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Freeway incidents are major sources of nonrecurrent congestion, and 
resultant secondary crashes can prolong traffic impact and increase costs. 
Research on secondary crashes to support statewide transportation system 
management has been limited. In this study, a two-phase automated proce-
dure was developed to identify secondary crashes on large-scale regional 
transportation systems. In the first phase, a crash-pairing algorithm was 
developed to extract spatially and temporally nearby crash pairs. The 
accuracy and efficiency of the algorithm were validated by comparing it to 
an ArcGIS-based program. In the second phase, two filters were proposed 
to reduce the crash pairs for secondary crash identification: the first filter 
selected crash pairs whose earlier crashes were on mainline highways; the 
second filter selected crash pairs whose later crashes happened within the 
dynamic impact areas (i.e., backup queues) of the earlier crashes. Shock-
wave theory was used to model the dynamic impact of a primary incident. 
The two-phase procedure used a linear referencing system for crash local-
ization and can be applied to any regional transportation system with a 
similar data structure. A case study using 2010 data was conducted on 
nearly 1,500 mi of freeways in Wisconsin. Among the crash pairs produced 
by the two-phase procedure, 73 secondary crashes were confirmed with 
police reports. Preliminary analyses showed that (a) secondary crashes 
occurring in the same traffic direction as the primary incidents were about 
three times as frequent as secondary crashes in the opposing direction, and 
(b) two-vehicle rear-end collisions, multiple-vehicle rear-end collisions, 
and sideswipes were three major types of secondary crashes (about 84%).

The annual cost of congestion in the United States reportedly exceeds 
$120 billion (1). Freeway incidents are major sources of nonrecurrent 
congestion, and resulting secondary crashes can prolong traffic impact 
and increase costs. A secondary crash is an undesirable consequence 
of a primary incident. More formally, according to the FHWA, “sec-
ondary crashes are those that occur within the time of detection of the 
primary incident where a collision occurs either (a) within the incident 
scene or (b) within the queue, including the opposite direction, result-
ing from the original incident” (2). Existing studies have shown the 
extended traffic impact and the economic costs of secondary crashes 
(3–5). Reducing the chances of secondary crashes becomes a major 
consideration in the dispatch plans of traffic incident management 
agencies (6, 7).

Despite various findings on secondary crashes, most existing 
studies were limited by scope. Many were conducted on only one or 
two sample freeways or a short segment of highway; other studies 
extended the scope to freeways but considered a small regional scale. 
Only two studies were performed on a large scale that involved state-
wide highway systems. One major reason for such scope constraints 
was the challenge of identifying secondary crashes. To identify 
secondary crashes accurately, most existing studies considered the 
dynamic features of the traffic impact caused by the primary incidents. 
Thus, the study scopes were limited to highway facilities for which 
high-resolution traffic data were available for dynamic analyses. In 
addition, modeling the dynamic impact of primary incidents required 
considerable computational efforts, which for a statewide transporta-
tion system could be intolerable or even infeasible. Previous studies 
considering statewide highway systems did not consider the dynamic 
impact of primary incidents. In summary, none of the previous studies 
investigated secondary crashes on a statewide transportation system 
while considering the dynamic impact of primary incidents.

To fill the research gap identified above, the current study develops a 
two-phase automatic procedure. In the first phase, spatially and tempo-
rally nearby crash pairs (up to custom static thresholds) are extracted 
from a large network on the basis of a crash-pairing algorithm. The 
accuracy and the efficiency of this algorithm were validated. In the sec-
ond phase, two filters are used to select crash pairs that are more likely 
to be primary–secondary crash pairs. One of the filters uses shockwave 
theory to evaluate the dynamic traffic impact of the primary incidents. 
At the end of the two-phase procedure, manual review of identified  
police reports is needed to confirm actual secondary crashes. However, 
the number of crash reports to review is considerably less.

