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Sequencing and scheduling as a research area is motivated by questions that
arise in production planning, in computer control, and generally in all situa-
tions in which scarce resources have to be allocated to activities over time. In
this survey, we concentrate on the area of deterministic machine scheduling.
We review complexity results and optimization and approximation algorithms
for problems involving a single machine, parallel machines, open shops, flow
shops and job shops. We also pay attention to two extensions of this area:
resource-constrained project scheduling and stochastic machine scheduling.

PART I. PRELIMINARIES

Sequencing and scheduling is concerned with the opiimal allocation of scarce
resources to activities over time. Of obvious practical importance, it has been
the subject of extensive research since the early 1950°s, and an impressive
amount of literature has been created. Any discussion of the available material
has to be selective. We will concentrate on the area of deterministic machine
scheduling. We will also pay attention to two extensions of this area that are of
particular interest in the context of production planning, namely resource-
constrained project scheduling and stochastic machine scheduling.

The chapter is organized as follows. Part I gives a brief overview of the many
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We also have to exclude a number of other areas, each of which would be
worth a survey of its own: periodic scheduling, cyclic scheduling, scheduling
with fixed starting times, and scheduling with sequence-dependent processing
times. The latter area is closely related to the traveling salesman problem and
its extensions. :

General references on sequencing and scheduling are the classic book by
Conway, Maxwell & Miller [1967], the introductory textbooks by Baker [1974]
and French [1982], the expository articles collected by Coffman [1976], and the
proceedings volume edited by Dempster, Lenstra & Rinnooy Kan [1982].
There are several survey papers that complement the present chapter. We
mention the review of the broad area of production planning by Graves [1981],
the introductory survey of precedence-constrained scheduling by Lawler &
Lenstra [1982], the tutorial on machine scheduling by Lawler [1983], the
NP-completeness column on multiprocessor scheduling by Johnson [1983], the
annotated bibliography covering the period 1981-1984 by Lenstra & Rinnooy
Kan [1985], the discussions of new directions in scheduling by Lenstra &
Rinnooy Kan [1984], Blazewicz [1987] and Blazewicz, Finke, Haupt & Schmidt
[1988], and the recent overviews of single-machine scheduling by Gupta &
Kyparisis [1987] and of multiprocessor and flow shop scheduling by Kawaguchi
& Kyan [1988].

References on resource-constrained project scheduling and stochastic
scheduling will be given in Sections 15 and 16. For the scheduling areas that are
not covered in this chapter, we refer to the bibliography by Lenstra & Rinnooy
Kan [1985]. In addition, we mention the survey of due date determination rules
by Cheng & Gupta [1989], the reviews on scheduling with nonregular criteria
by Raghavachari [1988] and Baker & Scudder [1990], the results in that area by
Garey, Tarjan & Wilfong [1988], the survey on bicriterion single-machine
scheduling by Dileepan & Sen [1988], and the book on the traveling salesman
problem edited by the present authors [Lawler, Lenstra, Rinnooy Kan &
Shmoys, 1985].

2. Algorithms and complexity

Practical experience makes it clear that some computational problems are
casier to solve than others. For some scheduling problems, algorithms have
been known for decades that are capable of solving instances with thousands of
jobs, whereas for other problems, the best algorithms strain to cope with only a
handful of jobs. Complexity theory provides a mathematical framework in
which computational problems can be studied so that they can be classified as
‘casy’ or ‘hard’. In this section, we will review the main points of this theory.
The reader is referred to the survey articles by Karp [1975], Lenstra &
Rinnooy Kan [1979], Shmoys & Tardos [1993], and Stockmeyer [1992], and to
the textbook by Garey & Johnson [1979] for a more extensive treatment of this
subject.
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An NP-complete problem is, roughly speaking, a hardest problem in NP, in
that if it would be solvable in polynomial time, then each problem in NP would
be solvable in polynomial time, so that P would be equal to NP. Thus, the
NP-completeness of a particular problem is strong evidence that a polynomial-
time algorithm for its solution is unlikely to exist. The principal notion in
defining NP-completeness is that of a reduction. For two decision problems P
and Q, we say that P reduces to Q (denoted P« Q) if there exists a
polynomial-time computable function 7 that transforms inputs for P into inputs
for Q such that x is a ‘yes’ input for P if and only if 7(x) is a ‘yes’ input for Q.
A problem is NP-complete if it is in NP and every problem in NP reduces to it.
An optimization problem will be called NP-khard if the associated decision
problem is NP-complete.

Cook showed that a natural problem from logic is NP-complete by exhibiting
a ‘master reduction’ from each problem in NP to it. Given one NP-complete
problem P, it is a much easier task to prove the NP-completeness of the next
one, say : one need only prove that Q € NP and that P« Q. The cligue
problem is the following problem from graph theory: given a graph G = (V, E)
and an integer k, does there exist a set of vertices C C V such that | C| = k and
for each distinct pair u, v € C, {u,v} € E? Cook showed that the clique
problem is NP-complete. The wide applicability of the notion of NP-complete-
ness was observed by Karp, who proved that 21 basic problems are NP-
complete.

Although we have thus far ignored all questions of encoding the inputs,
there is one distinction that will play an important role in our discussion. The
natural way to encode integers is to use a binary notation; e.g., 5= (101).
However, one may also consider a unary notation; e.g., 5= (11111). There is
an exponential gap between the lengths of both encodings. In the clique
problem, there are no large integers to be encoded, and so this distinction is
unimportant, but this is not always the case. In the partition problem, the input
consists of n numbers a,,...,q,, and the question is if there exists a subset
S CA{1,...,n} such that £ ;csa, =X, a,/2. This problem is NP-complete under
a binary encoding. On the other hand, it can be solved by dynamic program-
ming in O(nX;q;) time, which is polynomial under a unary encoding; the
method is therefore called a pseudopolynomial-time algorithm. There are also
‘number problems’ that are NP-complete, even when the numbers are encoded
in unary. In the 3-partition problem, the input consists of 3n integers
as, ..., a,,, and the question is if there exists a partition of {1,...,3n} into n
3-element sets S;,...,S, such that Liesd;=Y;a;/n for i=1,...,n This
problem remains NP-complete under a unary encoding and is therefore called
strongly NP-complete.

The NP-hardness of an optimization problem suggests that it is impossible to
always find an optimal solution quickly. However, it may still be possible to use
an approximation algorithm to find solutions that are provably close to the
optimum. For a minimization problem f, a p-approximation algorithm (p > 1)
delivers a solution with value at most pf(x) for each input x. Some NP-hard
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— a; = °: single machine; p,; = p;;

—ay = P: identical parallel machines; p,; = p, for all M,,

—a; = Q1 uniform parallel machines; p; = p;/s; for a g1ven speed s, of M,;

-, = R: unrelated parallel machines; p, = p;/s; for given job- dependent
speeds s; of M,.
If o= O, we have an open shop, in which each J; consists of a set of
operations {0y}, ..., O,,;}. O, has to be processed on M, during p,; time units,
but the order in which the operations are executed is immaterial. If o, &
{F, J}, an ordering is imposed on the set of operations corresponding to each
job. If a;=F, we have a flow shop, in which each J; consists of a chain
(0455 O,;). Oy has to be processed on M, during p;; time units If @ =1,
we have a job shop, in which each J; consists of a chain (01], . ) O, has
to be processed on a given machlne p; during p,; time units, w1th ,u, e u, 1,
fori=1,...,m;—1.

faisa positive integer, then m is a constant, equal to a,; it is specified as
part of the problem type. If o, = o, then m is a variable, the value of which is
specified as part of the problem instance. Obviously, a; = ° if and only if
a, =1.

3.3. Job characteristics

The second field 8 C{B,,..., B,} indicates a number of job characteristics,
which are defined as follows.

(1) B, € {pmin, °}.

B, = pmin: Preemption (job splitting) is allowed: the processing of any
operation may be interrupted and resumed at a later time.

B, = °: No preemption is allowed.

(2) B, = {prec, tree, °}.

B, = prec. A precedence relation— between the jobs is specified. It is
derived from an acyclic directed graph G with vertex set {1,...,n}. If G
contains a directed path from j to k, we write J;— J, and require that J; is
completed before J, can start. :

B, =tree: G is a rooted tree with either outdegree at most one for each
vertex or indegree at most one for each vertex.

B, = °: No precedence relation is specified.

(3) Bs€{r; °}.

B; = r;: Release dates that may differ per job are specified.

Bs=rc: All r;=0.

(4) 184 = {p 1 pl] , }
B, = p; = 1: Each job has a unit processing requirement. This will occur only
if @, € { P, O},

B, = p; = 1: Each operation has unit processing requirement. This will occur
only if ¢, €{O, F, J}.
By = °: All p; or p,; are arbitrary nonnegative integers.
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3.6. Reducibility among scheduling problems

Each scheduling problem in the class outlined above corresponds to a
six-tuple (i, ..., us), where u, is a vertex of the graph G, shown in Figure 1
(i=0,...,5). For two problems P = (u,...,us) and Q = (v, ..., Vs), we
write P—> Q if either u; = v, or G, contains a directed path from u; to v,, for
i=0,...,5. The reader should verify that P—> Q implies that the decision
version of P reduces to the decision version of Q. For example, deciding if
L .. <k can be reduced to the special case where k =0, and this is equivalent
to deciding if 77 =0. The graphs thus define elementary reductions between
scheduling problems. It follows that if P— Q and Q is solvable in polynomial
time, then P is solvable in polynomial time, and if P— Q and P is NP-hard,
then Q is NP-hard.

