particular equation (2.6)
applies. This implies that evolving a computer between two distinguishable states would require
an exponential amount of time [35].

Let us return to quantum computers [12]. Every physical system has a number of degrees
of freedom which in our case correspond to the number of subsystems of the system. At any
moment in time, the state of a degree of freedom or subsystem is uniquely described by a pair
of canonical coordinates such as for example, position and momentum. The physical resources
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required to implement the physical system are the ranges of the positions Ag and momenta
Ap used by the computation. The measure of the resources used, is defined as the phase space
area or action A = ApAgq. From physics, we know that the connection between the physical
resources and the Hilbert space comes from the fact that every quantum state occupies an
area in phase space of size h, Planck’s constant. Moreover, orthogonal (distinguishable) states
correspond to non-overlapping states. This means that a physical system with action A can
accommodate A/h orthogonal states.

If we apply the argument above to our quantum computer we find the following. We required
that the Hilbert space featured 2™ orthogonal states, therefore, A/h = 2™. If we use only one
physical system to provide the whole action A, it is clear that A will grow exponentially with
n. The only solution is to use multiple degrees of freedom or multiple physical subsystems.
Suppose we have t identical physical systems with action A; the dimension of the corresponding
Hilbert space will be %t. Setting this dimension equal to 2" means that we need t = O(n)
different subsystems.

This argument shows that entanglement enters the picture only because we need to save on
resources. As far as the analysis is concerned, there is no mathematical idea behind entangle-
ment and it is a by-product of embedding the Hilbert space in a physical system.

5.4 Conclusion

The analysis we performed above is a synthesis of different ideas that exist in the literature [34,
12].  Our argument first showed that we only need to consider quantum computation with
measurements at the end. This makes analysis easier as we need only to concern ourselves
with the unitary evolutions that drive the computation and the final probability distribution.
We need not take into account for example, measurement outcomes in between upon which
new unitary evolutions might be conditioned. The latter would force us to move between what
happens in the quantum mechanical Hilbert space and what happens in another space where
the classical parts of the computation perform their work. Next, we showed how entanglement
is totally absent in simple Hilbert spaces. Nonetheless, we can model any possible quantum
algorithm in these simple Hilbert spaces and derive properties such as their time, space or query
complexity. Finally we found that in order to embed the mathematical concept of quantum
computation on a physical system, we need to introduce entanglement to save on resources.

Note that our conclusion does not contradict our findings for Grover and Shor’s algorithm. In
lemma 4.2 and section 4.3.2 we showed that entanglement is necessary for both algorithms. Our
discussions clearly stated that there is entanglement between the qubits so we implicitly assumed
that we implemented our algorithms on a physical system composed of two-dimensional sub-
systems. This shows the importance of the construction of simple Hilbert spaces in lemma 5.1.

Thus our argument suggests that the more powerful dynamics due to interference are more
important from the perspective of computational power and algorithms. Entanglement is what
allows scalability and thus would be something to be careful about when designing implemen-
tations for quantum computers.

One must be cautious though as our argument does not work the other way around. We
cannot simply design an algorithm in a simple Hilbert space and then run it on a quantum
computer. The reason is that we only allow evolutions from the universal gate set to implement
a quantum algorithm. Therefore, not every matrix transformation in the simple Hilbert space
corresponds to a physically realizable evolution.
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Some researchers have quantitatively calculated the evolution of entanglement during a
quantum computation [23, 29]. Their research focuses on calculating or simulating a particular
algorithm and measure how entangled a certain state of the computation is. It seems to me
that with our conclusion in mind, this research is of little interest in the search for the power
of quantum computation.

Although the problem we started from is interesting from a foundational point of view, our
own solution to it did not involve significant research but is more a synthesis of known results.
The suggestion of where interference and entanglement enter the picture is a qualitative answer
to the question what role interference and entanglement play in quantum computing. Computer
science has yet to find where the power of quantum computers sits in the complexity hierarchy.
A solution to this problem is equivalent to a quantitative answer on the role of interference for
quantum computing. Small steps toward its resolution have been made but no definitive insight
has been discovered. Nonetheless, we introduce some concepts in our next chapter.
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Chapter 6

The Road Ahead

Our last chapter gave a qualitative answer to what role interference and entanglement play in
quantum computing. Computer scientists are ultimately interested in a quantitative charac-
terization of the power of quantum computation. In this chapter we introduce some concepts
and discoveries about the place of quantum computing in the hierarchy of complexity classes.
Unfortunately, the difficulty of this task prohibits spectacular progress in the short time the
question has existed. Therefore, we give an overview of the state of the art while mentioning
open problems and some suggestions for further research.

6.1 Introduction to Quantum Complexity

We will be mostly concerned with the computational power of the two classes EQP, BQP. Be-
cause of their importance we repeat their usual definitions here!.

Definition 6.1 (EQP or exact quantum polynomial time [11]). EQP is the set of languages
which are accepted without error by a uniform family of polynomial sized quantum circuits.

Definition 6.2 (BQP or bounder-error quantum polynomial time [11]). BQP is the set of
languages which are accepted by a uniform family of polynomial-size quantum circuits, with at
most 1/3 probability of error.

From this definitions it is already clear that EQP C BQP and as we pointed out in claim 3.1,
since reversible computation is a special case of quantum computation, P C EQP.

Theorem 6.1. BPP C BQP.

Proof. We will apply a technique similar to the one we used in section 4.2.2 on the probability
amplification of the random walk. The idea is that for every coin toss we have to make, we
introduce an ancilla qubit which we put in state 1/v/2(|0) + |1)). We then perform the rest of
the algorithm conditioned on the ancilla qubit. This introduces entanglement between the rest
of the qubits and the ancilla qubit. At the end of the computation, we measure the ancilla qubit
in the standard basis, and the rest of the qubits collapse into a state that would have occurred
if the coin toss were equal to the measurement outcome. If the probabilistic algorithm erred on
less then 1/3 of its computation paths, then the quantum simulation will err on the exact same
computation paths. This proves that the probability that the quantum computation errs is less
than 1/3. O

1Our definition from section 3.4 is highly intuitive but not the usual definition of BQP.
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Grover’s algorithm is interesting in that it proves that quantum computers are more powerful
than classical computers for oracle problems. Unfortunately, the speedup is relatively moderate;
moreover, it has been shown in [7] that every bounded-error quantum algorithm making T
queries can be simulated with a deterministic algorithm making only O(T°) queries, and every
exact quantum algorithm making T queries can be solved with a deterministic algorithm making
only O(T?*) queries. In other words, the oracle setting does not allow quantum computers to
cross the barrier of superpolynomial speedups. My research has not yielded many results about
EQP so we limit our characterization here to that of BQP.

It is not hard to show that FACTORINGD is in NP: given n and k, a nondeterministic
computer can just guess a factor Q > k, divide n by @ and check whether the remainder is 0.

Theorem 6.2. If P # NP then there are languages in NPI that are not in NPC [13].

It is generally assumed that FACTORINGD is one of these problems in NPIl. Shor’s algo-
rithm puts FACTORINGD in BQP and evidence has been gathered showing that other NPI
problems (e.g., GRAPH ISOMORPHISM) might also be solvable using quantum computers in

polynomial time. Therefore we can conclude that the power of BQP at least partly overlaps
with NPI.

BAP o NP

.FAC TORINGD

77?7

-
.........

Figure 6.1: Quantum Complexity Theory Overview.

Figure 6.1 represents the results above. Note that it is unknown how nondeterminism relates
to quantum computation, in other words, BQP C NP? Completeness implies that if there is
one algorithm in BQP that is in NPC then NP C BQP; in figure 6.1 this means that the dotted
line would encompass the whole set NP. Figure 6.1 bounds BQP ‘from below’, the discussion
up next bounds the power of BQP from higher up in the complexity hierarchy.

6.2 Naive Quantum Simulations

Simulating one model of computation with another is the most straightforward way to prove

inclusions between complexity classes. P C NP can be shown by simulating a deterministic

computer on a nondeterministic computer. This simulation is trivial as the former is a special

60



case of the latter. We will next show what resources are necessary for simulating a quantum
computer on a deterministic computer which will prove a first upper bound on BQP.

In order to make our arguments more readable, we make three assumptions. First of all, we
will assume that the input state is a standard basis state. This is just a convenience which does
not lose any generality. Secondly, using the result from [11] that states that complex factors
do not increase the power of quantum computers, we assume that our algorithms only involve
real numbers. Finally, our last assumption relates to a problem that pops up always when
one simulates continuous variables on a discrete computer: there is some discretization error
involved. We will therefore assume that all numbers involved in describing a quantum circuit
or input state are rational numbers. During a computation?, nonrational numbers often sneak
in and much research has been done on the propagation of rounding errors during a simulation.
We will mostly skip its discussion, casually pointing out where its effect might have stronger
consequences.