Literature Review

Secondary crashes have been observed to be one of the notable conse-
quences of freeway incidents. Early in the 1970s, Owens conducted 
an on-the-spot study of traffic incidents on a 21-km (13-mi) stretch 
of motorway in England during peak hours and found that 32.5% of 
the observed crashes were related to primary incidents (8). In recent 
decades, the development of intelligent transportation systems has 
made a variety of transportation data easier to access, which in turn 
has encouraged researchers to revisit secondary crashes. In earlier 
studies (3–5, 9–17), an incident was identified as a secondary crash 
as long as it occurred within a rectangular time–space window that 
originated from another incident. For example, Raub classified an 
incident as a secondary crash if it happened within 1,600 m upstream 
of another incident and no later than 15 min after that incident was 
cleared (9, 10). This type of method was called the “static threshold” 
in the sense that it considered the spatial impact range of a primary 
incident to be consistent throughout a certain period. However, the 
impact of a traffic incident is typically dynamic with respect to time. 
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Later studies incorporated this fact into secondary crash identifica-
tion (18–29). The earliest attempt was made by Moore et al., who 
classified an incident as a secondary crash only if it fell under the 
progression curve (i.e., the resulting queue boundary as a function of 
time that is based on real-time data that tracks queue ends) of another 
incident (5). Curves with a similar concept were generated by using 
the traffic arrival–departure model in other studies (20–22, 24). In 
fact, these dynamic curves depicted only the moving queue fronts 
but did not consider the queue release from the incident location after 
the onset of incident clearance. To accommodate the releasing front, 
researchers have used either the speed contour map method or the 
ASDA [Automatische Staudynamikanalyse (automatic tracking of 
moving traffic jams)] model to depict the impact area of an incident 
(19, 23, 25–29). However, shockwave theory, which can also model 
the queuing and the releasing dynamics, has not been used in the 
literature for identifying secondary crashes.

Research on secondary crashes at the scale of a statewide trans-
portation system has been limited. A majority of the existing studies 
focused on one or two sample freeways or only a stretch of a high-
way for which detailed traffic conditions could be obtained through 
densely deployed traffic detectors, closed-circuit traffic cameras, or 
even aircraft-based congestion-tracking systems (4, 14, 16, 18, 19, 
23, 25–28). Some other studies extended the research scope to sev-
eral freeways or urban arterials within a fully patrolled and intelligent 
transportation system–assisted district (3, 5, 9, 10, 12, 13, 20–22, 24, 
29). Only a few studies were conducted on statewide transportation 
systems (11, 17). Identifying all spatially and temporally nearby 
crash pairs from a large highway network, and hence a significant 
number of input crashes, could be computationally complex. None 
of the above studies provided an efficient procedure.

On the basis of the preceding literature review, two primary 
objectives of the current study were set. First, an efficient algorithm 
to identify all nearby crash pairs (up to custom static thresholds) for 

a statewide transportation system should be developed. Second, to 
reduce the candidate primary–secondary crash pairs on the basis 
of static thresholds, additional filters that incorporate the dynamic 
feature of primary incident impact should be established.

Data Description

The WisTransPortal data hub of the Traffic Operations and Safety 
laboratory at the University of Wisconsin–Madison houses a variety 
of statewide transportation data prepared and provided by the Wis-
consin Department of Transportation (30, 31). Among these data, the 
state trunk network (STN) data and the crash data are the two primary 
inputs to the current study. The STN includes the state trunk high-
ways, the U.S. highways (US), the Interstate highways (IHs), the des-
ignated freeways, and the expressways in Wisconsin as of 2012 (32). 
The crash data cover all reported crashes in Wisconsin since 1994 and 
are updated monthly. The Wisconsin Department of Transportation 
provides both the maps (i.e., Esri shapefiles) and the database records 
of the STN and crashes and also embeds a linear referencing system 
into the crash records to allow one to locate a crash on the STN with-
out using the maps. For the proposed algorithm, the database records 
with the linear referencing system were used. The maps were used for 
validation and comparison purposes.

STN Links and Linear Referencing

A traditional way of modeling highway networks is to use a figure 
that consists of nodes and directional links. The STN is stored in 
this manner. Nodes in the STN are called reference sites (RSs). Each 
link in the STN starts from one RS (RSfrom) and ends at another 
RS (RSto). A link represents a highway segment, either mainline or 
ramp, in one traffic direction with relatively consistent geometric 
layout (e.g., number of lanes, lane width, etc.). Figure 1 illustrates 

FIGURE 1    Example of linear referencing system.