These types of reductions play an instrumental role in the computer program
MmspcLass [Lageweg, Lawler, Lenstra & Rinnooy Kan, 1981, 1982]. The
program records the complexity status of scheduling problems on the basis of
known results and employing simple inference rules as given above. The main
application of MspcLASs concerns a collection of 4536 problems, which only
differs from the class described in this section in that «, is restricted to values
from {1,2,3,°}, B, =pmin excludes B, =pu; =1, and B also allows the
specification of deadlines, i.e., strict upper bounds on job completion times. At
present, 417 of these problems are known to be solvable in polynomial time,
3821 have been proved NP-hard, and 298 are still open. With respect to a

(] [
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Fig. 1. Problem classification: the graphs G, (i=0,...,5).
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4.1. Maximum cost

Lawler’s algorithm has been generalized by Baker, Lawler, Lenstra &
Rinnooy Kan [1983] to an O(n*) algorithm for 1| pmin, prec,r;| f,.,. First, the
release dates are modified such that 7, + p, < r, whenever J,— J,. Next, the
jobs are scheduled in order of nondecreasing release dates; this creates a
number of blocks that can be considered separately. From among the jobs
without successors in a certain block, a job J, that yields minimum cost when
finishing last is selected, the other jobs in the block are rescheduled in order of
nondecreasing release dates, and J, is assigned to the remaining time intervals.
By repeated application of this procedure to each of the resulting subblocks,
one obtains an optimal schedule with at most » — 1 preemptions in O(x”) time.

Monma [1980] considers a generalization of 1| | f,,,,. Let ¢, indicate the
amount of a resource consumed (or, if ¢; <0, contributed) by J;. The problem
is to find a job permutation minimizing the maximum cumulative cost,
max; f, .y (& ol Criy)- An NP-hardness proof and polynomial-time algorithms
for special cases are presented.

4.2. Maximum lateness

Although Lenstra, Rinnooy Kan & Brucker [1977] show that the general
1] t; | L_.. problem is strongly NP-hard, polynomial algorithms exist for the
cases that all r; are equal, all d; are equal or all p; are equal, and for the
preemptive problem. The first case is solved by a specialization of Lawler’s
method, known as Jackson’s rule [Jackson, 1955]: schedule the jobs in order of
nondecreasing due dates. This rule, which minimizes the maximum tardiness as
well, is also referred to as the earliest due date (EDD) rule. Note that, if any
sequence completes all jobs by their due dates, an EDD sequence does. The
second case is solved similarly by scheduling the jobs in order of nondecreasing
release dates.

Horn [1974] observes that 1|r;,p; =1| L, and 1| pmun,r;| L, are solved
by the extended Jackson’s rule: at any time, schedule an available job with
smallest due date. Frederickson [1983] gives an O(n) algorithm for the case of
unit-time jobs. Simons [1978] presents a more sophisticated approach to solve
the problem 1|7, p,=p|L,,,, where p is an arbitrary integer. Let us first
consider the simpler problem of finding a feasible schedule with respect to
given release dates 7; and deadlines d;. If application of the extended Jackson’s
rule yields such a schedule, we are finished; otherwise, let J, be the first late job
and let J, be the last job preceding J, such that d, > d,. If J, does not exist,
there is no feasible schedule; otherwise, the only hope of obtaining such a
schedule is to postpone J, by forcing it to yield precedence to the set of jobs
currently between J, and J,. This is achieved by declaring the interval between
the starting time of J, and the smallest release date of this set to be a forbidden
region in which no job is allowed to start and applying the extended Jackson’s
rule again subject to this constraint. Since at each iteration at least one starting




t most n’ iterations will
)(n’ log n) time. Garey,
:d implementation that
the possible L_. . values
Lmax'

ive variant remain well
iffices to update release
J;— J,, as described by
982] gives a linear-time

olving 1| prec,r;| L.
wing preemption; their
dules, i.e., schedules in
» without increasing the
[1975] propose a more
n [1976] slightly modify
large problems. Their
n which due dates are
t time C;, it is delivered
he role of release times
take advantage of this
jing release times and
and Larson, Dessouky
ich yield more efficient
. Nowicki & Zdrzalka
Carlier, the proof of
lly believed. Nowicki &
rocedures. Zdrzalka &
s to 1| prec,r;| fra-

1in the obvious way to
erce & Roubellat {1982,
vals, assuming that the

lysis of approximation
, one must be careful in
approximation results.
t may err in such a case
ng if L} =<0 is NP-
sly remove this curious
1at 7,20 and d; <0 for
ing the problem in the
,’j - d].. Kise, Ibaraki &
lis case, by arguing that
transformations of the
red, and the extended

Ch. 9. Sequencing and Scheduling 457

Jackson’s rule (EJ) is shown to guarantee

Looe(E) /L, <2. ()
Potts [1980b] presents an iterative version of the extended Jackson’s rule (1),
and proves that

oL

Lpox (/L <5 . ()

Although interchanging the roles of the release times and delivery times does
not improve the performance guarantee of algorithms EJ and 1J, Hall &
Shmoys [1992] use it as the essential element of a modification of the latter
algorithm (MIJ) that guarantees

Loox(MI)/ Ly <5 ()
The technique of Lageweg, Lenstra & Rinnooy Kan [1976] implies that the
results above extend to the case of precedence constraints. Hall & Shmoys
[1992] also present two algorithms A,, and A,, that guarantee

. A |
Lmax(AIk)/L:-xax s1+ E for /= 1> 2 5 (T)

A, runs in O(nlogn + nk16k2+8k) time, whereas A,, runs in O(2*(nk)**?)

time.

5. Total weighted completion time
5.0. Smith’s ratio rule for 1| |Ew,C,

For the problem 1| |Zw].Cj, any sequence is optimal that puts the jobs in
order of nondecreasing ratios p,;/w; [Smith, 1956]. This rule is established by a
simple interchange argument. Consider a sequence in which the jobs are not in
order of nondecreasing p;/w,. Then there is a job J, that is immediately
preceded by a job J;, with p,/w; > p,/w,. If J, completes at time C,, then J;
completes at time C, — p,. The effect of interchanging these two jobs in the
sequence is to decrease its cost by a positive amount:

[wj(ck = i) T w, G ] = [w, (C, ”Pj) + chk]

=W DT WPy

=ww, (p/w;, = p/w,)>0.

Hence the sequence cannot be optimal. This confirms Smith’s rule.
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each node in the tree, and the ordering at the root yields the optimal solution.
In fact, Buer & Mohring [1983] give an O(n®) algorithm that computes the
decomposition, and Muller & Spinrad [1989] improve the running time to
O(n®). For series-parallel graphs, each leaf of the decomposition tree corre-
sponds to a single job, and each internal node corresponds to either a series
operation, where all jobs in the first module must precede all jobs in the
second, or a paralle] operation, where no precedence constraints are added
between the two modules.

The algorithm works from the bottom of the tree upward, merging sets of
strings in the appropriate way. The one remaining observation needed is that
for a series operation, if the largest string o, in the first set (with respect to <)
is bigger than the smallest string o, in the second, then there exists an optimal
ordering which contains ¢, 0,, and so the two strings can be concatenated. By
iterating this argument, the two sets of strings can be merged correctly.

Lawler [1978a,b], Monma & Sidney [1979], Monma [1981], Sidney [1981],
Lawler & Lenstra [1982] and Monma & Sidney [1987] describe several
axiomatic settings for characterizing results of this sort.

Series-parallel graphs can also be viewed as graphs that are iteratively built
up by substitution from the two-element chain and from two incomparable
elements. Mohring & Radermacher [1985a] generalize this by consider-
ing graphs whose prime (undecomposable) modules are of size k, giving an
O(nkz) algorithm to minimize, for example, Zw;C; subject to such precedence
constraints. Sidney & Steiner [1986] improve the running time to O(r”*")
where w denotes the maximum width of a prime module, by applying a more
sophisticated dynamic programming procedure within the decomposition
framework. Monma & Sidney [1987] give a partial characterization of objec-
tives for which this combination of decomposition and dynamic programming
can be applied.

>

5.2. Arbitrary precedence constraints, release dates and deadlines

Lawler [1978a] and Lenstra & Rinnooy Kan [1978] show that adding
arbitrary precedence constraints results in NP-hardness, even if all p;, =1 or all
w;=1. Potts [1980c, 1985c] considers branch and bound methods for
1] prec]ijCj and provides empirical evidence that a simple lower bound
heuristic based on Smith’s rule pales in comparison to Lagrangean techniques.

Lenstra, Rinnooy Kan & Brucker [1977] show that if release dates are
specified, 1]|r,|ZC; is already strongly NP-hard. Gazmuri [1985] gives a
probabilistic analysis of this problem under the assumption that the processing
times and release times are independently and identically distributed. For each
of two cases characterized by the relation between expected processing time
and expected interarrival time, a heuristic is developed whose relative error
tends to 0 in probability.