Let us consider a naive algorithm that simulates a quantum circuit and decides whether the
instance is in BQP or not, QSIMI. The two most important components of the algorithm are
a vector that stores all probability amplitudes and a subroutine that calculates the Kronecker
product of the matrix corresponding to the quantum gate on certain qubits and the identity
matrix on all other qubits.

Input: An input state |¥) and a description of a quantum circuit C.

Output: True if the instance is in BQP, false otherwise.

QSmI(|¥),C)

(1)  Transform the state |¥) in a probability amplitude vector v.

(2)  foreach Gate X in circuit C

(3) Calculate the matrix transformation Ax corresponding to quantum
gate X.
Perform the matrix multiplication v = Axw.

Compute the probability distribution p = v”v.

if The probability mass of the accepting state is larger than 2/3 in p
return True

else
return False

at

oo

AN N AN N S
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This algorithm fails to be efficient in two important ways. First of all, writing down every
amplitude takes an exponential amount of space. There are 2" basis states and each one
can have its own probability amplitude. There is only one restriction that states that vector
v in our algorithm must be normalized; this reduces the number of independent probability
amplitudes to only 2™ — 1. Moreover, every gate corresponds to a 2™ by 2" matrix which
demands an exponential amount of time for every matrix update. Therefore, this algorithm
runs in exponential time and space and allows us to state that BQP ¢ EXPSPACE.

Luckily, by only computing the probability amplitudes of the necessary states, we can get
rid of the exponential space requirement. Remember the acceptance probability of an algorithm
for a BQP language from section 3.4,

Y T(ca,e)T(er,ca) . Teypup—1, ) = 2/3. (6.1)

617027"'7675(\@\)—1

2A simple Hadamard applied to a basis state already introduces nonrational coefficients!
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It is not hard to show that every component of the sum requires only polynomial time and
space to compute. Because t(n) is a polynomial by definition, every component of the sum is
a product of a polynomial number of real numbers. Every number T'(¢;, ¢;) can be computed
efficiently: if the gate corresponding to the number influences qubits i and j, T'(¢;, ¢;) is equal to
the corresponding entry in the gate’s local transformation matrix; if the gate does not influences
qubits ¢ and j, T'(¢;,¢;) = 0if i # j and T'(¢;,¢;) = 1 if i = j. QSIMII refines the simulation of
QSimI.

Input: An input state |¥) and a description of a quantum circuit C.
Output: True if the instance is in BQP, false otherwise.
QSmMII(|¥),C)

(1)  Set M =0.

(2) Compute the starting and accepting states cq, Cp.
(3) foreach Path c,,c1,- -, cyja))=1,Cb

(4) M =M+ T(Ca, Cl)T<Cl, Cg) .. -T(Ct(|x|)717 Cb)
(5) if M >2/3

(6) return True

(7)  else

(8)

8 return False

There are an exponential number of paths from ¢, to ¢, in the computation tree but the
important thing is that the algorithm only requires a polynomial amount of space. This allows
us to refine our previous statement about BQP and conclude that BQP < PSPACE. Without
proof we note that we can even refine our bound on BQP to BQP C PP.

More results are known about BQP but they are of less importance than the above. Nonethe-
less, in order to tighten the bounds on the power of BQP, there exists an approach which might
prove fruitful. Instead of analyzing universal quantum circuits, we can limit ourselves to certain
subsets that make analysis easier. The next two sections show that certain subsets have prop-
erties that make them easier to analyze. We then hope that we can extend the subsets, while
keeping the nice properties to come to a characterization of universal quantum circuits and its
corresponding bounded-error class, BQP.

6.3 Stabilizer Circuits

We have always described our quantum states by writing down the amplitudes of the basis states.
This approach worked well, but from the set of all possible formalisms to represent quantum
states, there is one in particular that has an elegant mathematical structure: the stabilizer
formalism [28, 4, 15]. Unfortunately, the formalism’s computational power is limited to that of
the class ®L, which suggest that it is not even capable of universal classical computation.

6.3.1 Concept

The stabilizer formalism takes a radical departure from the notion to describe states with
probability amplitudes. Instead, it describes a quantum state with a number of operators that
leave the state invariant. If we are careful in choosing these operators, a unique quantum state
corresponds to the list of operators. Moreover, if we let the state evolve through a circuit, we
have to update the operators that leave it invariant instead of a vector of probability amplitudes.
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6.3.2 Stabilizer States

When an operator leaves a state invariant it means that the state is a eigenstate of the operator
with eigenvalue 1. Unfortunately, an operator can have many eigenvectors corresponding to
eigenvalue 1. Thus, if we require that a quantum state is invariant under different operators, we
might limit the number of possible eigenvectors the state can be in. Just how many operators
and how they must be different will become clear soon.

First of all it is not clear how this could be an interesting way to describe state vectors.
Every operator on an n-qubit system can be represented by a 2" x 2" matrix. Even writing down
one of these requires exponentially more space than writing down all the probability amplitudes.
The solution to this problem is to limit ourselves to operators from the group P,; the group
of tensor products of Pauli operators on n qubits together with the multiplicative constants
+1,+i. There are only 4 Pauli operators on one qubit, which require only 2 bits to specify. A
tensor product of n Pauli operators together with a multiplicative constant thus requires only
(2n + 2) bits to specify. This is a dramatic decrease in space to represent operators but still
allows a rich mathematical structure.

Let us develop the theory with a simple example. Suppose we have a quantum computer in

state,
|00) + |11)
Q)=
’ +> \/5

using the notation we introduced in section 3.2. We define operator A; B; to mean Pauli operator
A applied to qubit ¢ and Pauli operator B applied to qubit j where we discard the identity
operator for clarity. Simple linear algebra® then shows that X; X5|0©,) = [6©,) and Z,Z5|0) =
|©4). We say that |©4) is stabilized by the operators X1 X9 and Z;Z,. A little less obvious is
that |©4) is the only state that is stabilised by these operators.

Definition 6.3. If S is a subset of P, and let Vs be the set of all quantum states that are
stabilized by S, then S is said to be the stabilizer of Vg.

Definition 6.4. If S is a subgroup of P, and let Vg be a one-dimensional vector space, we
define the single basis vector in Vg a stabilizer state.

It is not hard to see that Vg is a vector space. Every linear combination of two elements in
Vg is also stabilized by S. Our next property lies at the heart of the mathematical structure of
the stabilizer formalism. It makes analyzing stabilizer states much easier.

Theorem 6.3. Every stabilizer is a subgroup of Pp,.

Proof. The group operation is matrix multiplication: if M, N stabilize a state, it is trivial to
show that M N and NM also stabilize the state. Matrix multiplication is associative and the
identity matrix I stabilizes every state. Finally, VA € P, : A2 = I vV A* = I thus every element
in S has an inverse. This shows that a stabilizer is a subgroup of P,,. O

Furthermore, a subgroup of P,, can be described by a set of generators. A result from group
theory states that every group of k elements has a generator of at most log k elements. Therefore
every subgroup of P, with |P,| = 4"*! can be described with at most 2(n + 1) generators. As
pointed out previously, every generator needs only 2n + 2 bits: therefore we need O(n?) bits to
describe a state in the stabilizer formalism.

3Tt is actually more convenient to think of operator X as an operator that switches |0) to |1) and vice versa
and operator Z as an operator that introduces a phase of —1 in front of |1). It is then more intuitive to see that
X1X2,Z122 stabilize ‘@+>
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Example 6.1. Suppose we want to describe a generalized Bell state,

0000) + [1111)
s

It is clear that switching all |0)’s and |1)’s at once leaves the state invariant: X; XoX3X, is def-
initely in the stabilizer. Switching the phase of two |1)’s at once also leaves the state invariant:
Z1Za, Z1Zs, Z1 24, ZoZ3, ZoZy and Z3Z4 are all in the stabilizer. Note that because Z2 = I, we
cannot combine any two of the Z;7; stabilizers into X1 X>X3X,. On the other hand, we know
that because there are four qubits involved, we need four independent generators. Therefore,
we know that (X1 X9 X3Xy, Z1Zo, Z1 Z3, Z1 Z4) uniquely determines the generalized Bell state. X

Example 6.2. A lot of our algorithms started in the |0)*" state. Recall that the Pauli Z

operator leaves |0) invariant and switches the phase of a |1). Therefore Z1, Zs, - , Z,, are all
independent operators stabilizing the state [0)*"; thus (Z1, Zs, - - - , Z,) is the stabilizer of the
all zero state. X

Not just any subgroup of P, can be used as a stabilizer for a non-trivial vector space?. Two
necessary, yet not sufficient conditions are that

e the elements of S commute,

e —] is not an element of S.