A

[idlink3→4, 0.15]

B

[idlink14→13, 0.05]

C

[idlink13→14, 0.1]

Example distances:

d (A,B ) = (0.8 – 0.15) + 0.2 + (0.3 – 0.05) = 1.1 mi

d(B,C ) = 0.3 – 0.05 – 0.1 = 0.15 mi
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the representation of a small portion of a highway network in the 
STN. Links are displayed as solid arrows with their lengths. RSs are 
labeled in circles. An arbitrary location on the STN, for example, 
a crash scene, is determined by a linear coordinate (link id, link 
offset), namely linear referencing. The link id identifies the link in 
which the crash occurred, and the link offset tells the distance from 
the link’s RSfrom to the crash. As of 2012, the number of in-operation 
links was 33,015 and the total length 24,903 mi.

Crash Records

WisTransPortal stores each reported crash in Wisconsin as a record 
in the database. Each crash record contains detailed information 
about the crash, such as a unique identification number, date, time, 
link id, and link offset of the crash location (for linear referencing). 
In addition, each crash record is associated with a document id that 
links the crash to its police report, Form MV4000, which provides 
additional information such as that on any police investigation and 
a crash diagram.

Other Data

In addition to the STN links, WisTransPortal also stores other highway 
information. For example, all the routes in STN are stored in a table, 
each record representing the entire stretch of a highway route and its 
geographical direction (e.g., US-12 eastbound); virtual mile markers 
are stored as reference points. Traffic data are also available. The 
Wisconsin Department of Transportation manages the TRaffic DAta 
System (TRADAS) and the Advanced Transportation Management 
System, with traffic detectors deployed on the STN. WisTransPortal 
contains information of these TRADAS and Advanced Transportation 
Management System detectors as well as their traffic counts.

First Phase: Crash-Pairing Algorithm

Given the STN linear-referencing system and the crash records, the 
target of the crash-pairing algorithm is to identify all crash pairs 
(ci, cj) that satisfy Formulas 1 and 2. In Formula 2, d(ci, cj) is mea-
sured along the STN links by treating the links as bidirectional (see 
examples in Figure 1). Highway splits, merges, and intersections 
should be accommodated, a need that was not addressed by previous 
studies focusing on individual freeways.

0 (1)t c t c Tj i( ) ( )≤ − ≤

, (2)d c c Di j( ) ≤

where

	 ci	=	crash i (former crash),
	 cj	=	crash j (later crash),
	 t(c)	=	 time of crash c since an early time origin (min),
	d(ci, cj)	=	network distance between crash ci and cj (mi),
	 T	=	 time window (threshold, min), and
	 D	=	space window (threshold, mi).

Given the significant sizes of the STN links and the crashes, simple 
algorithms are either slow or infeasible. One naive algorithm runs 
Dijkstra’s method repeatedly for every crash. Dijkstra’s method is an 
iterative approach that finds the shortest path from an origin (O) to 

every node in a network. A brief summary of Dijkstra’s method follows. 
All nodes are considered to be infinitely distant from the origin and are 
“unvisited” initially. The method begins from the origin and computes 
the distances to its neighbors (i.e., nodes with direct connection) and 
marks the origin as “visited.” In every successive iteration step, the 
method chooses the closest unvisited node to the origin, updates the 
distances from the origin to that node’s unvisited neighbors if the paths 
become shorter through that node, and marks that node as visited. The 
iteration continues until every node is visited. At the end, the dis-
tances from the origin to each node are the shortest distances (33). The 
complexity of Dijkstra’s method is O(N 2) with respect to N crashes, 
where N is larger than 100,000 for an annual statewide analysis. By 
repeatedly using Dijkstra’s method for N crashes, the complexity of 
the naive algorithm becomes O(N 3), which is not efficient. Another 
alternative is to use dynamic programming to populate a shortest-
path matrix between every two crashes. This alternative is infeasible  
because it not only spends an equivalent amount of computation time 
as the first algorithm but also requires unacceptable computer memory 
space (e.g., 100,0002 ∗ 8 bytes ≈ 75 GB) to store the matrix.