In the preemptive case, 1| pmin,r; ] L C; can be solved by a simple extension
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We may assume that any schedule is of the following form: first, the on-time
jobs are processed in order of nondecreasing due dates; next the late jobs are
processed in an arbitrary order. Now suppose that d, < - , and let F;(z)
denote the minimum criterion value for the first j jObS sub]ect to the uonstralnt
that the total processing time of the on-time jobs is at most ¢. Initializing the
recursion by

F(t)=ew fort<0, j=0,...,n,
E(t)=0 fort=0,

we have that

min{F,_,(t—p;), F,_ () +w;} for0<t<d,,
F(t)—{ F(d) ! e ! for 1> d,, Ti=1,...,n.

j

The problem is solved by computing F, (X, p;), which requires O(nX;p,) time.
6.1. Further results

An algorithm due tc Moore & Hodgson [Moore, 1968] allows the solution of
1] |Z U, in O(n log n) time: jobs are added-to the set of on-time jobs in order
of nondecreasing due dates, and if the addition of J; results in this job being
completed after d;, the scheduled job with the largest processing time is
marked to be late and removed. Maxwell [1970] gives an alternative derivation
of this algorithm based on ideas from linear and integer programming. Sidney
[1973] extends the procedure to cover the case in which certain specified jobs
have to be on time. The further generalization in which jobs have to meet
given deadlines occurring at or after their due dates is shown to be NP-hard by
Lawler [1982b]. Lawler [1976a] shows that the Moore-Hodgson algorithm is
easily adapted to solve 1| [Zw, U, in O(nlogn) time if processing times and
weights are oppositely ordered (1 e. s P <DPx > W= w,).

Not surprisingly, 1|, |ZU, is strongly NP-hard, but Lawler [1982b, -] shows
how to apply dynarmc programmmg techmques to solve 1| pmin,r ]Z U, in
O(n’) time and llpmm | Zw,U; in O(n*(Zw))? ) time. Kise, Ibaraki & Mine
[1978] provide an O(n*) algorlthm for 1]r, ]ZU in the case that release dates
and due dates are similarly ordered (i.e., r <r, > d;<d;); Lawler [1982b]
shows that a variation of the Moore-Hodgson algorithm solves this problem
in O(nlogn) time. Lawler [-] also obtains O(nlogn) solutions for
1] pmin,r; ] Lw;U; in the case that the (r;, d;) intervals are nested and in the
case that release dates and processing times are similarly ordered and in
opposite order of job weights.

Monma [1982] gives an O(n) algorithm for 1| p, =1|LU,. However, Garey
& Johnson [1976] prove that 1] prec, =1 | XU, is NP- hard and Lenstra &
Rinnooy Kan [1980] show that this is true eveq for chain-like precedence
constraints.
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They also derived a number of elimination criteria. These are statements of
the following form: if the cost functions and processing times of J; and J, satisfy
a certain relationship, then there is an optimal schedule in which J; precedes J, .

Lower bounds and elimination criteria are used to discard partial schedules
that are generated by an enumeration scheme. For 1| |Z f;» it is customary to
generate schedules by building them from back to front. That is, at the /th level
of the search tree, jobs are scheduled in the (n— [+ 1)th position. The
justification for this is that, since the cost functions are nondecreasing, the
larger terms of the optimality criterion are fixed at an early stage while the
smaller terms are estimated by the lower bound.

7.1. Further results

Lawler [1977] glves a pseudopolynomial algorithm for the problem 1| |Z T,
that runs in O(n*Z p]) time. Recently, Du & Leung [1990} have shown that the
problem is NP-hard in the ordinary sense.

Lenstra & Rinnooy Kan [1978] prove that 1| prec,p;=1| LT, is NP-hard,

- and Leung & Young [1989] show that this is true even for chazn like prece-

dence constraints. If we introduce release dates, 1|r,,p,= 1|Ew]TJ can be
solved as a weighted bipartite matching problem, whereas 1 | r; | LT, is obvious-
ly strongly NP-hard.

Lawler [1977] and Lenstra, Rinnooy Kan & Brucker [1977] show that
1| |Zw,T, is strongly NP-hard. Various enumerative solution methods have
been proposed for this problem. Elmaghraby [1968] presents the first elimina-
tion criteria for the problem, including the observation that any job with due
date exceeding the total processing time can be scheduled last in an optimal
schedule. Emmons [1969] and Shwimer [1972] develop other elimination
criteria, and Rinnooy Kan, Lageweg & Lenstra [1975] extend these to the case
of arbitrary nondecreasing cost functions. Rachamadugu [1987] gives an elimi-
nation criterion that generates an optimal schedule if there is one in which all
jobs are late.

A variety of lower bounds have been studied. As already discussed in
Section 7.0, Rinnooy Kan, Lageweg & Lenstra [1975] use a linear assignment
relaxation based on an underestimate of the cost of assigning J; to position £,
and Gelders & Kleindorfer [1974, 1975] use a fairly similar relaxation to a
transportation problem. Fisher [1976] proposes a method in which the require-
ment that the machine can process at most one job at a time is relaxed. In this
approach, one attaches ‘prices’ (i.e., Lagrangean multipliers) to each unit-time
interval, and looks for multiplier values for which a cheapest schedule does not
violate the capacity constraint. The resulting algorithm is quite successful on
problems with up to 50 jobs. Potts & Van Wassenhove [1985] observe that a
more efficiently computable but weaker bound may be preferable. They apply
a multiplier adjustment method similar to the one mentioned in Section 5.2;
the constraints 7, > C; — d; are relaxed while associated prices for violating
these constraints are introduced.
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brighter here, and we will mention a number of polynomial-time algorithms for
the minimization of C_,, and L_,,, even subject to release dates. Finally,
Section 11 deals with the presence of precedence constraints, with an emphasis
on unit-time or preemptable jobs. The more general problems in this section
are NP-hard and will lead us again to investigate the performance of approxi-
mation algorithms. However, several special cases turn out to be solvable in
polynomial time.

8. Minsum criteria
8.0. A bipartite matching formulation for R| |EC,

Horn [1973] and Bruno, Coffman & Sethi [1974] formulated R| |ZC, as an
integer programming problem. The structure of this program is such that it can
be solved in polynomial time.

Consider the jobs that are to be performed by a single machine M,, and for
simplicity suppose that these are J,, J,, ..., J, in that order. For these jobs we
have 2C;=1Ip,, + (I = 1)p,, + -+ + p,. In general, LC,is a weighted sum of p,,
values, where the weight of p,; is equal to the number of jobs to whose
completion time it contributes. We now describe schedules in terms of 0-1
variables x;,, ;, where XGry,; = 1 if J; is the kth last job processed on M, and
Xxy,; = 0 otherwise. The problem is then to minimize

22 kD% o, i
ik o j
subject to
%x(i,‘)’j=1 forj=1,...,n,
Zx(,.k)’jsl fori=1,...,m, k=1,...,n,
7
Xy, €40,1} fori=1,...,m, j,k=1,...,n.

The constraints ensure that each job is scheduled exactly once and that each
position on each machine is occupied by at most one job. This is a weighted
bipartite matching problem, so that the integrality constraints can be replaced
by nonnegativity constraints without altering the feasible set. This matching
problem can be solved in O(n’) time.

A similar approach yields O(n log n) algorithms for P| |ZC; and Q| |ZC,;.
In the case of identical machines, LC; is a weighted sum of p; values, where
each weight is an integer between 1 and n, and no weight may be used more
than m times. It is obviously optimal to match the smallest weights with the
largest processing requirements. This is precisely what the generalized SPT rule
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8.2. Minsum criteria without preemption

We have seen that R| |LC, is solvable in polynomial time. Meilijson &
Tamir [1984] show that the SPT rule remains optimal for identical machines
that increase in speed over time. On the other hand, if the speed decreases,
then the problem is NP-hard.

In the case of arbitrary processing requirements, it seems fruitless to attempt
to find polynomial algorithms for more general criteria or for L C; problems
with additional constraints, even when there are only two identical machines.
P2| |Zw,C, is already NP-hard [Bruno, Coffman & Sethi, 1974; Lenstra,
Rinnooy Kan & Brucker, 1977], and so is P2|tree| LC,, for intrees as well as
outtrees [Sethi, 1977] and even for chains [Du, Leung & Young, 1991]. The
specification of due dates or release dates does not leave much hope either, as
both P2| | C,,, and 1|r;| EC; are NP-hard. In this section, we will therefore
be concerned with approximation in polynomial time and with optimization by
implicit enumeration.

With respect to P| |Zw;C;, an obvious idea is to list the jobs according to
nondecreasing ratios p;/w;, as specified by Smith’s rule for the single-machine
case (see Section 5.0), and to schedule the next job whenever a machine
becomes available. Eastman, Even & Isaacs [1964] show that this largest ratio
(LR) rule gives

2 wiC(LR) = 1 X w,p, = % (Z S wp- 12 W;E) )

j=1k=1 j=1

It follows from this inequality that

Swer= it £ 5w

m(n +1
This lower bound has been the basis for the branch and bound algorithms of
Elmaghraby & Park [1974], Barnes & Brennan [1977], and Sarin, Ahn &

Bishop [1988]. Kawaguchi & Kyan [1986] have refined the analysis of these
bounds to prove that

> ijj(LR)/E w,CT < ﬁ;l . ()

Sahni [1976] constructs algorithms A, (in the same spirit as his approach for
1| |Zw,U; mentioned in Section 6.1) with O(n(n’k)”"") running time for
which

1
> w,c,.(Ak)/Z W <1+ 7.