Suppose M, N € S anti-commute. Take any element |¥) € Vg: |¥U) = MN|V) = —NM|¥) =
—|¥) which implies that |¥) is the zero vector, a contradiction. Furthermore, suppose —1I € S:
|¥) = —I|¥) = —|V¥) again |¥) would have to be the zero vector, a contradiction. Suppose
a Pauli operator A with a phase of 4i were in the stabilizer, then A?> = —I would be in the
stabilizer which is prohibited.

Observation 6.1. No Pauli operator with a phase of £i can be in the stabilizer.

We will now derive some properties in order to show what structure a generator must have
in order for it to qualify as a stabilizer. First of all, we want the generators g1, g2, - ,¢g; of
a stabilizer S to be independent. This means that removing an element g; makes the group
generated smaller,

S = <glvg27'” 7gl> 7é <g17927” * 5 9i—1,9i+1, " - 7gl>'

There exists a useful tool for checking whether a set of Pauli operators is an independent set
of generators: the check matriz. The check matrix for a set of | generators on n qubits is a
[ x 2n matrix. Each row of the check matrix corresponds to a generator; we let r(g;) be the row
corresponding to generator g;,

r(g:) = [%‘1%2 © TinZilZi2 - 'Zm] .
Suppose g; = A1 Ay - -+ A, then for each element A;:
[ ] ifAj =1 J,’ij :Zij :O,

o ifAj:XZ xijzl,z,-jzo,

4The zero vector is stable under the action of any subset of P,, and we therefore call it a trivial vector space.
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L] lfAJ:Y injzl,zijzl,
® ifAj:Z: xij:O,zijzl.

Let A be the Pauli operator in g; acting on qubit I. Then element [ and [+n uniquely determine
the Pauli operator. Therefore, up to a global phase factor, row r(g;) uniquely characterizes a
generator.

Example 6.3. The check matrix corresponding to the generator,
(XZZXIIXZZX, ZXIXZ, ZZZZZ, XXX XX),

is,

_ o O O
—_— O = = O
_ oo oo
— O~ O
_ o O = O
O = = O O
O = O O
O = O = =
O = O RO
O = = O O

Next we define a 2n x 2n matrix A by,
0 I
=l
where the I matrices on the off-diagonals are nxn. The following two lemma’s show a connection

between the check matrix and the independence of the generators. Note that in the check matrix
representation we perform addition modulo 2, 6.

Lemma 6.1. g;,g; commute ([gi, g;] = 0) if and only if r(g:)Ar(g;)T = 0.
Proof. First of all note that for any two different Pauli operators, A, B: AB = —BA; for two

equal Pauli operators A we have A? = I. Next, let g; = AjAy--- A, and gj = B1Bs--- B,.
Therefore,

3

[9i,9i] = 0
(A1B1)(A2Bs) - -+ (AnBp) — (B1A1)(B2Az) - -+ (BpAn) =
(A1B1)(A2B2) -+ (AnBy) — (—1)"(A1B1)(A2B2) - - - (AnBy) =

i

where t is the number of posititions where A; # B;. Therefore, [g;, g;] = 0 if and only if t =0
mod 2. In other words, the two Pauli operators commute if and only if they differ in an even
number of positions. We will now show that r(g;)Ar(g;)? will exactly count ¢ mod 2. First we
must expand the matrix product with the dual vector and vector,

)T

?“(gz‘)AT(gj = Zi1%2j1 D x2252 D - - D TinZjn G Tj12i1 ® Tj22i2 D - -+ D TjnZin- (6.2)

We now want to show that this expression is equal to 0 mod 2. Suppose g; has a Pauli I
operator for qubit [, then z;; = 0, z;; = 0. Because I commutes with any other Pauli operator,
whatever the Pauli operator for qubit [ in g;, the contribution to ¢ should be 0. It is not hard to
see that this is exactly what happens in equation 6.2: both x; and z; are multiplied with some
other values and binary added to the sum but because they are 0 do not contribute. A similar
reasoning applies if the Pauli operator in g; for qubit [ is X,Y or Z: if the corresponding Pauli
operator in g; is equal, the contribution is 0 mod 2 and if the corresponding Pauli operator is
different, the contribution is 1 mod 2. ]
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Lemma 6.2 ([28]). Let S = (91,92, - ,q1) be such that —I is not an element of S. The gener-
ators are independent if and only if the rows of the corresponding check matriz are independent.

Proof. We first note that Vi : g2 = I. If not, —I would be in S and S would be the trivial
stabilizer. Next, if we forget the phase factor, binary addition of two rows of the check matrix
corresponds to the group operation on Py: 7(g;) ® r(g;) = r(gi9;)-

The rows of the check matrix are linearly dependent if 35 : a; # 0 such that ), a;r(g;) = 0.
Using the binary addition property, this condition occurs if and only if [], ¢/ is equal to the
identity, up to an overall multiplicative factor. Because —I ¢ S, the factor must be 1 and the
last condition corresponds to g; = [, £ g;". Therefore, the generators are linearly dependent if
and only if 3j,a; # 0 : ), a;r(g;) = 0. Taking the contrapositive of this statement proves the
lemma. O

Finally we want to prove how the number of generators for a stabilizer .S influences the size

of Vs.

Lemma 6.3 ([28]). Let S = (91,92, - ,g1) be independent generators such that —I is not an
element of S. Fiz i € [1,1]. There exists g € Py, such that ggig' = —g; and Vj # i : ggng = gj.

Proof. Let G be the check matrix corresponding to g1, g2, - ,¢;- By lemma 6.2 the rows of G
are independent, there exists a vector x such that GAx = e; with e; an [-dimensional vector with
a 1 in position ¢ and 0 everywhere else. Let g be the operator corresponding to 7(g) = 27. By
definition we have r(g;)Ar(g)? = 0 for j # i and r(g;)Ar(g)T = 1. This implies that gg;g" = —g;
and Vj;éz':ggjgfzgj. O

Lemma 6.4 ([28]). Let S = (91,92, , gn—k) be generated by n—k independent and commuting
elements from P, and such that —I ¢ S. Then Vs is a 2¥ dimensional vector space.

Proof. Let x = [x1 -~ x,,_4] € F3~*. We define,

[T (1+ (~1)2g;)

Pg = on—k

Because (I+g;)/2 is the projector onto the +1 eigenspace of g;, Péo’m 9 is the projector onto Vg.
By lemma 6.3, for each z, there is a corresponding g, such that gxPéO’"' 0) gl = P§. Therefore,
the dimension of every P§ is equal to the dimension of Vg. Furthermore, two different projectors

are orthogonal,
T2t (1 + (=1)%g5) TT=f (1 + (= 1)¥g;)
2n—k 27’L—k ’
T1f oy (T+ (—1)%g;) (I + (~1)%igy)
92(n—Fk) ’
[1f iy (I (=) g + (~1)¥gi + (—1)%H¥igq,)
92(n—Fk) :

PiPY =

In this last equation, there will be a term with ¢ = j for which,

T (~1)7gi + (~1)¥5g; + (<17 igigi = L4 (~1)7g; + (~1)! ~"ig; — 1 =0.

I=>Y P§.
€T
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The left-hand side is a projector onto a 2"-dimensional space, while the right-hand side is a sum
over 2" % orthogonal projectors of the same dimension as Vg. Therefore, the dimension of Vg
must be 2¥. This concludes our proof. O

Lemma 6.4 implies that a stabilizer on n qubits requires only n generators to be uniquely
determined. The generators we used in our examples confirm this property. We have now
completely characterized stabilizer states. Our next step is to show how unitary evolution
affects the stabilizer.

6.3.3 Stabilizer Evolution

Suppose the state of a quantum computer is described by the stabilizer (g1, - , gn). This means
that for all i, there exists a state |¥) such that ¢g;|¥) = |¥). From the state vector approach, we
know that a unitary operator U transforms a state |¥) into state U|¥). Simple algebra shows
that,

Ugil¥) = UgUTU|W),

so after the unitary transformation, the operator Ug;UT acts on state U|¥) just as g; did on |¥).
Therefore, applying a unitary operation to a stabilizer state transforms a generator (g1, - , gn)
into (UgUT,--- ,Ug,U").

We must be cautious though; we limited the set of operators to elements of P,, in order to
reduce the number of bits needed to describe the stabilizer. It is also clear that because there
are a finite number of elements in P,, there are definitely only a finite number of stabilizers.
Nonetheless, universal quantum circuits can prepare an infinite number of quantum states.
The solution to this issue will be to limit the unitary evolutions in the stabilizer formalism to
operators that leave P, invariant. These operators, called the normalizer of P,,, form a group
too, the Clifford group.