The proposed pairing algorithm first analyzes the relationships 
between links and uses these relationships to derive crash-to-crash 
distances. For each link lki that contains one or more crashes, the 
algorithm performs a variant of Dijkstra’s traversal (as will be 
explained later) and generates the relationships between lki and the 
other links. The distances between crashes are then calculated on 
the basis of these relationships. Compared with the first algorithm 
mentioned above, here the number of traversals is bounded by the 
total number of links no matter how many crashes are analyzed. The 
pairing algorithm also uses the space window of D miles to con-
strain Dijkstra’s traversal to a relevant portion (normally small) of 
the STN network. In the following subsections, the concept of a local 
linear-coordinate system is introduced; the system is based on the 
relationship between two links that can be comprehensively defined. 
Furthermore, the equation for deriving crash-to-crash distance from 
the link-to-link relationship is also given, along with the concept of 
a candidate link that is used to constrain Dijkstra’s traversals, the 
pseudo-code of the algorithm with a special case explanation, and 
finally, the validation of this algorithm.

Local Linear-Coordinate System

A local linear-coordinate system (LLCS) is defined for each link, 
namely a base link, to describe the spatial relationship between any 
RS and the base link. Let RSfrom

base and RSto
base denote the from refer-

ence site and the to reference site of the base link. Under the LLCS, 
each RS in the network has a two-fold coordinate with the following 
definitions:

•	 Forward (positive) coordinate (x +RS) = the length of the base 
link + d(RSto

base, RS) | RSfrom
base . The d(RSto

base, RS) | RSfrom
base is the shortest 

network distance between RSto
base and RS in a subnetwork without 

RSfrom
base (and links connected to it). If d(RSto

base, RS) | RSfrom
base does not 

exist, x +RS = +∞. Specifically, x +RSfrom
base

  is defined as 0.
•	 Backward (negative) coordinate (x −RS) = d(RSfrom

base, RS) | RSto
base. 

The d(RSfrom
base, RS) | RSto

base is the shortest network distance between 
RSfrom

base and RS in a subnetwork without RSto
base (and links con-

nected to it). If d(RSfrom
base, RS) | RSto

base does not exist, x −RS = +∞. For 
example, x −RSto

base
 = +∞.

As an example, in Figure 1, consider RS12 under the LLCS of 
link3→4 (as the base link). The x +RS12

 = 0.8 (link3→4) + 0.2 (link4→14) + 
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0.3 (link14→13) + 0.55 (link13→12) = 1.85 mi. The x −RS12
 = 0.2 (link9→3) 

+ 0.4 (link10→9) + 0.4 (link12→10) = 1.0 mi.
A variant of Dijkstra’s shortest path traversal can be used to calcu-

late the LLCS coordinates of all RSs on the fly. The traversal is divided 
into two passes. In the first pass, Dijkstra’s algorithm starts from RSto

base 
and expands to the rest of the network while ignoring all links con-
nected to RSbase

from. During the traversal, the forward coordinates of all 
reached RSs are calculated or updated. Similarly, in the second pass, 
Dijkstra’s algorithm starts from RSbase

from and ignores all links connecting 
to RSto

base, filling the backward coordinates of all reached RSs.
In the context of an LLCS, any link (including the base link) is 

related to the base link by the LLCS coordinates of its RSfrom and 
RSto. Specifically, let a link to be related to the base link be called a 
test link and its end RSs be denoted as RStest

from and RSto
test. Vector vtest = 

[x +RSfrom
test

 , x −RSfrom
test

 , x +RSto
test

, x −RSto
test

] is defined as the relationship vector of 
the test link in the LLCS. With the relationship vector, the network 
distance between a crash cbase on the base link and a crash ctest on a 
test link can be easily calculated by using Equations 3 through 7. 
Because the four coordinates in the relationship vector might 
result from different routings, four crash-to-crash distances are pos-
sible (Equations 4 through 7), and their geometric meanings are 
demonstrated in Figure 2. The final crash-to-crash distance should 
be the smallest possible distance. Besides determining the distance 
value, one can also tell whether the two crashes were in the same 
traffic direction. For example, if the final distance is d +F (Figure 2a), 
the centerline of the resulting route becomes bolded and the traffic 
directions of both crashes (green arrows) are on the same side of the 
centerline, meaning that the two crashes (or links) were in the same 
traffic direction; otherwise, like d +T and d −F and (Figure 2, b and c), 

the two crashes were in opposite traffic directions. In addition, one 
can also determine whether ctest happened upstream or downstream 
of cbase. For instance, ctest happened upstream of cbase if d +T (Figure 2b) 
or d −T (Figure 2d) is the final distance (when the test crash direction 
follows the bolded route); otherwise, ctest happened downstream of 
cbase (when the test crash direction departs from the bolded route).