For m =2, the running time of A4, can be improved to O(rn’k).
A general dynamic programming technique of Rothkopf [1966] and Lawler
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essence of the correctness proof of the following algorithm of Gonzalez [1977].
First place the jobs in SPT order. Then obtain an optimal schedule by
preemptively scheduling each successive job in the available time on the m
machines so as to minimize its completion time. This procedure can be
implemented to run in O(n log n + mn) time and yields an optimal schedule
with no more than (m — 1)(n — 3m) preemptions. Gonzalez also extends it to
cover the case in which LC; is to be minimized subject to a common deadline
for all jobs. McCormick & Pinedo [1989] extend this to handle the problem of
minimizing wC,max + ZC; for an arbitrary weight w = 0.

Very little is known about R| pmmn|%C,. This remains one of the more
vexing questions in the area of preemptive schedu]mg One approach has been
to apply the techniques of Lawler & Labetoulle [1978] to show that if the
optimal order of completion times is known, then an optimal solution can be
constructed in polynomial time.

The problems 1| pmin | Lw,U, (see Section 6.0) and P | pmin | LU, are both
NP-hard in the ordinary sense the latter result is due to Lawler [1983] Lawler
[1979a] also shows that, for any fixed number of uniform machmes
Om | pmin | Zw;U; can be solved in pseudopolynomial time: O(n’ (Ew) ) if

m =2 and O(n3'" *(Zw;)®) if m=3. Hence, lepmm|ZU is solvable in
strictly polynomial time. Lawler & Martel [1989] give an 1mproved algorithm
for m =2 that runs in O(n’Zw, ;) time, and also use this algorithm to derive a
fully polynomial approx1mat10n scheme for Q2| pmin | Ew . The remaining
minimal open problems are R2| pmitn | XU, and, only w1th respect to a unary
encoding, P | pmitn|LU,.

We know from Section 7.1 that 1| pmm|LT; and 1| pmm|Zw,T; are
NP-hard in the ordinary sense and in the strong sense, respectlvely Wlth
respect to a unary encoding, P2| pmn | LT, is open.

In the presence of re]ease dates, NP- hardness has been established for
P2| pmun,r;|LC, [Du, Leung & Young, 1988], P2| pmm, 7;| ZU, [Du, Leung
& Wong, 1989].

9. Minmax criteria without preemption
9.0. The performance of list scheduling for P| | C,,,

Although P| | C_,, is strongly NP-hard [Garey & Johnson, 1978], there are
simple procedures to construct schedules that are provably close to optimal.
Consider the list scheduling (LS) rule, which schedules the next available job in
some prespecified list whenever a machine becomes idle.

In the earliest paper on the worst-case analysis of approximation algorithms,
Graham [1966] proves that, for any instance,

1
max(LS)/Cmax e —I’;l- . (T)
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Since there always is a list ordering for which this simple heuristic produces an
optimal schedule, it is natural to consider refinements of the approach.
Graham [1969] shows that, if the jobs are selected in longest processing time
(LPT) order, then the bound can be considerably improved:

* 4 1

Cmax(LPT)/Cmax s 3 3m * (T)
A somewhat better algorithm, called multifit (MF) and based on a complete-
ly different principle, is due to Coffman, Garey & Johnson [1978]. The idea
behind MF is to find (by binary search) the smallest ‘capacity’ that a set of m
‘bins’ can have and still accommodate all jobs when the jobs are taken in order
of nonincreasing p; and each job is placed into the first bin into which it will fit.
The set of jobs in the ith bin will be processed by M;. Coffman, Garey &
Johnsons show that, if k packing attempts are made, the algorithm (denoted by

MF,) runs in time O(n log n + kn log m) and satisfies

Crax(MF) /CE <1.224+27F.
Friesen [1984] subsequently improves this bound from 1.22 to 1.2, Yue [1990]
improves it to £, which is tight. The procedure executed within the binary
search ‘loop’ can be viewed as an approximation algorithm for packing a set of
jobs in the fewest number bins of a given capacity. If a more primitive
algorithm is used for this, where the jobs are not ordered by decreasing D
then all that can be guaranteed is

2

# _ +
Cous(MF)/ €l <2 = =2 (1)

Friesen & Langston [1986] refine the iterated approximation algorithm to
provide algorithms MF, with running time O(nlog n + knlog m) (where the
constant embedded within the ‘big Oh’ notation is big indeed) that guarantee

CoaxMF)/CL, < & +27°. ()

The following algorithm Z, is due to Graham [1969]: schedule the k largest
jobs optimally, then list schedule the remaining jobs arbitrarily. Graham shows

that
' k
Cmax(Zk)/C:wx <1+ (1 - l)/(1 * [_J> ’
m m

and that when m divides k, this is best possible. By selecting k= m/e, we
obtain an algorithm with worst-case performance ratio less than 1+ &. Un-
fortunately, the best bound on the running time is O(#*™). Thus, for any fixed
number of machines, this family of algorithms is a polynomial approximation
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Coax(LPT)/CE, <1+ for n=2(m—-1)7.

2(m~—1)
n

Significantly less is known about the worst-case performance of approxi-

mation algorithms for other minmax criteria. Gusfield [1984] considers the
problem P|r;|L,.., and proves that for the EDD rule (see Section 4.1),

L, (EDD)-L* < Zm -1

max;p, . )

As in the single machine case, it is natural to consider the relative error in the
delivery time model. The translation of the previous bound into this setting
provides an unnecessarily weak guarantee. By using a simple extension of the
argument of Graham [1966], Hall & Shmoys [1989] observe that

Lo (LS)/ L1, <2. (1)
They also develop a polynomial approximation scheme for this problem.
Carlier [1987] gives an enumerative method for P|r;| L,y Simons [1983]
shows that an interesting special case, P| 7;,0; =P | Lipax» can be solved in
polynomial time. Simons & Warmuth [1989] give an improved O(mn?) algo-
rithm based on a generalization of the approach of Garey, Johnson, Simons &
Tarjan [1981]. No approximation results are known for minimizing C_, with
both release times and deadlines; Bratley, Florian & Robillard [1975] give an
enumerative method for this problem.

The simple probabilistic analysis of list scheduling that was discussed in
Section 8.0 is also just a first step in a series of results in this area. For
example, the bounds of Bruno & Downey [1986] were refined and extended to
other distributions by Coffman & Gilbert [1985].

Probabilistic analysis also supports the claim that the LPT heuristic performs
better than arbitrary list scheduling. Unlike the relative error of list scheduling,
the absolute error C,,.(LS) ~ C%_. does not tend to 0 as n— o (with m fixed).
Coffman, Flatto & Lueker [1984] observe that, if I(LPT) denotes the total idle
time in an LPT schedule, then the absolute error is at most I(LPT)/m. For
processing times selected independently and uniformly from [0, 1], they prove
that E[I(LPT)]<c,,m%(n + 1), where ¢,, is bounded and lim,,_,.c, =1.

Loulou [1984] and Frenk & Rinnooy Kan [1987] both base their analyses of
LPT on the difference C,, (LPT) - X, pj/m, which is an upper bound on
Crax(LPT) = C2 . Loulou shows that, if the processing times are independent
and identically distributed with finite mean, then, for any fixed m=2, the
absolute error of LPT is stochastically smaller than a fixed random variable
that does not depend on n. Frenk & Rinnooy Kan consider the general
situation where the processing times are independently drawn from a dis-
tribution that has finite second moment and positive density at zero. They
prove that the absolute error converges to 0 not only in expectation but even
almost surely; that is, Pr[lim,_,C,, (LPT)~ C* _ =0]=1.

max\
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Friesen & Langston [1983] extend the multifit approach to uniform pro-
cessors. They prove that, if the bins are ordered in increasing size for each
iteration of the binary search, then

Coax(MF,)/C* <1.4+27%

and that there exists an example that has performance ratio 1.341. They also
show that the decision to order the bins by increasing size is the correct one,
since for decreasing bin sizes there exist examples with performance ratio 3.

Horowitz & Sahni [1976] give a family of algorithms A, with running time
O(n*"k™ ") such that

Cmax(Ak)/C* <1+

max >

=

so that for any fixed value of m, this is a fully polynomial approximation
scheme. Extending their dual approximation approach for identical machines,
Hochbaum & Shmoys [1988] give a polynomial approximation scheme, where

algorithm D, has running time O(mn'%*?) and

Cmax(Dk)/C;:lax <1+ —]](; :
For small values of k, the efficiency of this scheme can be improved; Hoch-
baum & Shmoys provide algorithms with performance guarantee arbitrarily
close to $ that run in O(nlog n + m) time.

The probabilistic results of Frenk & Rinnooy Kan [1986, 1987] also extend to
the case of uniform machines. In fact, the naive implementation of the LPT
rule (as opposed to the algorithm LPT' that was discussed above) produces
schedules in which the absolute error converges in expectation and almost
surely to 0.

9.3. Unrelated machines

Unrelated parallel machine problems are perceived to be significantly harder
than uniform machine problems, and results concerning the worst-case analysis
of approximation algorithms substantiate this distinction. Lenstra, Shmoys &
Tardos [1990] show that it is NP-complete to decide if there is a feasible
schedule of length 2 for instances of R | | Conax- This implies that there does not
exist a polynomial-time p-approximation algorithm with p < 2 unless P = NP.
Although this excludes the possibility of a polynomial approximation scheme,
Horowitz & Sahni [1976] show that for any fixed number of machines, there is
a fully polynomial approximation scheme.