The stabilizer formalism would not be attractive if the unitary operators in the Clifford
group were rather arbitrary. The elegance of the stabilizer formalism comes from the fact
that the Clifford group is generated by the Hadamard, Phase and CNOT gate. As we pointed
out previously, only the 7/8 or Toffoli gates are missing for universal quantum computation.
How the absence of the latter two gates influences computational power will be explained in
section 6.3.7.

Let us now compute how the generators of the Clifford group transform elements of the
stabilizer. Using matrix multiplication one can show,

H X —-Z

Z — X

P X—-Y

Z — 7
CNOT : XeI—-X®X
IRX —-1®X
ZQI —Z®1
I1R7—-277.

There is definitely an element of symmetry in these equations. Furthermore, note that it is
also possible to implement all the Pauli gates too: X = HP?H,Y = PHP?HP, Z = P2. Let
us illustrate these techniques using some examples.
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Example 6.4. Let’s resist the urge to compute the effect of this circuit using the amplitude
representations and instead calculate the evolution of the stabilizer. We know from a previous
example that the stabilizer starts out as (Z1, Z2). Applying a Hadamard gate to the first qubit
transforms Z; — X7; the stabilizer becomes: (X7, Zs). The second step applies a CNOT (qubit
one is control, qubit two is target) transforming X7 — X1 Xo and Zy — Z;Z5; the stabilizer
ends up as (X1 X9, Z1Z5) which we showed is the stabilizer of the Bell state. X

Example 6.5. Suppose we want to know which operation the circuit above performs. However,

VR
>

we do not want to assume a certain input state. Because Po is generated by X1, Xo, Z1, Zo,
it is sufficient to check how the circuit transforms this stabilizer to know how it works on an
arbitrary Pauli operator.

X, = X&I CNOT1=2 o v ONOT2=1 p oy ONOTI=2 p o Xy
Xy = I®X CNOT1—-2 I®X CNOT2—1 X®X CNOT1—-2 X®l=X,
7 = Zol CNOT1=2 o ONOT2=1 o o ONOT1IZ2 1o Z
Zy = 102 CNOT1=2 o o ONOT221 o o p ONOTIZ2 oo p 7.
The circuit exchanges X7 < X9 and Z; < Zs: it swaps the first and second qubit. X

6.3.4 Stabilizer Measurements

We know how to describe stabilizer states and have derived a convenient way to update the
stabilizer when a limited class of unitary operators is applied. To make the formalism complete,
even measuring stabilizer states in the standard basis - using Pauli =7; operators - can be done
efficiently. Note first that the elements of the group P, either commute or anticommute and
because they are Hermitian, they can be regarded as observables. Suppose now that we wish to
measure a state |¥) described by the stabilizer (g1,--- ,gn) with observable g € {£Z;} C P,.
There are two possibilities,

e g commutes with every element of the stabilizer,

e g anticommutes with one element of the stabilizer. Without loss of generality, we can
assume that G anticommutes with only one element of the stabilizer, say g, if this weren’t
the case and G anticommutes with say g1, gj, than we can easily replace g; in the generator
by g1gj. Now g anticommutes with g; and commutes with g1 g;, while the stabilizer remains
identical.
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The first case is computationally the most intensive. We know that for all g; in the generator,
9i9|¥) = ggi|V) = g|¥). Therefore g|¥) € Vg and thus must be a multiple of |¥). Because
2 =1, g|¥) = £|¥) whence either g or —g must be in the stabilizer. If ¢ is in the stabilizer,
g|¥) = |¥) and thus the measurement yields +1 with probability 1. If —g were in the stabilizer,
—g|¥) = |¥) and the measurement would yield —1 with probability 1. Checking whether g
or —g is in the stabilizer is the most involved operation in the whole stabilizer formalism. In
section 6.3.6 we will explain the most efficient algorithm known to date.

When ¢ anticommutes with some element from the generator the following method shows
us how to compute the measurement outcome. The eigenvalues of g are +1 and correspond to
projectors I . The measurement outcome probabilities are given by,

1
Pr[Measuring g yields +1] = (¥|—— + J

v),
Pr[Measuring g yields —1] = <\11|T|\1!>
Using the property that g anticommutes with g; we find,

Pr[Measuring g yields +1] = (¥|——=

= Pr[Measuring g yields —1].

Therefore, Pr[Measuring g yields +1] = Pr[Measuring g yields —1] and equal to 1/2. If
the measurement outcome was +1, the new state is mHTg|W> = I%’]‘P) It is clear that
9,92, ,gn all stabilize |¥); moreover because g did not commute with one element of the
previous generator, it was not in the stabilizer. Therefore it is independent from gs,- -, gn
and thus the new generator becomes (g, g2, - ,¢gn). A similar argument applies when the
measurement outcome is —1 yielding the stabilizer (—g, g2, , gn)-

6.3.5 Gottesman-Knill Theorem

The results from the previous sections combined can be summarized in the remarkable Gottesman-
Knill theorem:

Theorem 6.4 (Gottesman-Knill). Suppose a quantum computation is performed which involves
only the following elements: state preparation in the computational basis, Hadamard-gates,
phase-gates, CNOT-gates, Pauli-gates and measurements of observables in the Pauli group.
Such a computation may be efficiently simulated on a classical computer.

6.3.6 Classical Simulation

In this section we will explain a classical algorithm to efficiently simulate stabilizer circuits
that was developed by Scott Aaronson and Daniel Gottesman in [4]. This algorithm will be
important to finally be able to characterize the computational power of stabilizer circuits.
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The algorithm extends the concept of the check matrix and defines a tableau. A tableau not
only lists the generators for a stabilizer state, but also the destabilizer and phase information.
The destabilizer is defined as a group of generators which together with the stabilizer generators,
generate the entire Pauli group P,.

T11 e T1in 211 e Z1n 71
Tnl ce Tnn Znl T Znn T'n
Lp+1)1 " T+n | Fn+D1 0 Z(nt)n | Tntl
T(2n)1 T L(2n)n Z(2n)1 T Z(2n)n T2n
Rows 1 to n of the tableau represent the destabilizer generators gi,--- , g, and rows n + 1
to 2n represent the stabilizer generators g,11,--- , gon. The same notation as the check matrix

is implied: let g; = A1 Az --- Ay; for every Aj,
o if Aj =1: x;; = 2;; =0,
o if Aj = X: z;; =1,25 =0,
o if A;=Y:a;5=1,25=1,
o if Aj =27: x;5 =0,2; = 1.

Note that the tableau has one column extra in comparison to the check matrix. This column
will store phase information: r; = 0 implies a positive phase whilst r; = 1 implies a negative
phase, imaginary phases are prohibited by observation 6.1. An example will clarify the notation.

Example 6.6. Most of the time, our algorithms start in the state |O>®n. The example from
section 6.3.2 already showed that the stabilizer for this state is generated by (Z1, Za,- -+ , Z,).
We know that ZX = Y and Z? = I. Therefore, (X,Z) generate all the Pauli operators.
Therefore, we only need (X, Xs,---,X,,) as the destabilizer in addition to (Z1, Za, -+, Z,) as
the stabilizer to generate P,,. Henceforth, the standard initial tableau becomes,

1100
0(I1]0
X

This representation allows convenient simulation of the Clifford gates: CNOT, Hadamard
and Phase. For example, suppose we want to simulate a Hadamard gate on qubit /. From
section 6.3.3 we know that for every generator, it transforms X; into Z;, Z; into X; which
implies that it leaves I;, Y; invariant. In the tableau representation, x;; = 1, z;; = 0 corresponds
to X; in the generator i. Transforming X; to Z; in generator i then corresponds to setting
xg = 0,z; = 1. Performing this swtich for all i € [1,2n] corresponds to switching column
[ with column [ + n. Moreover, if I; or Y; would be present in the generator element, then
z;; =0,z =0 or x;; =1, z; = 1 and simulating the Hadamard gate leaves them invariant.

A similar argument would show that simulating a phase gate on qubit [ would correspond
to binary adding column [ to column [+ n and storing the result in column [+n. A CNOT gate
with control qubit [ and target qubit k£ corresponds to adding column [ to column k, storing the
result in column k and adding column k 4+ n to column [ + n, storing the result in column [ + n.
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Before we describe the part of the algorithm that simulates the measurement we must
describe a subroutine for another tableau manipulation procedure: RowSuM. ROWSUM corre-
sponds to the Pauli group operation. Suppose we want to multiply two generators corresponding
to rows h, k and store the result in h. The hardest part of the group operation is to keep track
of the phase information. We will shortly see how this should be done. On the other hand, it is
relatively easy to calculate the new tableau entries for row h. Say row h and row k have a one
in column j. This means that both have a Pauli X operator for qubit j. Because X - X = I, the
new entry should become 0. A similar reasoning applies to the part of the tableau that stores
information on the Pauli Z operators and we find that binary addition performs the trick.