, min , , , (3)base testd c c d d d dF T F T( )( ) = + + − −

os os (4)RS base testtest
fromd xF = − ++ +

os os (5)RS base test testtest
tod x lT ( )= − + −+ +

os os (6)RS base testtest
fromd xF = + +− −

d x lT ( )= + + −− − os os (7)RS base test testtest
to

where

	d(cbase, ctest)	=	network distance between cbase and ctest (mi),
	 dF

+	=	� possible distance by way of RS from
test  forward coor-

dinate (mi),
	 dT

+	=	� possible distance by way of RSto
test forward coordinate 

(mi),
	 dF

−	=	� possible distance by way of RSfrom
test backward  

coordinate (mi),
	 dT

−	=	� possible distance by way of RSto
test backward 

coordinate (mi),

FIGURE 2    Four possible distances between two crashes on basis of relationship vector.
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	 x +RStest
from	=	 forward coordinate of RSfrom

test  (mi),
	 x −RStest

from	=	backward coordinate of RSfrom
test  (mi),

	 x +RSto
test

	=	 forward coordinate of RSto
test (mi),

	 x −RSto
test

	=	backward coordinate of RSto
test (mi),

	 osbase	=	 link offset of cbase (mi),
	 ostest	=	 link offset of ctest (mi), and
	 ltest	=	 length of test link (mi).

Candidate Link

In the previous section, every link is assumed to be tested against the 
base link. However, given a particular spatial threshold of D miles, a 
test link too far from the base link is irrelevant to finding the nearby 
crash pairs. Only those links whose relationship vectors satisfy a 
certain condition may contain crashes within D miles of the base link 
crashes. In fact, the condition is as simple as min (x +RSfrom

test
  − lbase, x −RSfrom

test
 , 

x +RSto
test

 − lbase, x −RSto
test

) ≤ D, where lbase is the length of the base link. Links 
satisfying this condition are called candidate links and form a rela-
tively small and relevant portion of the network (when D is relatively 
small). The two passes of Dijkstra’s traversal can stop expansion as 
early as any further RS to be reached has a forward coordinate larger 
than lbase + D and a backward coordinate larger than D. Then, all links 
connected to the already-reached RSs are all the candidate links.

Algorithm

The pseudo-code of the proposed crash pairing algorithm is shown 
below. Here Lbase is assumed to be a preprocessed set of links contain-
ing at least one crash. The statement “find all candidate links” refers 
to the preparation of the relationship vectors for all candidate links 
in the LLCS as described earlier. The function t(*) is the function for 
getting the time of a crash in minutes since a consistent time origin. 
T and D are the static thresholds in minutes and miles, respectively. 
The recorded time of a crash could be slightly different from the time 
when the crash occurred. However, the authors do not expect it to 
have a significant impact on the results because a large time threshold 
of 5 h was used. The statement “calculate d(cbase, ccand)” (where “cand” 
means candidate), refers to Equations 3 through 7.

For each lkbase in Lbase:
Find all candidate links of lkbase as a set Lcand;
For each candidate link lkcand in Lcand,
For each crash cbase in lkbase,
For each crash ccand in lkcand, and
If 0 ≤ t(ccand) − t(cbase) ≤ T:
Calculate d(cbase, ccand);
If d(cbase, ccand) ≤ D:
Add (cbase, ccand) as a pair in the result.

A special case should be treated differently. As Figure 1 shows, the 
longitudinal distance between Crashes B and C was only 0.15 mi, but 
they occurred on opposite sides of the same highway. However, if one 
relies only on the network traversal of links, the resulting distance will 
go around RS14 (upper right in Figure 1) and be calculated as 0.25 mi. 
Such an unrealistic result is not desirable. To overcome this limita-
tion, additional information from the STN was employed. An STN 
table of route links was used to aid the links with their physical mean-
ings. Each record in the route link table specifies the both the highway 
to which a link belongs and the direction. All links on the other side 
of the same highway are considered candidate links of the base link. 