Ibarra & Kim [1977] show that a variety of simple algorithms perform
discouragingly poorly; in fact, they were only able to prove that these methods
were m-approximation algorithms. The first substantial improvement of this
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for which any optimal schedule has at least this many preemptions. It is not
hard to see that the problem of minimizing the number of preemptions is
NP-hard.

10.1. Maximum completion time on uniform and unrelated machines

For Q| pmin| C,,,, the length of any schedule is at least
k k m
max{ max pj/z Sy p; 2 Si} )
1 i=1 j=1 i=1

I<sk=m-1 j=
where p;=---=p, and s, =---=s5,. This generalizes the lower bound given
in the previous section.

Horvath, Lam & Sethi [1977] prove that this bound is met by a preemptive
variant of the LPT rule, which, at each point in time, assigns the jobs with the
largest remaining processing requirement to the fastest available processors.
The algorithm runs in O(mn”) time and generates an optimal schedule with no
more than (m — 1)n® preemptions.

Gonzalez & Sahni [1978b] give a more efficient algorithm. It requires O(n)
time, if the jobs are given in order of nonincreasing p; and the machines in
order of nonincreasing s,; without this assumption, the running time increases
only to O(n + mlogm). The procedure yields an optimal schedule with no
more than 2(m — 1) preemptions, which is a tight bound.

Lawler & Labetoulle [1978] show that many preemptive scheduling problems
involving independent jobs on unrelated machines can be formulated as linear
programming problems. For R| pmin| C,,,, the length of any schedule is at
least equal to the minimum value of C subject to

n

Zx,.j/pij"—“l forj=1,...,n,
2x;<C  forj=1,...,n,
le.jsC fori=1,...,m,
x]..BO fori=1,...,m, j=1,...,n.

In this formulation, x;; represents the total time spent by J; on M,. The linear
program can be solved in polynomial time [Khachiyan, 1979]. A feasible
schedule for which C,,, equals the optimal value of C can be constructed in
polynomial time by applying the algorithm for O | pmim|C, ., discussed in
Section 12.2. This procedure can be modified to yield an optimal schedule with
no more than about 7m?2 preemptions. It remains an open question as to
whether there is some constant ¢ > 0 such that cm® preemptions are necessary
for an optimal preemptive schedule.

For fixed m, it seems to be possible to solve the linear program in linear
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11. Precedence constraints
11.0. An NP-hardness proof for P| prec,p;=1| C,.

The first NP-hardness proof for P| prec, p;=1|Cpuy is due to Ullman
[1975]. Lenstra & Rinnooy Kan [1978] show that even the problem of deciding
if there exists a feasible schedule of length at most 3 is NP-complete; the proof
is given below. This result implies that, for P | prec, p;=1|C,,,, there is no
polynomial p-approximation algorithm for any p < %, unless P = NP. Note that
it is trivial to decide if a feasible schedule of length 2 exists.

Recall the NP-complete clique problem from Section 2: given a graph
G =(V, E) and an integer k, does G have a clique (i.e., a complete subgraph)
on k vertices? We denote the number of edges in a clique of size k by

= k(k~1)/2, and we define k'=|V|~k, I'=| E|~ . For any instance of
the clique problem, we construct a corresponding instance of P| prec,
p;=1|C,... The number of machines is given by m =max{k, [+ k', '} + 1.
We introduce a job J, for every vertex v € V and a job J, for every edge e € E,
with J,— J, whenever v is an endpoint of ¢. We also need dummy jobs X,
x=1,...,m—k), Y, (y=1,...,m—1—-k') and Z, (z=1,...,m=1"),
with X, —Y,— Z_ for all x, y, z. Note that the total number of jobs is 3m.

The reduction is illustrated in Figure 2. The basic idea is the following. In
any schedule of length 3 for the dummy jobs, there is a certain pattern of idle
machines that are available for the vertex and edge jobs. This pattern is chosen
such that a complete feasible schedule of length 3 exists if and only if there is a
clique of size k.

JyTee——s 7,
>< I | o |7,
J3 Jc
>< A A
JaT—/———3FJ,
\ J4 Jd Z]
s =
Xy | J1 ] 2y
Z)
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X, —= ¥ X3 Y| Zy
NG
X5 \
k=3 7.
(a) (b) ©

Fig. 2. The clique problem reduces to P| prec,p,=1|C,,,. (2) Instance of the clique problem. (b)
Corresponding instance of P| prec,p;=1]|C,... (¢) Feasible schedule for P|prec,p;=1|C

max "
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graph is an interval order and give an O(n + m) list scheduling rule that
delivers optimal schedules. Bartusch, Mohring & Radermacher [1988a] give an
algorithm that unifies many of the special cases previously known to be
polynomially solvable.

In addition to proving interesting structural theorems about optimal
schedules, Dolev & Warmuth [1984, 1985a,b] give polynomial-time algorithms
for a number of special cases of Pm| prec,p,=1|C,,,. Dolev & Warmuth
[1985b] give an algorithm for opposing forests with substantially improved
running time, that also uses substantially more space. In an arbitrary prece-
dence graph, the level of a job is the length of the longest path that starts at
that job. A level order is a precedence graph in which each pair of incompar-
able jobs with a common predecessor or successor have identical sets of
predecessors and successors. Dolev & Warmuth [1985b] also show that level
orders can be solved in O(n” ') time. For precedence graphs in which the
longest path has at most 4 arcs, Dolev & Warmuth [1984] give an O(n"™"~D*1)
algorithm. Note that the proof given above shows that the problem is already
NP-hard for 4 = 2. Dynamic programming can be used to obtain a polynomial-
time algorithm for the case where the width of the precedence graph is
bounded; this is one of the many polynomially solvable special cases surveyed
by Mohring [1989].

Fujii, Kasami & Ninomiya [1969] present the first polynomial-time algorithm
for P2| prec, p;=1|C,,,. An undirected graph is constructed with vertices
corresponding to jobs and edges {/, k} whenever J; and J, can be executed
simultaneously. An optimal schedule is then denved from a maximum car-
dinality matching in the graph, and so the algorithm runs in O(n’) time
[Lawler, 1976b].

Coffman & Graham [1972] give an alternative approach that leads to an
O(n?) list scheduhng algorithm. First the jobs are labeled in the following way.
Suppose labels 1, . . ., k have been applied and S is the subset of unlabeled jobs
all of whose successors have been labeled. Then a job in S is given the label
k+1 if the labels of its immediate successors are lexicographically minimal
with respect to all jobs in S. The priority list is given by ordering the jobs
according to decreasing labels. Sethi [1976b] shows that it is possible to execute
this algorithm in time almost linear in n plus the numbers of arcs in the
precedence graph, if the graph is given in the form of a transitive reduction.

Gabow [1982] presents an algorithm which has the same running time, but
which does not require such a representation of the precedence graph. The
running time of the algorithm is dominated by the time to maintain a data
structure that represents sets of elements throughout a sequence of so-called
union-find operations, and Gabow & Tarjan [1985] improve the running time
to linear by exploiting the special structure of the particular union-find
problems generated in this way. Consider the following procedure to compute
a lower bound on the length of an optimal schedule. Delete jobs and
precedence constraints to obtain a precedence graph that can be decomposed
into 7 sets of jobs, §,,..., S, such that for each pair of jobs J/, € §,, J,E S, |,
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[1988a] show that P|tree,p, €{1, k}]Cmax (where k is input) is strongly
NP-hard, and that P2|iree,p, € {k':1=0}|C,,, is NP-hard in the ordinary
sense for any integer k>1. For P2|prec,p, € {1, k}|C,,,, Goyal [1977]
proposes a generalized version of the Coffman—Graham algorithm (GCG) and
shows that

fork=2,

/ <
(GCO)/ Crax=<{; _ §1E for k=3 (1

G

max

[M)[93

‘Rayward-Smith [1987a] considers a model similar to one discussed in Section
10.2, where there is a unit-time communication delay between any pair of
distinct processors. For unit-time jobs, the problem is shown to be NP-
complete. The performance of a greedy (G) algorithm is analyzed, where first a
list schedule is generated, and then a local interchange strategy tries to improve
the schedule. The algorithm produces schedules such that

2 .
max(G)/Cmax\?’_E' (')
Approximation algorithms in a similar model are also considered by Papadimit-
riou & Yannakakis [1990].

11.2. Precedence constraints and no preemption

The list scheduling rule performs surprisingly well on identical machines,
even in the presence of precedence constraints. Graham [1966] shows that
precedence constraints do not affect its worst-case performance at all; that is,

1
(LS)/Cmax s2- _n; . i (T)

max
Now, consider executing the set of jobs twice: the first time using processing
times p;, precedence constraints, m machines and an arbitrary priority list, the
second time using processing times p; < p;, weakened precedence constraints,

m' machines and a (possibly different) priority list. Graham [1966] proves that,
even then,

Cpn(L8)/ Cppp(LS) =1+ L ()

Note that this result implies the previous one. Even when critical path (CP)
scheduling is used, Graham [-] provides examples for which

(CP)/CE, =2

max
g
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Gabow [1988] considers Q2| prec,p, =1]|C,,, and analyzes two approxi-
mation algorithms. The algorithm P2, which ignores the machine speeds and
finds an optimal solution to the resulting problem on two identical machines,
guarantees

Cmax(P2)/C:1ax = 2 - min{sl, Sz} /maX{Sh sz} N (T)

The highest level first (HLF) algorithm is shown to be slightly better in special
cases:

if min{s,, s,} /max{s,, s,} =
if min{s,, s,} /max{s;, s,} =

’ (1)

VIR
W D=

ConHLF)/C1 <

Gabow also gives an O((n + a)2) algorithm to find an optimal solution if
|1/s,—1/s,| =1, where 1/s, and 1/s, are relatively prime integers, a is the
number of arcs and / is the number of levels in the precedence graph.