Back to the hard part. Let g(z1, 21, 22, 22) be a function that returns the exponent to which
1 is raised when the matrices represented by x121 and 229 are multiplied:

1. 1 = 21 = 0: return 0,
2. x1 = z1 = 1: return 2o — x9,
3. 1 = 1,21 = 0: return 29(2z9 — 1),

4. 1 = 0,21 = 1: return xa(1 — 223).

Let us illustrate case 3 when z; = 1,z; = 0. This implies that the first Pauli matrix is X.
There are four different possibilities for the second Pauli matrix:

e I, then the product is X - I = X = i°X; therefore we must raise i to the exponent 0,
e X, then the product is X - X = I = i°I; therefore we must raise i to the exponent 0,
e Y, then the product is X - Y = iZ = i'Z; therefore we must raise i to the exponent 1,

e 7, then the product is X - Z = —iY = i~'Y; therefore we must raise i to the exponent -1.
It is now easy to check that zo(2z9 — 1) returns the right exponent:

e if the second matrix was I, then 9 = 0,29 = 0 and 22(2z2 — 1) =0,
e if the second matrix was X, then o = 1,29 = 0 and 29(2z3 — 1) =0,
e if the second matrix was Y, then zo = 1,20 = 1 and 29(2z9 — 1) =1,

e if the second matrix was Z, then 9 = 0,29 = 1 and 29222 — 1) = —1.
The algorithm RowSum(h, k) then becomes,

RowSum(h, k)

(1) if 2rp 4+ 205 + 370 9(2hj, 2855 Thy, 20j) =0 mod 4
(2) Set r, = 0.

(3)  elseif 2ry + 2r + 377, g(wkj, 2kj, Thj, 2nj) = 2 mod 4
(4) Set r, = 1.

(5)  foreach j € [1,n)]

(6) Set Thj = Thj D Tyj-

(7) Set Zhj = Zhj D 2k -
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The phase is calculated in the first four lines of the algorithm: 2rj 4+ 2r; corresponds to the
previous exponents of 7, Z?Zl g(a:ij, Zijs Thy, zhj) corresponds to the extra exponents that arise
because of the group operation. Remembering observation 6.1 we know that no Pauli operator
with a phase of £i is in the stabilizer. Because a stabilizer is a subgroup of P,, applying the
group operation (or ROWSUM) returns another element in the stabilizer. It follows that the
total sum from step 1 or 3 can never equal 1,3 mod 4.

We are now ready to give an algorithm that simulates the stabilizer circuit, SIMSTABI-
LIZER.

Input: A description of the stabilizer circuit that accepts [0)*" as input.
Output: The final tableau and possible measurement outcomes.
SIMSTABILIZER([G1, G2, -+, Gper))

(1)  foreach Clifford gate G;

2) if G; is a CNOT gate from control a to target b

3) foreach j € [1,2n)]

) Set rj =r; ® -Tjazjb(xib D zjo D 1).

5) Set Tjb = Tjb ©® Zja-

6) Set Zja = Zja D Zjb-
)
)
)
0
1

N

7 else if G; is a Hadamard gate on qubit a
8 foreach j € [1, 2n]
9 Set rj = 1; ® TjaZja-
1 Swap Tja; Zja-
1 else if G; is a Phase gate on qubit a
foreach j € [1,2n)]
Set rj = 1; ® TjaZja-
Set zjq = Tja + Zja-
else if G; is a measurement of qubit a in the standard basis
if There exists a p € [n+ 1, 2n] such that xp, =1
foreach j € [1,2n],j # p,zj, =1
RowSum(j, p).
Set the p — n’th row equal to the p’th row.
Set the p’th row to be identical 0 except z,q = 1.
Set r, equal to 0 or 1 with equal probability.
else
Add an extra row (2n+1)’th scratch row to the tableau and set
it identical 0.
foreach j € [1,n],zj, =1
RowSuM(2n + 1,5 + n).
Return rgy,41.

—
DO

~—~ e N o i R R N N N T i N N N e R T R
N DN DN NN == ===

S U W N - O © 00O O s W

— — — M Y N N N e e

Once we interpret the rows of the tableau as representing the generators of the stabilizer we
can refer to the discussion above for the operation of RowSuM, CNOT, Hadamard and Phase
on the tableau.

The first case of the standard basis measurement is the one with a random outcome. When
we measure qubit a in the standard basis, this corresponds to measuring the observable Z,. From
section 6.3.4 we remember that we have a random outcome when Z, anticommutes with some
generators. When generator p has an X or Y Pauli operator for qubit a, does the measurement
anticommute; line 16 of the algorithm checks whether this is the case. Moreover, we remember
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from section 6.3.4 that if there are multiple anti-commuting elements in the generator, we can
reduce them to one single anti-commuting generator element. This is done in lines 17 and 18 of
the algorithm. Next we update the stabilizer and destabilizer and return a uniformly distributed
outcome.

The second case of the standard basis measurement corresponds to a deterministic outcome
where we must determine whether 0 or 1 is observed. Before we argue why the algorithm is
correct, we define the symplectic inner product and state without proof some invariants of the
algorithm.

Definition 6.5. We define the symplectic inner product of two rows of the tableau as,

Th T3 = Tp12il D - D Thp2in © Ti12h1 D - - D TinZpn-

Note the similarity to lemma 6.1: the symplectic inner product is 0 if the two operators
represented by the rows commute, and 1 if they anticommute.

Proposition 6.1. The following are invariants of the tableau algorithm [4]

® 1,...,Try, commute.
e Vh € {l,...,n}, r, anticommutes with rp 4y
e Vi,h € {1,...,n} such that i # h, r; commutes with rp .

From the discussion in section 6.3.4, we know that Z, commutes with all elements of the
stabilizer when the measurement has a deterministic outcome. Using the third statement in
proposition 6.1 this implies that,

n

Z cpr(h+n) =+27,, (6.3)
h=1

with 7(i) the Pauli operator corresponding to the i’th row of the tableau. If we can determine
the ¢;’s, by calculating the sum in equation (6.3), we can learn whether the phase of the right-
hand side of the equation is positive or negative corresponding to the two possible measurement
outcomes. Using linear algebra we can calculate these cp’s,

Zch CThgn) =T - ZChTthn =71, Zs mod 2. (6.4)
h=1

Therefore, if we check whether r; anticommutes with Z, — which it does if and only if x;, = 1
(line 24) — then we learn the value of ¢; and thus whether RowSuM(2n + 1,4 4+ n) needs to be
called.

What about the complexity of this procedure? The space requirements of the algorithm
consists of the tableau and a constant number of temporary variables only: the tableau has
size 2n x (2n + 1) = O(n?). For each quantum gate, the algorithm needs only a linear number
of operations to update the stabilizer. A measurement with random outcome needs a linear
number of updates too, the deterministic outcome needs a quadratic number of updates. Our
next section shows that it isn’t surprising that classical computers are able to simulate stabilizer
circuits efficiently.
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6.3.7 Computational Power

This is our final section on stabilizer circuits and we will use all the notions we have discussed
previously to come to a characterization of the power of stabilizer circuits. Because complexity
theory is mostly concerned with decision problems, our first task is to define a decision version
that corresponds to the simulation of stabilizer circuits.

Definition 6.6 (GOTTESMAN-KNILL). Given a stabilizer circuit, C, will qubit 1 be in state |1)
with certainty after C is applied to the initial state [0)®".

It is clear from SIMSTABILIZER in our previous section that GOTTESMAN-KNILL € P. Even
more is true! In this section, we will show that SIMSTABILIZER enables us to prove an even
stronger inclusion: GOTTESMAN-KNILL € ®L.

@L is usually defined as the class of problems which are decided by a nondeterministic
logspace Turing machine that accepts if and only if the total number of accepting paths is odd.
Our next problem is a typical @L-Complete problem: ODDPATHS.

Definition 6.7 (ODDPATHS). Given a graph G, let,

e M be the adjacency matrix Mg of G,
e s a starting node,
e ¢ an end node,

e k a positive integer.

ODDPATHS is the problem that asks whether there exists an odd number of paths of length k
between s and e in graph G.

ODDPATHS is definitely in dL. We can build a nondeterministic Turing machine which
stores a pointer that initialy points to the starting node s. At each step of the algorithm, the
nondeterministic machine chooses a node from the set of all neighbors of the node the pointer
is currently pointing to. It then updates the pointer to point to the chosen node. The Turing
machine performs this step k times and accepts if the pointer points to e at the end, else it
rejects. Because we only need to store a pointer to a node and a number to count up to k,
this Turing machine clearly runs in logspace. Almost by definition, there are an odd number of
paths of length k£ from s to e if and only if there are an odd number of accepting computations.
Using the reachability method we can prove that ODDPATHS is a @L-Complete problem.