When the distance is being calculated between a crash on the base 
link and a crash on the other side of the highway, the algorithm calcu-
lates the cumulative distances from the two crashes to a far upstream–
downstream shared RS on the highway. The difference between these 
two cumulative distances is considered the distance between these two 
crashes. Furthermore, when a shared RS cannot be found, the algo-
rithm further uses another set of highway reference locations, refer-
ence points (RPs). Each RP has its on-highway number, on-highway 
direction, RP number, and RP letter. If two RPs have the same on-
highway number, RP number, and RP letter, they correspond to the 
same longitudinal position on the highway, even with different on-
highway directions. In addition, each RP, like a crash location, has a 
linear reference that maps it onto a link. On the basis of the preceding 
input, if two links on opposite sides of the same highway contains RPs 
with the same RP number and RP letter, they share a longitudinal posi-
tion. Thus, instead of looking for a shared RS, the algorithm looks for 
a shared longitudinal position that is based on RPs.

Validation

The pairing algorithm was implemented as a Java program. The pro-
gram passed several small independent tests (e.g., the entire stretch 
of a particular highway in the STN with crashes of several days) 
with manually extracted ground truths. To validate the accuracy and 
the efficiency of the algorithm further, a large-scale network was 
tested. Because manual extraction of the ground truth in the large-
scale test was infeasible, a relatively reliable ArcGIS-based pro-
gram was used as a mutual validation reference. The basic idea of 
the ArcGIS-based program is to prepare a network data set by using 
the STN shapefile and the crash shapefile and to employ the buf-
fer function of the NetworkAnalyst toolbox to find, for each crash, 
every other crash that is within a buffer network distance (spatial 
threshold) from that crash. The ArcGIS-based program was imple-
mented in C++ by using ArcGIS APIs. Because of the unavailability 
of control over the buffer function of the NetworkAnalyst toolbox, 
the ArcGIS-based program was similar to the naive algorithm of 
traversing the network for every pair of crashes, which provided the 
authors a chance to compare efficiencies.

Both the pairing algorithm and the ArcGIS-based program were 
tested on 10,922 crashes from a freeway network of about 1,500 
total miles in Wisconsin in 2010, with D = 10 mi and T = 5 h. The 
pairing algorithm yielded 15,901 crash pairs while the ArcGIS-
based program yielded 13,850 crash pairs. Both systems captured 
the same 13,594 crash pairs. The ArcGIS-based program captured 
256 extra pairs, which were later found to be missed by the pairing 
algorithm because of computer precision problems but did not hurt 
the validity of the pairing algorithm. The pairing algorithm captured 
2,307 extra pairs that were correct output but missed by the ArcGIS-
based program. In summary, the pairing program correctly identi-
fied more crash pairs than the ArcGIS-based program. In addition, 
the ArcGIS-based program finished the analysis in 2½ days, while 
the pairing algorithm finished in about 2 h (30 times as fast).

Second Phase: Crash Pair Filters

For the purpose of identifying secondary crashes, the pairing algo-
rithm produces an initial searching set, which, without additional 
filtering, could be too vast to be useful. Proposed below are two 
filters for selecting crash pairs that are more likely to capture a 
primary–secondary relationship.
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Ramp Filter

A crash pair resulting from the proposed algorithm will be excluded 
if its former crash happened on a highway on- or off-ramp. A crash is 
determined to be on a ramp if the link on which it happened represents 
a portion or an entire segment of a ramp. The rationale behind this 
filter is that ramp crashes rarely cause secondary crashes. To evaluate 
this assumption, 85 sample crash pairs whose former crashes hap-
pened on a ramp were selected and verified. One or two crash pairs 
were randomly sampled from each 1-h, 5-mi interval of the 5-h, 10-mi 
thresholds. Manual review showed that none of the 85 samples con-
tained a primary–secondary pair. Although one crash pair involved 
two secondary crashes, they were not related; in addition, these two 
secondary crashes were captured by the actual primary–second pairs 
whose primary crashes were not on ramps.

