CS 784 - Project Phase 2: Brand Name Extraction from Product Name

Abhinav Mehra, Danish Khan, Mehreen Ali

Introduction

In this stage, we automated brand name extraction from the “Product Name” attribute value
in the JSON representation of a product. We followed a dictionary-based approach. We were
provided with a dictionary of ~8K brand name values that was extracted by processing a
large database of electronic products. We followed following steps for our automation
method development and result analysis:

l. From a given data set of labeled product pairs (approximately ten thousand such
pairs), we randomly sampled 350 products. For each product, we extracted the brand
name from the product name attribute manually. This information is available in
“golden_data.txt” file.

II. This sample is further split randomly into a development set and a testing set. We
have 220 product names in our training/development set and 129 products in testing
set. Training set is stored in “setl.txt” file and test set in “setJ.txt”.

lll. Develop extractor function and use training set to tune our function. Then, use the
developed function on test set and calculate the precision and recall. Section 3 talks
in detail about the extractor function.

Precision and Recall

We used following method to calculate precision and recall for our brand extractor function
on test data.

Precision = (#True_Positives)/(#True_Positives + #False_Positives)
Recall = (#True_Positives)/(#True_Positives + #False_Negatives)

True_Positive: Count of products where brand extracted by function is same as brand
assigned manually on sample data set.

True_Negative: Count of products where brand extracted by function is wrong from sample
data.

Fase_Positive: Count of products where brand extractor function predicted a brand but
actual sample data didn’t have a brand name.

False_Negative: Count of products where brand extractor function didn’t predict a brand but
actual sample data had an associated brand.

Same data with assigned brand names is stored in “golden_data.txt” file. Result of predicted
brand names by brand extractor function is stored in “result.txt” file.

Using above method, we got following results for our brand extractor on the test data:

Precision 93.2%

Recall 95.4%

Brand Name Extractor Description

We used a dictionary based approach where we were given a long list of brand names. We
developed our extractor function while working with the training data. We kept extending our
given brand list in each iteration and then later on we used this extended brand list on test
data. Our extractor function used following steps to extract the brand name from its given
product name:

1. Generate combinations of words in the given product name string. During the training
phase, we made this little smarter by removing non-relevant combinations including
braces, special characters, etc. For example, product name “Maxell 625156 CD-R
Music Discs” generates following combinations each of which is looked into the brand
dictionary: {*Maxell”, “CD-R”, “Music”, “Discs”, “Maxell CD-R”, “Maxell Music”, etc.}

2. We took a list of permissible suffixes which if absent or present in the given search
string from the brand name, should still be assigned that brand name. For example,
“Apple Inc.” and “Apple” both should be assigned the brand name as “Apple”. We
generated a list of permissible suffixes while working on training data. Later we
extended our brand list with brands with these suffixes as well.

3. We also took into consideration space and punctuations related differences in our
extractor function. Function removes all tab and multiple spaces in the product name
before splitting into words.

4. For each combination, we looked up for a potential match in the given brand name
dictionary. For comparing brand names, we used following condition:

a. If two strings (one from the generated word combination from product name,
second from the dictionary) matches completely, then assign the brand name
to current product.

Result Analysis

We started extracting brand names from product name on the training data by directly
comparing with given brand dictionary. Doing so, initially gave poor precision and recall
(precision = 0.86, recall = 0.74). While looking at the errors, we observed a lot of mismatch
were related to common prefix, suffix related mis-matches. This resulted in false negative
results giving lower recall on our test data. Extending our brand dictionary with common
such mismatch helped increase both precision and recall in training data. We did not
implement edit distance with a threshold distance for acceptance in our current
implementation, but we expect to see improvement by applying this approach.

Another interesting observation was product names having multiple brand names. One
example of this was an accessory for an Apple product which was made by a company
named Fosmon. Fosmon was in our dictionary, but it happened that Apple appeared first in
the product name and as such, it was returned as the brand name.

Appendix

Golden Data File
http://pages.cs.wisc.edu/~dkhan/golden_data.txt

Test/Development Set File
http://pages.cs.wisc.edu/~dkhan/setl.txt

Training/Data File
http://pages.cs.wisc.edu/~dkhan/setJ.txt

Code for Extractor Function:
https://github.com/DanishKhan14/CW-UWMadison/blob/master/CS784/brandExtractor.py

Result for test data:
http://pages.cs.wisc.edu/~dkhan/result.txt

README
http://pages.cs.wisc.edu/~dkhan/README

https://github.com/DanishKhan14/CW-UWMadison/blob/master/CS784/brandExtractor.py