Nothing is known about approximation algorithms for unrelated machines
with precedence constraints.

11.3. Precedence constraints and preemption

Ullmann [1976] shows that P| pmin,prec,p;=1|C,,, is NP-hard, but
P| pmtn,tree| C,,. and P2| pmtn,prec| C,,,, can be solved by a polynomial-
time algorithm due to Muntz & Coffman [1969, 1970].

The Muntz—Coffman algorithm can be described as follows. Define /,(¢) to
be the level of a J; wholly or partly unexecuted at time ¢, where the level now
refers to the length of the path in the precedence graph with maximum total
processing requirement. Suppose that at time ¢, ' machines are available and
that »n' jobs are currently maximizing [(f). If m'<n', we assign m'/n’
machines to each of the n' jobs, which implies that each of these jobs will be
executed at speed m'/n'. If m'=n’, we assign one machine to each job,
consider the jobs at the next highest level, and repeat. The machines are
reassigned whenever a job is completed or threatens to be processed at a
higher speed than another one at a currently higher level. Between each pair of
successive reassignment points, jobs are finally rescheduled by means of
McNaughton’s algorithm for P| pmin | C,,,. Gonzalez & Johnson [1980] give
an implementation of the algorithm that runs in O(n°) time.

Gonzalez & Johnson [1980] have developed a totally different algorithm that
solves P | pmin,tree| C,,, by starting at the roots rather than the leaves of the
tree and determines priority by considering the total remaining processing time
in subtrees rather than by looking at critical paths. The algorithm runs in
O(nlog m) time and introduces at most #n — 2 preemptions into the resulting
optimal schedule.

This approach can be adapted to the case Q2| pmin,tree|C,,,.. Horvath,
Lam & Sethi [1977] give an algorithm to solve Q2| pmin, prec| C,_,. in O(mn®)
time, similar to the result mentioned in Section 10.1.




:ms involving the non-
» well-solvable counter-
‘h arbitrary processing
1 [1977] for P|intree,
' leprec’pjz 1|Lmax
‘e preemptive counter-
:d in O(xn*) time. For

omin,prec| L_, ~ and
n®) time, respectively.
two models.

ard in the strong sense,

71, much in the same
the performance of the
x+ They show

(1)

[1977] prove that the

ight within a constant
ximal usage schedules
it unforced idleness in
ssigned to the fastest

approached arbitrarily
n also be proved using

res execution on more
1 shop (denoted by O)
immaterial, whereas in
3 (My,..., M, )andin
rings. We survey these
ely. Our presentation

Ch. 9. Sequencing and Scheduling 487

focuses on the C,,,, criterion. A few results for other optimality criteria will be
briefly mentioned.

Very few multi-operation scheduling problems can be solved in polynomial
time; the main well-solvable cases are F2| | C_,. [Johnson, 1954], O2| | C_ .,
[Gonzalez & Sahni, 1976], and O] pmin|C,,, [Gonzalez & Sahni, 1976;
Lawler & Labetoulle, 1978]. General flow shop and job shop scheduling
problems have earned a reputation for intractability. We will be mostly
concerned with enumerative optimization methods for their solution and, to a
lesser extent, with approximation algorithms. An analytical approach to the
performance of methods of the latter type is badly needed.

12. Open shops
12.0. Gonzalez & Sahni’s algorithm for 02| | C,,,
The problem 02| | C,,, admits of an elegant linear-time algorithm due to
Gonzalez & Sahni [1976]. _
For convenience, let a; = p;, b; = p,;, a=1L;a;, b=1;b;. An obvious lower
bound on the length of any feasible schedule is given by

max{a, b, max 4, +b,}.

We will show how a schedule matching this bound can be constructed in O(n)
time.

Let A={J | a;=b;} and B={J; | a;<b,}. Choose J, and J, to be any two
distinct jobs, whether in A or B, such that

a,zmaxb,, b,Zmaxa; .
]]EA ]I-EB
Let A'= A~ {J,J;}, B'=B—{J,, J,}. We assert that it is possible to form
feasible schedules for B’ U {J,} and for A’ U {J } as indicated in Figure 3(a),
where the jobs in A" and B’ are ordered arbitrarily. In each of these separate
schedules, there is no idle time on either machine, from the start of the first
operation on that machine to the completion of its last operation.

Suppose @ — a,= b — b, (the case a — a,< b — b, being symmetric). We then
combine the two schedules as shown in Figure 3(b), pushing the jobs in
B’ U {J,;} on M, to the right. Again, there is no idle time on either machine,
from the start of the first operation to the completion of the last operation.

We finally propose to move the processing of J, on M, to the first position on
that machine. There are two cases to consider. First, if a, <b — b, then the
resulting schedule is as in Figure 3(c); the length of the schedule is max{a, b}.
Secondly, if a, > b — b,, then the schedule in Figure 3(d) results; its length is
max{d, a, +b,}. Since, in both cases, we have met our lower bound, the
schedules constructed are optimal.
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Let P =(p,) be the matrix of processing times, and let
C= max{max > Dy, Max > p,-j} .
J i ' i

Call row i (column j) tight if L, p,=C (L, p; = C), and slack otherwise.
Clearly, we have C], = C. It is possible to construct a feasible schedule for
which C_,, = C; hence, this schedule will be optimal.

Suppose we can find a subset S of strictly positive elements of P, with exactly
one element of S in each tight row and in each tight column, and at most one
element of S in each slack row and in each slack column. We call such a subset
a decrementing set, and use it to construct a partial schedule of length 8, for
some & > 0. The constraints on the choice of § are as follows:

—1If p;€ S and row i or column j is tight, then & S py

—-1If p,€§ and row i (column j) is slack, then & sp;,+C—-X;py (=
Dyt C—Z, pu)-

—If row i (column j) contains no element in S (and is therefore necessarily

slack), then 8 <C—ZL, p, (6§ <C~1I, p,).

For a given decrementing set S, let § be the maximum value subject to these
constraints. Then the partial schedule constructed is such that, for each Py €S,
M, processes J; for min{ p,, 6} units of time. We then obtain a matrix P’ from
P by replacing each p; € S by max{0, p, — &}, with a lower bound C~ & on
the schedule length for the remaining problem. We repeat the procedure until
after a finite number of times, P’ = (0). Joining together the partial schedules
obtained for successive decrementing sets then yields an optimal schedule for
P.

By suitably embedding P in a doubly stochastic matrix and appealing to the
Birkhoff-Von Neumann theorem, one can show that a decrementing set can be
found by solving a linear assignment problem; see Lawler & Labetoulle [1978]
for details. Other networks formulations of the problem are possible. An
analysis of various possible computations reveals that O | pmn| C,,, is solv-
able in O(r + min{m", n’, *}) time, where 7 is the number of nonzero ele-
ments in P [Gonzalez, 1979].

Similar results can be obtained for the minimization of maximum Iate-
ness. Lawler, Lenstra & Rinnooy Kan [1981] give an O(n) time algorithm
for 02| pmm|L,, and, by symmetry, for O2|pmin,r,|C,,,. For
O | pmin,r;| L., Cho & Sahni [1981] show that a trial value of L_,, can be
tested for feasibility by linear programming; bisection search is then applied to
minimize L_,, in polynomial time.

‘The minimization of total completion time appears to be much harder. Liu &
Bulfin  [1985] provide NP-hardness proofs for O3|pmin|ZC; and
02| pmin,d;|£C,, where d; is a deadline for the completion of J,.
O2| prun | L.C, remains an open problem.
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processing times (py; + [, Z] + p,;) [Rinnooy Kan, 1976]. Monma & Rinnooy
Kan [1983] put many results of this kind in a common framework. Their
discussion includes results for problems with an arbitrary number of machines,
such as some of the work by Smith, Panwalkar & Dudek [1975, 1976] on
ordered flow shops and by Chin & Tsai [1981] on J-maximal and J-minimal
flow shops. In the latter case, there is an M, for which p,; = max,, ph] for all j or
p; =min, p,. for all j. Achugbue & Chin [1982b] analyze F3| | C,,, in which
each machine may be maximal or minimal in this sense and derive an
exhaustive complexity classification. It should be noted that, in all this work,
there is an implicit restriction to permutation schedules. This is justified for
special cases of F3| | C,.,, but not necessarily for its variants. Indeed, the
unrestricted F3| | C,,,, problem with a nonbottleneck M, is strongly NP-hard
[Lenstra, -].

NP-hardness in the strong sense has also been established for F2|r,| C,.,,
F2| |L,,, [Lenstra, Rinnooy Kan & Brucker, 1977] and F2| |IC, | Garey,
Johnson & Sethi, 1976] Potts [1985b] investigates the Derformance of five
approximation algorithms for F2|r;| C_,.. The best one of these, called RJ’,
involves the repeated application of a dynamic variant of Johnson’s algorithm
to modified versions of the problem, and satisfies

max(lzJ >/Cmax == % . (T)
Grabowski [1980] presents a branch and bound algorithm for F2|r;|L,,.
Ignall & Schrage [1965], in one of the earliest papers on branch and bound
methods for scheduling problems, propose two lower bounds for F2| |LC,,
Kohler & Steiglitz [1975] report on the implementation of these bounds, and
Van de Velde [1990] shows that both bounds can be viewed as special cases of a
lower bound based on Lagrangean relaxation.