Impact Area Filter

As noted in the literature review, crash pairs resulting from static 
thresholds could contain false primary–secondary pairs. These false 
pairs generally have unreasonable combinations of time and spatial 
distances. For example, a candidate pair with time distance of 0 min 
and spatial distance of 5 mi is certainly not a primary–secondary 
crash pair. Because secondary crashes have been recognized as in 
the queue caused by the primary incidents, queue theories were com-
monly used to establish the time-varying impact area of the primary 
incidents to identify secondary crashes (13, 14, 18–29). Comparison 
of various queue estimation methods can be found in more-general 
traffic research papers (34, 35). The literature review indicates that 
none of the previous secondary crash studies used the shockwave 
model to estimate the impact area caused by a primary incident. In 
the current study, the impact area of a crash is defined between two 
simplified straight shockwave lines, one for the queuing shockwave 
and the other for the discharging shockwave (Figure 3). Mathemati-
cal representation for judging whether a crash fell into the impact 
area of another is given in Equations 8 through 10. Traffic flow of the 
prevailing traffic condition (q1) is the monthly average hourly traffic 
volume provided by the TRADAS detectors, with the same day of 
week and the same hour of the day as the former crash. If the later 
crash occurred outside the impact area and its parallel portion on the 
opposite traffic direction of the former crash, the crash pair would 

be excluded. However, secondary crashes could occur in the vicinity 
of the primary incident during its clearance. This type of secondary 
crash was typically attributed to the rubbernecking effect (8, 36). To 
capture these secondary crashes, a crash pair whose spatial distance 
(upstream or downstream in either traffic direction) was no larger 
than 1 mi and whose temporal distance was no larger than 1 h should 
be preserved, even if it does not satisfy the impact area requirement.

(8)2 clearance 1a t t d a t( )× − ≤ ≤ ×
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2 1

2 1
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where

	 t	=	 time between former crash and later crash (h);
	tclearance	=	1 h (simplified crash clearance time);
	 d	=	network distance between the two crashes (mi);
	 a1	=	queuing shockwave speed (mph);
	 a2	=	 release shockwave speed (mph);
	 q1	=	� traffic flow of prevailing condition [vehicles per hour 

per lane (vphpl)];
	 k1	=	� density of prevailing condition (vphpl), with 65 mph 

assumed as the prevailing speed as a simplification and 
k1 = q1/65;

	 q2	=	0 vphpl (traffic flow of jam condition);
	 k2	=	� 352 vehicles per mile per lane (vpmpl) (density of jam 

condition, which assumes minimum of 15 ft head-to-
head distance between vehicles);

	 q3	=	1,900 vphpl (traffic flow of saturated condition); and
	 k3	=	1,900/65 vpmpl (density of saturated condition).

Case Study

A case study was conducted on crashes that occurred on approxi-
mately 1,500 mi of freeways in Wisconsin during 2010. The layout of 
these freeways in relation to the entire STN network is shown in the 
map in Figure 4. Although the case study used only crashes occurring 
on these freeways, the calculation of network distances was not sub-
jected to these freeways but instead relied on the entire STN network. 
A total of 12,513 raw input crashes were retrieved for 2010, the last 
5 h of 2009, and the first 5 h of 2011. The inclusion of 5 h into both the 
previous and the next year corresponds to the selected 5-h temporal 
threshold so that crash pairs crossing the new year’s boundary could 
be captured. The workflow and the resultant reduced data in each step 
are summarized in the flow diagram in Figure 4.

(In Figure 4, the number of distinct crashes in parentheses is nor-
mally smaller than twice the corresponding number of crash pairs 
because one crash might be captured in more than one crash pair. 
The total number of crash pairs before and after a branching point 
remains the same. However, because a crash might be involved in 
two crash pairs belonging to different branches, the sum of the num-
bers of distinct crashes is normally larger than the number of crashes 
before the branching point.)

Before the pairing algorithm was applied, the raw input crashes 
were first reduced on the basis of a focused study scope that excluded 
inclement weather conditions and deer crashes. In Wisconsin, a large 

IA
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Distance

Timetclearance0
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a1 a2
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shockwave
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FIGURE 3    Example of impact area (IA).
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FIGURE 4    Summary of case study for 2010 [raw input = all crashes happened on 18 freeways (mainline and ramps) in 2010, 
last 5 h of 2009, and first 5 h of 2011; in impact area = both upstream of former crash location in its traffic direction  
and downstream in opposite traffic direction].
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portion of crashes are related to inclement weather during the winter. 
For example, in January 2010, 1,520 of 3,592 crashes (about 42%) 
on Wisconsin state trunk highways occurred during or after snow 
or rain. Some circumstances, such as successive run-off-the-road 
crashes in snowstorms and back-to-back rear-end crashes attrib-
utable to slippery or icy roads were recognized as contributing to 

secondary crashes. However, weather is out of the control of traf-
fic incident management agencies. Because the current research is 
focused on secondary crashes that are more likely to be prevented 
by effective traffic incident management, inclement weather–related 
crashes were not included in this study, but the authors intend to 
study them separately in the future. For a similar reason, deer crashes 



Zheng, Chitturi, Bill, and Noyce� 89

(about 20% of the total) were excluded from the study. As a result, 
7,034 crashes remained as the input to the proposed algorithm.