Definition 6.8 (ITMATPROD). Given a series of matrices AW A oA pyer Fy and
integers 0 < i,7 <n. Is [A(UA@) .. .A(N)]ij — 12

This problem is again a &L-Complete problem. First of all, it is in @®L. From the definition
of the matrix product we know that,

[ADA®) .. Z ADAD ... AW,

32

A nondeterministic Turing machine can just guess a sequence a,b,-- -,z and multiply all the
matrix elements in the sequence. If the product is one, it accepts, else it rejects. Because the
sum is in F9, only if there are an odd number of accepting paths does the Turing machine
accept. Because we only need to store an intermediate multiplication, clearly this procedure
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can be done in logspace. Furthermore, there exists an easy reduction from ODDPATHS to
ITMATPROD. If the tuple (M, s, e, k) describes an ODDPATHS instance, we convert it into an
ITMATPROD instance by setting every A® = M with 1 < i < k and ask whether the element
(s,e) is 1. What is interesting about ITMATPROD is that it is equivalent to a problem that
is intimately connected to stabilizer circuits. Consider the problem of simulating a polynomial
sized CNOT circuit:

Definition 6.9 (CNOT-NOT). Given a circuit with only CNOT-gates and NOT-gates, C, will
qubit 1 be in state |1) with certainty after C is applied to the initial state |0)®™?

Note first that this problem is a subproblem of ITMATPROD because the matrix represen-
tation of a CNOT-gate or NOT-gate is a matrix over 5. Therefore, calculating whether qubit
1 is in state |1) can be seen as solving ITMATPROD with CNOT-gates and NOT-gates substi-
tuted for the matrices A®). There is one small issue that must be solved though. ITMATPROD
expects the matrices A®) as its input. Unfortunately, writing down an n x n matrix requires
a polynomial amount of space. The solution to this problem is easy: every time the Turing

machine for ITMATPROD accesses an element A,(fl), we insert a small logspace subroutine that

calculates A,(;l). This proves that CNOT-NOTe @L. We briefly sketch how one would prove
that CNOT-NOT is complete for @L. There are n? different CNOT or NOT gates on n qubits.
These matrices are elements of a vector space; moreover, there exists an inner product on this
n? dimensional vector space of matrices called the Hilbert-Schmidt inner product relative to
witch these matrices are orthogonal and therefore form a basis. This implies that every matrix
over % can be written as a linear combination of n2 CNOT or NOT matrices. Since, calculating
the inner product can be performed in logarithmic space, we conclude that every ITMATPROD
instance can be reduced to CNOT-NOT.

So far we have proved that CNOT-NOT is @&L-Complete. Because CNOT-NOT is a subset
of GOTTESMAN-KNILL, this implies that GOTTESMAN-KNILL is @L-Hard. In order to prove
that GOTTESMAN-KNILL is ®©L-Complete, we must also prove that GOTTESMAN-KNILLE ®L.
We refer to the full proof to [4] but we will discuss the idea here. As we discussed in the section
on how to simulate CNOT, Hadamard and Phase gates, the whole algorithm boils down to
calculating the sum of some variables modulo 2. Therefore, a CNOT-NOT oracle can perform
this simulation. However, calculating the phase is a highly nonlinear procedure. Nonetheless,
in [4] the authors present a nontrivial algorithm which runs in logspace that gradually computes
the phase by calling a CNOT-NOT oracle too. Finally, because CNOT-NOT is in &L and
®L = L® this concludes the proof that GOTTESMAN-KNILLE @L.

This concludes our characterization of the computational power of stabilizer states. It is
conjectured that &L C P which means that stabilizer circuits are probably not even universal
for classical computation. Nonetheless, the mathematical elegance of stabilizer circuits and its
detailed characterization in terms of computation complexity make it an important theoretical
discovery. It is rather remarkable how the absence of one gate makes such a difference in
computational power. This is not new however, in section 2.4 we saw how the Hadamard gate
is the only gate that is needed to increase the computational power of P to BQP. Our next
section limits quantum computation in a different way and steps up a little in the complexity
theoretic hierarchy.

6.4 P-Blocked Quantum Algorithms

The biggest problem for simulating quantum algorithms is that, modulo normalization, all of
the 2™ components of the superposition can have independent probability amplitudes. When
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the algorithm needs to update the state after a quantum gate is applied, we might need to
access arbitrary probability amplitudes.

A result by Jozsa and Linden, primarily intended to clarify the role of entanglement in
quantum computing, limited the scope of the entanglement across the qubits to circumvent the
problem above. In [21], the authors introduce a new subset of quantum states: the p-blocked
states. A state is p-blocked if it can be written as a product state of components with at
most p entangled qubits. More in particular, an n qubit state |¥) is p-blocked if for some
constant p, there exist a partition B = By U By U --- U B,, of the qubits with |B;| < p and
|U) = |Up,)®|¥p,) @ - ® |¥p,) with |Up,) a superposition consisting of qubits in B;. These
superposition |¥p,) can be written as,

Tp)= > aa). (6.5)

xc{0,1}I5il

The states |Up,) can be described by at most 2P probability amplitudes which is a constant
in the number of qubits. We can now state the result by Jozsa and Linden:

Claim 6.1. If a quantum computation runs in polynomial time with the property that at each
stage of the computation, the state of the computation is p-blocked, an efficient classical simu-
lation exists.

The algorithm proposed by Jozsa and Linden is very similar to QSIMI but because of the p-
blocked condition, it is more efficient in space and time resources. Because every component of
the partitioning needs at most a constant number of rational numbers to describe the probability
amplitudes, and there are at most n elements in the partitioning, the space requirements for
the algorithm are O(n). What about the time requirements to calculate the updates?

Let us call the state of the quantum computation at step ¢, |a;) and its corresponding qubit
partitioning B! = Bt UBL U --- U Bl. First of all, we assume that we use a universal gate set
with single qubit gates and CNOT. Therefore, there are two possible unitary transformations
possible at stage t:

e The unitary transformation at stage ¢ accesses qubits from a single component of the
partition. W.l.o.g. we assume that this component of the partitioning is B!.

e The unitary transformation at stage ¢ accesses qubits from two different partitions. W.l.o.g.
we assume that these components of the partitioning are BY, BS.

The first case is the easiest one. The probability amplitudes of |¥p,),- - ,|¥Up,) remain
invariant as no qubit of those partition elements is involved under the operation of the quantum
gate. The matrix corresponding to the quantum gate on the partition B; can be computed
and will be at most a 2P by 2P matrix, again a matrix of constant size. Next, our simulation
calculates the product of the transformation matrix with the probability amplitude vector. This
requires 2P vector products which again can be done in constant time. Summarizing, updating
one component of the partition under a transformation can be done in constant time.

What about the second case? It is actually not much different from the first case if we merge
the two partitions first. This results in a partition with 227 probability amplitudes and 22" by
22 transformation matrices operating on it. The extra difficulty arises after the transformation
matrix is applied to the probability amplitudes. If |BY| + |BS| < p, we are done. On the other
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hand, if | BY| + | B| > p, the premise states that it is possible to partition the qubits B{ U B in
at least two new sets. Let P : (Q be a bipartitioning such that,
(pl Ip1) + p2|p2) + - - +p|P||P|P|>) (Q1|Q1> + @2lq2) + -+ Q|Q|}Q|Q\>)
= (bilp1qr) + balprgz) + - - + bypalpip9i0))) -

Suppose we know which qubits belong to P and which ones to ). The problem reduces to
finding the headers of the rows and columns of the following table,

L m 2 || PP
| bi=piq | b4 =p2q1 | - | byp—1)|Ql+1 = PP

@ | b2=pig

Q| | big| = P19 e bipl@| = PIP|4|Q|

Table 6.1: Probability distribution table.

If we normalize the first column, it is equal to vector [¢1 g2 - - ¢ up to a global
phase factor. Similarly, normalizing the first row makes it equal to vector [p1 p2 -+ pyp|
up to a global phase. Note that it does not matter which value the global phase factor has
because a quantum state is invariant under a global phase transformation.

Unfortunately, we assumed that we knew the correct bipartitioning P : () which is not the
case. Luckily, because there are only a constant number of qubits, there are only a constant
number of bipartitionings; we can thus perform an exhaustive search of all possible biparti-
tionings, calculate amplitude vectors for all of them and then check whether their product
correspond to the original amplitudes: FINDPARTITION.