Gonzalez & Sahni [1978a] and Cho & Sahni [1981] consider the case of
preemptive flow shop scheduling. Since preemptions on M, and M, can be
removed without increasing C,_ ., Johnson’s algorithm solves F2| pmmn | C,_,,
as well. F3| pmin|C,,., F2| pmin,r,| Cmax and F2| pmm|L_,, are strongly
NP-hard. So is F3| pmin|LC, Lenstra 1; F2| pmin| LC; remains open.

As to precedence constramts F2| tree[ Cmax is strongly NP-hard [Lenstra,
Rinnooy Kan & Brucker, 1977}, but F2|tree,p, =1| Cinox and F2 | tree,
Py —HEC are solvable in polynomial time [Lageweg, -J: We note that an
interpretation of precedence constraints that differs from our definition is
possible. If J,— '/, only means that O, has to precede O,, for i =1, 2, then
F2 | tree’ ICmaX and even the problem with series-parallel precedence con-
straints can be solved in O(nlog n) time [Sidney, 1979; Monma, 1979]. The
arguments used to establish this result are very similar to those referred to in
Section 5.1 and apply to a larger class of scheduling problems. The general case
F2| prec'| C,,,, is strongly NP-hard [Monma, 1980]. Hariri & Potts [1984]
develop a branch and bound algorithm for this problem, using a lower bound
based on Lagrangean relaxation.
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Removal of either N, or N, resultsin a 1| | L,,,, or 1|r;| C,,, problem on
M,. Both problems are solvable in O(nlogn) time (see Section 4.2) and
provide slightly stronger bounds.

If u+ v, removal of N_,, N,, and N, yields an F2| | C,,, problem, which
can be solved by Johnson’s algorithm. As pointed out in Section 13.1, we can
take N, fully into account and still solve the problem in O(n log n) time. The
resulting bound dominates the job-based bound proposed by McMahon [1971]
and is currently the most successful bound that can be computed in polynomial
time.

All other variations on this theme lead to NP-hard problems. However, this
does not necessarily preclude their effectivity for lower bound computations, as
will become clear in Section 14.2.

In addition to lower bounds, one may use elimination criteria in order to
prune the search tree. In this respect, particular attention has been paid to
conditions under which all completions of (J 1y, -, Joqy, J;) can be elimi-
nated because a schedule at least as good exists among the completions of
(Jorys - -+ » Joy» Ji» J;)- Tf all information obtainable from the processing times
of the other jobs is disregarded, the strongest condition under which this is
allowed is the following: J; can be excluded for the (/+ 1)th position if

maX{C(GkL i 1) - C(era i 1)a C(Ukja l) - C(Ujs l)} Spi/‘

fori=2,...,m

[McMahon, 1969; Szwarc, 1971, 1973]. Inclusion of these and similar domi-
nance rules can be very helpful from a computational point of view, depending
on the lower bound used [Lageweg, Lenstra & Rinnooy Kan, 1978]. It may be
worthwhile to consider extensions that, for instance, take the processing times
of the unscheduled jobs into account [Gupta & Reddi, 1978; Szwarc, 1978].

A number of alternative and more efficient enumeration schemes has been
developed. Potts [1980a] proposes to construct a schedule from the {ront and
from the back at the same time. Grabowski’s [1982] block approach obtains a
complete feasible schedule at each node and bases the branching decision on
an analysis of the transformations required to shorten the critical path that
determines the schedule length. Grabowski, Skubalska & Smutnicki [1983]
extend these ideas to the F|r;| L,,, problem.

Not much has been done in the way of worst-case analysis of approximation
algorithms for the flow shop scheduling problem. It is not hard to see that for
any active schedule (AS)

Crax(AS)/ C < max Pij/r?ijn Py - ()

max

Gonzalez & Sahni [1978a] show that

C . (AS)/ICh . =<m. (1)

max
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For the case F2|no wait|C,,,, the traveling salesman problem assumes a
special structure, and results due to Gilmore & Gomory [1964] can be applied
to yield an O(n®) algorithm; see Reddi & Ramamoorthy [1972] and also
Gilmore, Lawler & Shmoys [1985]. In contrast, F4|no wait| C,,, is strongly
NP-hard [Papadimitrion & Kanellakis, 1980], and so is F3|no wait|C,,,
[Réck, 1984a). The same is true for F2|no wait| L., and F2|no wait|LC,
[Réck, 1984b], and for 02| no wait | C__,, and J2 | no wait| C,,,, [Sahni & Cho,
1979a]. Goyal & Sriskandarajah [1988] review complexity results and approxi-
mation algorithms for this problem class.

The no wait constraint may lengthen the optimal flow shops schedule
considerably. Lenstra [-] shows that

Cr. (no wait)/IC:. <m form=2. )

14. Job shops
14.0. The disjunctive graph model for J| | C,.x

The description of J| | C,,,, in Section 3 does not reveal much of the
structure of this problem type. An illuminating problem representation is
provided by the disjunctive graph model due to Roy & Sussmann [1964].

Given an instance of J| |C,,,, the corresponding disjunctive graph is
defined as follows. For every operation O, there is a vertex, with a weight p;;.
For every two consecutive operations of the same job, there is a (directed) arc.
For every two operations that require the same machine, there is an (un-
directed) edge. Thus, the arcs represent the job precedence constraints, and
the edges represent the machine capacity constraints.

The basic scheduling decision is to impose an ordering on a pair of
operations on the same machine. In the disjunctive graph, this corresponds to
orienting the edge in question, in one way or the other. A schedule is obtained
by orienting all of the edges. The schedule is feasible if the resulting directed
graph is acyclic, and its length is obviously equal to the weight of maximum
weight path in this graph.

The job shop scheduling problem has now been formulated as the problem
of finding an orientation of the edges of a disjunctive graph that minimizes the
maximum path weight. We refer to Figure 4 for an example.

14.1. Two or three machines

A simple extension of Johnson’s algorithm for F2| | C,,, allows solution of
J2|m;<2]|C,,, in O(nlog n) time [Jackson, 1956]. Let ., be the set of jobs
with operations on M, only (i = 1,2), and let g, be the set of jobs that go from
M, to M, ({h,i}={1,2}). Order the latter two sets by means of Johnson’s

algorithm and the former two sets arbitrarily. One then obtains an optimal
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edge in a certain subset E' C E. The question then is how to compute a lower
bound on the value of all completions of this partial solution. Németi [1964],
Charlton & Death [1970] and Schrage [1970] are among the researchers who
obtain a lower bound by simply disregarding E — E' and computing the

- maximum path weight in the directed graph (0, AU E'). A more sophisticated

bound, due to Bratley, Florian & Robillard [1973], is based on the relaxation
of the capacity constraints of all machines except one. They propose to select a
machine M’ and to solve the job shop scheduling problem on the disjunctive
graph (0, AUE', {{Oy, 0.} | ;= p; =M'}). This is a single-machine
problem, where the arcs in A U E’ define release times and delivery times for
the operations that are to be scheduled on machine M’. This observation has
spawned the subsequent work on the 1|r;| L,,,, problem which was reviewed
in Section 4.2 and which has led to fast methods for its solution. As pointed out
by Lageweg, Lenstra & Rinnooy Kan [1977], the lower bound problem is, in
fact, 1| prec,r; |L_.., since AUE' may define precedence constraints among
the operations on M’. Again, most other lower bounds appear as special cases
of this one, by relaxing the capacity constraint of M’ (which gives Németi’s
longest path bound), by underestimating the contribution of the release and
delivery times, by allowing preemption, or by ignoring the precedence con-
straints. These relaxations, with the exception of the last one, turn an NP-hard
single-machine problem into a problem that is solvable in polynomial time.

Fisher, Lageweg, Lenstra & Rinnooy Kan [1983] investigate surrogate
duality relaxations, in which either the capacity constraints of the machines or
the precedence constraints among the operations of each job are weighted and
aggregated into a single constraint. In theory, the resulting bounds dominate
the above single-machine bound. Balas [1985] describes a first attempt to
obtain bounds by polyhedral techniques.

The usual enumeration scheme is due to Giffler & Thompson [1960]. It
generates all active schedules by constructing them from front to back. At each
stage, the subset 0’ of operations O, all of whose predecessors have been
scheduled is determined and their earliest possible completion times 7, + p;;
are calculated. It suffices to consider only a machine on which the minimum
value of 7, + p; is achieved and to branch by successively scheduling next on
that machine all operations in @' for which the release time is strictly smaller
than this minimum. In this scheme, several edges are oriented at each stage.

Lageweg, Lenstra & Rinnooy Kan [1977] and Carlier & Pinson [1988]
describe alternative enumeration schemes whereby at each stage, a single edge
is selected and oriented in either of two ways. Barker & McMahon [1985]
branch by rearranging the operations in a critical block that occurs on the
maximum weight path.

We briefly outline three of the many implemented branch and bound
algorithms for job shop scheduling. McMahon & Florian [1975] combine the
Giffler-Thompson enumeration scheme with the 17| L., bound, which is
computed for all machines by their own algorithm. Lageweg [1984] applies the
same branching rule, computes the 1| prec,r;| Ly, bound only for a few
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for other hard problems. However, the investigations in this direction are still
at an initial stage. _

Dispatch rules show an erratic behavior. The rule proposed by Lageweg,
Lenstra & Rinnooy Kan [1977] constructs a schedule of length 1082, and most
other priority functions do worse.