Input: A set of maximally 2p qubits B with corresponding amplitudes.
Output: A partitioning such that the state represented by the amplitudes is a
tensor product of the state represented by the amplitudes of the partitioning.
FINDPARTITION([b1, b2, - -, byp|,0)])

1 foreach Bipartitioning P : Q of B

)
2) np = Z‘Zi b1 |2
) ng = Z‘fi'l |bi1 |2
) [p1 -+ pn] = [b1i -+ bin]/np.
5; [q1 -+ qn] = [bi1 - - bp1]/ng.
)
)
)

= W

6 foreach i € [1,|P]],j € [1,|Q]]

7 if b;; # pig;

8 break

9 return (P Q:[p1 p2 - p|P|] g @ Q|Q|])

AN AN AN N N N N /N /N

We are now left in a situation where computations in a p-blocked state at every step are
efficiently simulatable on a classical computer. Another way to interpret this result is that a
necessary, though not sufficient, condition for a quantum algorithm to provide an exponential
speedup is that its states cannot be p-blocked for at least one step. In other words, using
the formal definition of entanglement, multipartite entanglement across the qubits must be
unbounded. For example, in [21] the authors show how Shor’s factorization algorithm conforms
to the latter statement.
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6.4.1 Computational Power

What is interesting about p-blocked quantum algorithms is that they are equivalent in power to
the complexity class P. First of all, if a problem can be solved with a p-blocked algorithm, our
simulation argument above proves that there exists a polynomial time algorithm that solves the
problem to. On the other hand, it is not hard to see that every language in P can be decided
with a p-blocked algorithm too. Suppose L € P and C is a polynomial sized classical circuit that
decides L. We already pointed out that every circuit can be made reversible, so let C" be the
reversible classical circuit that decides L. Remembering claim 3.1, we know that the circuit C"
has a quantum equivalent C¢ of polynomial size. The only issue that must be addressed is that
the state of C? must be p-blocked. The state of the reversible deterministic circuit can never
exists in a superposition, therefore if it is in say state xzixo---x,, the state of the equivalent
quantum circuit will be |z1) ® |z2) ® -+ ® |z,,). This state is clearly a 1-blocked state and
therefore, for any p > 0, p-blocked.

6.4.2 Final Words on P-Blocked States

The reason why p-blocked algorithms can be simulated in polynomial time is because p-blocked
states can be described by poly(n) parameters in contrast to the O(2") parameters needed for a
general quantum state. In other words, p-blocked states are characterized by only polynomial
degrees of freedom which in turn are able to generate 2" probability amplitudes.

Nonetheless, the fact that states with a polynomially sized description correspond to the
class of unentangled states depends strongly on our mathematical formalism! Let’s give two
examples. First of all, suppose we would use simple Hilbert spaces (section 5.2) to describe
our algorithms. Only using polynomial degrees of freedom would correspond to some property
of the probability distribution implied by the superposition. Polynomial degrees of freedom do
not correspond to entanglement in this formalism. A second example are the stabilizer states:
they only require a polynomial number of bits to describe quantum states. Here it is even more
clear that polynomial degrees of freedom correspond to a class of states totally different from
the p-blocked states: the stabilizer states. As we have showed many times, there are stabilizer
states which are highly entangled.

Unfortunately, it is not so that all quantum computations which states can be described
with a polynomial amount of resources can be simulated efficiently. The updates between the
gates might take superpolynomial time to compute.

6.5 Open Problems, Further Research and Conclusion

This chapter introduced us to several concepts that are useful in the study of quantum complex-
ity theory. In this last section we point out several open problems that might lead to interesting
insights. Wherever possible, we suggest possible approaches to solve these problems.

Let us first point out a weakness of the stabilizer formalism. We pointed out that because
there are only a finite number of generators on n qubits, there must be only a finite number
of stabilizer states on n qubits. Contrast this with for example p-blocked states which have
a continuous range of possible states if we forget our assumption that amplitudes must be
rational. I have tried to extend the theory of stabilizers to include one or more real degrees of
freedom. Unfortunately I did not find a representation of continuously valued matrices with a
group structure that was stabilized by the Clifford group. On the other hand, I would like to try
to apply the theory of Lie-groups and see if it would be a way forward. It would be interesting
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to see whether, let us call them continuous stabilizers, increase the computational power of the
formalism.

I have also studied another subset of universal quantum computation that is very similar to
the p-blocked formalism of Jozsa & Linden. In [20], Guifre Vidal proposes a representation of
slightly entangled quantum states based on the notion of the Schmidt decomposition of quantum
states. It is very clear from that representation that again a polynomial number of degree of
freedom generate 2™ probability amplitudes.

What was interesting with the stabilizer formalism was that we could design any quantum
circuit we wanted as long as we used CNOT, Hadamard or Phase gates. It is therefore a
little disappointing that p-blocked and Vidal computation do not imply such a convenient
characterization. E.g., it is not clear how one could design a quantum algorithm where each
intermediary state is p-blocked. Nonetheless, it would be interesting to see whether such a
characterization exists for p-blocked or Vidal states but so far I have found no evidence that it
is so.

Related to p-blocked and Vidal states is the issue of polynomial degrees of freedom. One
can think of many formalisms which given:

e a polynomial number of variables @ = [a1 - - - ay(p)];

e an exponential number of functions ¢1(Z), - - - ¢on(Z) with T = [z1 -z ],

represent quantum states. Every function ¢; returns the probability amplitude of some n-qubit
basis state. Another question which might provide interesting insights is what conditions on
the ¢; are necessary such that we can simulate a unitary evolution in polynomial time. Fix a
particular basis state |z). We know that ¢,(a) returns the probability amplitude of |z). Suppose
we apply a unitary transformation on the state described by a. The new probability amplitude
of |z) becomes,

¢x(d/) - Z Uy$¢y(d)'

Updating the state therefore corresponds to solving certain equations. It might be worthwhile to
look into different classes of ¢, that lead to interesting subsets of general quantum computation.

Finally there exists a number of other subsets of quantum states [31]. One of the most
promising subsets are the so called tree states. They provide an excellent connection to compu-
tational complexity theory but introduce a whole new range of problems to be solved.

Quantum complexity theory is definitely an area where much is to be discovered. On one
hand, we can be optimistic: quantum mechanics sometimes simplifies things [33]. On the other
hand, there are a lot of parallels between probabilistic and quantum computing. Both allow
exponential degrees of freedom in the description of their states yet there is clear evidence that
they will be different: it is conjectured that BPP = P while FACTORINGD provides evidence
that P € BQP. The difficulty of proving the BPP = P case might feed the pessimism that a
solution will take a while to be discovered. Nonetheless, my research has provided me with
some valuable insights in the one difference in dynamics between probabilistic and quantum
computation: destructive interference. I hope these insights allow me to make a contribution
to the final characterization of BQP’s complexity in the future.
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Appendix A

The Density Operator

Usually, quantum states are described using the language of state vectors. Unfortunately, this
paradigm has some deficiencies and a more powerful tool to describe quantum states exists: the
density matrix formalism. This formalism represents a quantum state with an operator called
the density operator. If the state of a quantum system is precisely known, as in the state vector
approach, we say that it is a pure state. The density matrix formalism also allows what are
called mized states which are not representable by a state vector.

Suppose a quantum system is in a one of a number of states |¥;), each with probability p;.
We call the set {p;, |¥;)} with > p; = 1 an ensemble of pure states. If there is more than one
p; > 0, the state is a mixed state. The density operator or density matriz of an ensemble of
pure states is defined by the equation,

P:Zpi"l’i><‘1’i\- (A1)

Example 1.1. Suppose we have an ensemble {1/2,]00);1/2,|11). Its density matrix is,

10 00
0 000
1/2]00)(00] + 1/2|11)(11| = 00 0 ol
0 001
Contrast this with the density matrix of the pure quantum state %,
10 01
0 00O
1/2]00)(00| + 1/2]00)(11] + 1/2|11){00| + 1/2|11)(11]| = 00 0 ol
10 01

X

It turns out that all of quantum mechanics can be represented in the density matrix for-
malism. Moreover, it is true that the density matrix contains all the information that can be
known about a quantum state. This was not the case for pure states which can’t represent
an ensemble. Nonetheless, for most of quantum computing, state vectors suffice, but is not
uncommon in quantum information theory to use the density matrix formalism because of its
extra power. We will now show some interesting properties of density matrices and introduce
the necessary concepts in order to understand the use of density matrices in this thesis.
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Theorem A.1. Suppose we apply a unitary evolution U on a quantum state described by density
matriz p. After the evolution the new density matriz p' = UpUT.

Proof. Suppose the quantum state is in a pure state |¥;) with probability p;, then after the
evolution the state is U|¥;) with probability p;. Therefore, the new density matrix becomes,

po= D pU) (WU

7

= U (Zpi|\1ji><\lli’> Ut

= UpU'

O]

Suppose we perform a measurement with projectors P; on an ensemble {p;, |¥;)} and we
want to know the probability of measuring m. If the initial state was |¥;), then,

Pr[measurement returns m | state was i] = (U;| P, |V;) = tr (P | W) (¥5]) .
By the law of total probability,

Pr[measurement returns m] = Z Pr[Measurement returns m | state was i|p;

= Ztr (Pm|Y:)(Vi]) pi

= tr <Pm2pi|\11i><\11i’>
= tr(Py )l

Example 1.2. Suppose we have an ensemble {1/4,00);1/4,|01);1/4,|10);1/4,|11) with den-
sity matrix /4. Take an arbitrary observable A with a decomposition in projectors P;. It is
easy to see that,

Pri] = tr(P;I/4) = 1/4tx(P;) = 1/4tx(|e;)(ei]) = 1/4(eile;) = 1/4,

with e; the eigenvector corresponding to projector P;. This state is known as the maximally
mized state: any measurement returns a uniform distribution of all possible outcomes. X

Simple algebra is sufficient to develop all the properties of density matrices from elementary
quantum mechanics. For our purpose, we need one final concept: the reduced density matriz.
Density matrices are an extremely powerful tool for describing subsystems of composite quantum
systems. The concept of a reduced density matrix is indispensable in the analysis of composite
quantum systems. Suppose we have physical systems A and B, whose state is described by a
density matrix pAB. The reduced density matrix for system A is,

A

pt = trp (p*7)

)

where trp is a map of operators known as the partial trace. The effect of the partial trace is:
trp (|a)(a] ® |b)(b]) = |a)(a| tr (]b)(b]) = |a)(al(b|b). In addition, the partial trace is linear in its
argument.
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What makes the partial trace important is that it describes the state of a subsystem. If
the joint state of quantum system is described by density matrix p4Z, the state of system A is
described by trp (pAB ) It is not entirely obvious why this is so, and it is beyond the scope of
this text to prove this more formally. An example will show its importance, though.

Example 1.3. Suppose Alice and Bob share an EPR pair, %, with density matrix
10 01
00 00
1/2]00)(00] + 1/2|00) (11| + 1/2]11)(00| + 1/2|11)(11| = 00 0 0
1 0 01

Alice possesses the first qubit while Bob possesses the second. Alice’s reduced density matrix
is,

trp (1/2]00)(00] 4+ 1/2]00) (11| + 1/2|11)(00] + 1/2[11)(11])
= 1/2 (trp(|00)(00]) + trp(]00)(11]) + trz(|11)(00]) + trp(|11)(11]))
= 1/2(|0){0 + [1)(1])

This clearly shows that Alice has a maximally mixed qubit. Every measurement she makes on
her qubit will return a uniform distribution of all possible measurement outcomes. It would be
as if she would toss a coin to get the measurement outcome; in other words, no measurement
returns any information on the state of the EPR pair. X

As a final word on density matrices we want to point out that they have very good analytical
properties. For example, density matrices make it convenient to introduce the notion of entropy.
Without getting into details, we mention that the entropy of the maximally mixed state is
maximal. This means that from the point of view of Alice in our last example, she knows
nothing about the joint quantum state.

An extensive coverage of density matrices and their properties can be found in [28].

83



84



Appendix B

Nederlandse Samenvatting

De 100 jaar oude theorie van de kwantummechanica heeft de laatste 25 jaar voor een revolutie
in ons beeld van computers gezorgd. Sinds de jaren 80 werd het duidelijk dat er een verband
bestaat tussen wat een computer kan berekenen en de wetten van de klassieke fysica. Het
verband impliceert dat fysische systemen een computer kunnen simuleren en omgekeerd, dat een
computer een klassiek fysisch systeem kan simuleren. Het was dan ook logisch dat onderzoekers
zich de vraag gingen stellen wat de implicaties zouden zijn als het klassiek fysisch systeem
vervangen zou worden door een kwantummechanisch systeem.

FEind jaren 80 en begin jaren 90 werd er een een robuust theoretisch model voor een kwan-
tum computer ontwikkeld maar de grote doorbraak kwam er pas in 1994. In dat jaar on-
twikkelde Peter Shor een polynoomtijd algoritme om natuurlijke getallen te factoriseren. Het
factorisatieprobleem is niet alleen van praktisch belang in de cryptografie, maar neemt ook een
sleutelrol in in de complexiteitstheorie. Men vermoedt namelijk dat er geen efficiént klassiek al-
goritme bestaat om een getal in priemfactoren te ontbinden. Het daaropvolgende jaar ontdekte
Lov Grover een nieuw kwantum algoritme om een element te zoeken in een niet gesorteerde rij
van n elementen met slechts ©(y/n) queries.

Sinds deze ontdekkingen zijn er slechts enkele nieuwe kwantum algoritmes gevonden. De
vraag die zich opdringt, is waarom het zo moeilijk blijkt te zijn om nieuwe kwantum algoritmes te
vinden. Een mogelijk antwoord zou kunnen zijn dat er misschien helemaal niet veel problemen
zijn die een kwantum computer sneller kan oplossen dan een klassieke computer. Om dit
probleem verder te onderzoeken stellen we ons in deze thesis de vraag op welke manier een
kwantum computer verschilt van een klassieke computer. Twee typische kwantum fenomenen
komen hiervoor in aanmerking: interferentie en verstrengeling.

Na een inleiding over kwantum computers en een bespreking van de kwantum fenomenen,
bestuderen we of Shor’s algoritme en Grover’s algoritme gebruik maken van interferentie en
verstrengeling. We komen tot de conclusie dat dit inderdaad het geval is als we onze informatie
voorstellen met kwantum bits; de kwantum tegenhangers van klassieke bits. Een kwantum
algoritme kan tussentijdse metingen bevatten die op hun beurt de volgende stappen van het
algoritme kunnen bepalen. De interpretatie van het meetresultaat en de beinvloeding van de
volgende stappen van het algoritme gebeuren met een klassiek algoritme. Hierdoor zal de
analyse van een kwantum algoritme rekening moeten houden met evoluties in de Hilbertruimte
afgewisseld met een aantal stappen van een klassiek algoritme. We tonen echter aan dat elke
meting van een kwantum systeem helemaal tot op het einde van het algoritme uitgesteld kan
worden. Deze vereenvoudiging laat ons toe om heel het algoritme te analyseren in de toes-
tandsruimte van het kwantum systeem en op het einde slechts een enkele meting te moeten
interpreteren. Omdat we in het algemeen onze informatie voorstellen met verschillende kwan-
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tum bits is de Hilbertruimte van het hele kwantum systeem een tensorproduct van verschillende
tweedimensionale Hilbertruimtes. We tonen aan dat deze tensorproduct-Hilbertruimte isomorf
is met een eenvoudige Hilbertruimte; een Hilbertruimte die geen tensorproduct is van kleinere
Hilbertruimtes. We besluiten dus dat elk kwantum algoritme kan geanalyseerd worden in deze
eenvoudige Hilbertruimtes. In deze context is enkel interferentie van belang; verstrengeling is
een ongedefinieerd begrip.

Aan de andere kant tonen we aan dat als we een Hilbertruimte in een fysiek systeem willen
inplanten, we verstrengeling nodig hebben om de scaleerbaarheid van de kwantum computer te
verzekeren. Dit suggereert dat enkel de fysicus of ingenieur die een kwantum computer bouwt,
rekening moet houden met verstrengeling.

Onze conclusie geeft een kwalitatief beeld van de rol van interferentie en verstrengeling
voor kwantum computers. Helaas geeft dit weinig inzicht in de kracht van kwantum comput-
ers. Daarom sluiten we onze thesis af met een inleiding op de karakterisatie van de kracht
van kwantum computers en hoe deze gerelateerd is met de hiérarchie van bekende complex-
iteitsklassen. Omdat dit probleem van een veel hogere moeilijkheidsgraad is, bieden we hier
geen concrete oplossingen aan maar bespreken we bestaande inzichten en suggereren een aantal
onderzoeksmogelijkheden voor de toekomst.

86



Appendix C

Symbols

A C B - A is a proper subset of B.

A C B- Ais asubset of B or A is equal to B.

|¥) - A vector W.

(¥| - A dual vector V.

(¥|®) - The scalar product between |®) and (V|.

0ap - The Kronecker delta: if a =b =, =1,if a # b= 04 = 0.
a* - The complex conjugate of scalar a.

A* - The complex conjugate of matrix A.

AT - The transpose of matrix A.

A" - The complex conjugate of the transpose of matrix A.
IF,, - The finite field with n elements.

o, - Pauli X matrix.

oy - Pauli Y matrix.

o, - Pauli Z matrix.

[A, B] - The commutator of A and B, AB — BA.

{A, B} - The anti-commutator of A and B, AB + BA.

@ - The binary addition operator.

® - The tensor product operator.

|©4) - Bell state %
|©_) - Bell state |00>\;§|11>.
|®.) - Bell state ’01>\J/r§|10>
|®_) - Bell state ’01>\;§|10>
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