Adams, Balas & Zawack [1988] report that their sliding bottleneck heuristic
obtains a schedule of length 1015 in ten CPU seconds, solving 249 single-
machine problems on the way. Their partial enumeration procedure succeeds
in finding the optimum, after 851 seconds and 270 runs of the first heuristic.

Five runs of the simulated annealing algorithm of Van Laarhoven, Aarts &
Lenstra [1992], with a standard setting of the cooling parameters, take 6000
seconds on average and produce an average schedule length of 942.4, with a
minimum of 937. If 6000 seconds are spent on deterministic neighborhood
search, which accepts only true improvements, more than 9000 local optima
are found, the best one of which has a value of 1006. Five runs with a much
slower cooling schedule take about 16 hours each and produce solution values
of 930 (twice), 934, 935 and 938. In comparison to other approximative
approaches, simulated annealing requires unusual computation times, but it
yields consistently good solutions with a modest amount of human implementa-
tion effort and relatively little insight into the combinatorial structure of the
problem type under consideration.

PART V. MORE SEQUENCING AND SCHEDULING

In the preceding sections, we have been exclusively concerned with the class
of deterministic machine scheduling problems. Several extensions of this class
are worthy of further investigation. A natural extension involves the presence
of additional resources, where each resource has a limited size and each job
requires the use of a part of each resource during its execution. The resulting
resource-constrained project scheduling problems are considered in Section 15.
We also may relax the assumption that all problem data are known in advance
and investigate stochastic machine scheduling problems. This class is the subject
of Section 16. We will not enter the area of stochastic project scheduling, which
is surveyed by Mohring & Radermacher [1985b].

15. Resource-constrained project scheduling
15.0. A matching formulation for P2| p;=1|C,,, with resource constraints

Consider a single-operation model, and suppose there are [ additional
resources R, (h=1,...,1). For each resource R,, there is a size s,, which is
the amount of R, available at any time. For each resource R, and each job J,,
there is a requirement r,;, which is the amount of R, required by J; at all times
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—if o a positive integer, then all s, are constants, equal to o; if o =, then
the s, are part of the input;

—if p is a positive integer, then all 7, have a constant upper bound, equal to
p; if p =+, then no such bounds are specified.

Blazewicz, Lenstra & Rinnooy Kan investigate the computational complexity
of Q|res---,prec,p,=1|C,,, and its special cases. The resulting exhaustive
complexity classification is presented in Figure 5. We have already seen in
Section 15.0 that P2|res---,p,=1|C,,, is solvable by matching techniques.
Also note that P3|res1-,p;=1|C,,, is an immediate generalization of the

; E minimally NP-hard

O solvable in polynomial time Qmaximally solvable in polynomial time

Fig. 5. Complexity of scheduling unit-time jobs on parallel machines subject to resource con-
straints.
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presupposes constant resource availability over time. In addition, they general-
ize the traditional precedence constraints of the form

C;+p;=C, whenever J,— J;
to femporal constraints of the form
Ci+dy<C, forall,J,,

where d,, is a (possibly negative) distance from J; to J,. The resulting model is
quite general. It allows for the specification of job release dates and deadlines,
of minimal and maximal time lags between jobs, and of time-dependent
resource consumption per job. '

The investigation of this model leads to structural insights as well as
computational methods. This is also true for the related model involving
traditional precedence constraints [Radermacher, 1985/6] and for the dual
model in which resource consumption is to be minimized subject to a common
job deadline [Mohring, 1984]. The approach leads to new classes of poly-
nomially solvable problems that are characterized by the structure of the family
of forbidden subsets [Mohring, 1983]. For the general model, it can be shown
that for any optimality criterion that is nondecreasing in the job completion
times, aftention can be restricted to left-justified schedules. Enumerative
methods can be designed that, as in the case of J| | C,,,, construct feasible
schedules by adding at least one precedence constraint among the jobs in each
forbidden subset.

In the case of job shop scheduling, the number of edges is O(n®). Similarly,
the present model is only computationally feasible when the number of
forbidden subsets is not too large. It is sufficient if & contains only those
forbidden subsets that are minimal under set inclusion. A branch and bound
method that branches by successively considering all possibilities to eliminate a
particular forbidden subset and obtains lower bounds by simply computing a
longest path with respect to the augmented temporal constraints, compares
favorably with the integer programming algorithm of Talbot & Patterson
[1978].

16. Stochastic machine scheduling
16.0. List scheduling for P| p; ~exp(A,)|ECy,,, ELC;

Suppose that m identical parallel machines have tc process n independent
jobs. In contrast to what we have assumed so far, the processing times are not
given beforehand but become known only after the jobs have been allocated to
the machines. More specifically, each processing time p; follows an exponential
distribution with parameter A, for j=1,...,n We want to minimize the
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then F_(N)> F,_.(N). After at most m interchanges, the policy applied at time
0 is the LEPT rule, and we have that F,_(N) > F zpr(N).

It is interesting to note that, while P| | C,,,, is NP-hard, a stochastic variant
of the problem is solvable in polynomial time. As observed above, LEPT
should be viewed as an algorithm for the preemptive problem, and preemptive
scheduling in a deterministic setting is not hard either. Indeed, for the case of
uniform machines, Weiss & Pinedo [1980] prove that a preemptive LEPT
(SEPT) policy, which aliows reallocation of jobs to machines at job completion
times, solves Q | pmin,p; ~exp(A,) | BC,,, (EEC)).

max

16.1. Deterministic and stochastic data

The scheduling models discussed in the earlier sections are based on the
assumption that all problem data are known in advance. This assumption is not
always justified. Processing times may be subject to fluctuations, and job
arrivals and machine breakdowns are often random events.

A substantial literature exists in which scheduling problems are considered
from a probabilistic perspective. A deterministic scheduling model may give
rise to various stochastic counterparts, as there is a choice in the parameters
that are randomized, in their distributions, and in the classes of policies that
can be applied. A characteristic feature of these models is that the stochastic
parameters are regarded as independent random variables with a given dis-
tribution and that their realization occurs only after the scheduling decision has
been made.

Surprisingly, there are many cases where a simple rule which is merely a
heuristic for the deterministic model has a stochastic reformulation which
solves the stochastic model to optimality; we have seen an example in the
previous section. In the deterministic model, one has perfect information, and
capitalizing on it in minimizing the realization of a performance measure may
require exponential time. In the stochastic model, one has imperfect informa-
tion, and the problem of minimizing the expectation of a performance measure
may be computationally tractable. In such cases, the scheduling decision is
based on distributional information such as first and second moments. In
general, however, optimal policies may be dynamic and require information on
the history up to the current point in time.

Results in this area are technically complicated; they rely on semi-Markovian
decision theory and stochastic dynamic optimization. Within the scope of this
section, it is not possible to do full justice to the literature. We present some
typical results for the main types of machine environments below, concen-
trating on scheduling models with random processing times. We refer to Pinedo
[1983] for scheduling with random release and due dates, to Pinedo &
Rammouz [1988] and Birge, Frenk, Mittenthal & Rinnooy Kan [1990] for
single-machine scheduling with random breakdowns, and to the surveys by
Pinedo & Schrage [1982], Weiss [1982], Forst [1984], Pinedo [1984], M&hring,
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mum completion time on two identical machines if all the jobs at the same
level have the same parameter. Frostig [1988] extends this work.

Pinedo & Weiss [1987] investigate the case of identical expected processing
times. Their result confirms the intuition that, at least for some simple
distributions, the jobs with the largest variance should be scheduled first.

16.4. Multi-operation models

Pinedo’s [1984] survey is a good source of information on stochastic shop
scheduling. Most work has concentrated on flow shops; Pinedo & Weiss [1984]
deal with some stochastic variants of the Gonzalez-Sahni [1976] algorithm for
02| | C,,.y (see Section 12.0). '

Brumelle & Sidney [1982] show that Johnson’s [1954] algorithm for
F2| | C,,, also applies to the exponential case. If p;;~exp(4;) and p,; ~
exp(u;), then sequencing in order of nonincreasing A; — p,; minimizes the
expected maximum completion time.

For F| |C,,,, it is usually assumed that the p; are independent random
variables whose distributions do not depend on i. Weber [1979] shows that, in
the exponential case, any sequence minimizes EC_, . Pinedo [1982] observes
that, under fairly general conditions, any sequence for which Ep; is first
nondecreasing and then nonincreasing is optimal; as a rule of thumb, jobs with
smaller expected processing time and larger variance should come at the
beginning or at the end of a schedule, with the others occupying the middle
part. These observations carry over to the model in which no intermediate
storage is available, so that a job can only leave a machine when its next
machine is available. We refer to Foley & Suresh [1986] and Wie & Pinedo
[1986] for more recent work on the latter model, and to Boxma & Forst [1986]
for a result on a stochastic version of F| |ZU..

Not surprisingly, job shops pose even greater challenges. The only successful
analysis has been carried out by Pinedo [1981] for an exponential variant of
J2|m;<2|C,,, (see Section 14.1).

The resulis in stochastic scheduling are scattered, and they have been
obtained through a considerable and sometimes disheartening effort. In the
words of Coffman, Hofri & Weiss [1989], ‘there is a great need for new
mathematical techniques useful for simplifying the derivation of results’.
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