Conservative thresholds of 10 mi and 5 h were used for the first 
phase (crash pairing). The 10-mi, 5-h thresholds are approximately 
5 times as large (in each dimension) as most static thresholds used 
in the literature and supersede all actual temporal–spatial ranges of 
primary–second pairs found by existing studies (3–5, 9–14, 16–29). 
Thus, the use of even larger thresholds is unlikely to include more 
actual primary–secondary crash pairs. The pairing algorithm gen-
erated 8,665 crash pairs (4,231 distinct crashes). The second phase 
(crash pair filtering) further reduced the number of crash pairs to 1,008 
(88.4% reduction). To this point in the analysis, all computations were 
completed automatically within 2 h. The resultant 1,008 crash pairs 
for manual review contained only 1,342 distinct crashes. Compared 
with the initial input of 7,034 crashes, the crash-pairing and filtering 
procedures reduced the number of crashes needing review by 81%.

Secondary crashes and their corresponding primary incidents 
were confirmed through manual review of police reports. Approxi-
mately 30 person-hours were used in reviewing the 1,008 candidate 
crash pairs; this number averaged to nearly two person-minutes 
per crash pair. Potential employment of optical character recogni-
tion and artificial intelligence may help in further minimizing the 
reviewing time in the future. A crash was classified as a secondary 
crash only when its report explicitly referred to a previous crash. 
This criterion might have resulted in fewer secondary crashes than 
occurred but ensured the confidence of further analyses on the 
resulting secondary crashes. Primary incidents were identified only 
if they could be matched, by either document number or other key 
descriptions, to those referred by the secondary crashes. By these 
criteria, 73 crash pairs were found to contain secondary crashes. 
The number of distinct secondary crashes was also 73. Among the 
73 pairs, 67 captured the primary incidents.

Preliminary analyses were conducted on the resulting primary–
secondary pairs and secondary crashes. Among the 67 primary–
secondary pairs, 52 secondary crashes (77.6%) occurred in the same 
traffic direction as the primary crashes, and the average spatial and 
temporal distances were 1,520 ft and 15.2 min, respectively; 15 sec-
ondary crashes (22.4%) occurred in the opposite traffic direction of the 
primary crashes, and the average spatial and temporal distances were 
1,197 ft and 17.4 min, respectively. Among the 73 secondary crashes, 
40 were two-vehicle rear-ends collisions (54.8%), 10 multiple-vehicle 
rear-end collisions (13.7%), 11 sideswipes (15.1%), five hitting debris 
(6.8%), two angle crashes (2.7%), three with squad vehicles on 
primary crash scenes (4.1%), and one losing control (1.4%).

Conclusions, Recommendations, 
and Future Work

Secondary crashes are known to prolong the nonrecurrent congestion 
caused by primary freeway incidents. The benefit of reducing second-
ary crashes has also been found to exceed traffic incident management 
countermeasures, such as freeway patrol services. However, research 
on secondary crashes on large regional transportation systems was 
limited. The current study contributes to the research community with 
the following efforts and findings:

•	 An efficient crash-pairing algorithm was developed to extract 
spatially and temporally nearby (up to custom static thresholds) 
crash pairs from a large-scale regional transportation system. The 
accuracy and efficiency of this algorithm were validated.

•	 Two effective filters were proposed to select crash pairs that 
were more likely to capture primary–secondary relationships. The 
first filter restricts the primary incidents on mainline highways. 
The second filter restricts the secondary crashes to be within the 
dynamic impact areas of the primary incidents. Shockwave theory 
is first used by the current study to estimate the dynamic impact area 
of a primary incident.
•	 A two-phase procedure consisting of the pairing algorithm 

and filters automatically narrows the searching space for second-
ary crashes in a large regional transportation system. Although the 
procedure is based on the commonly used linear referencing system 
for crash localization, any transportation system with similar data 
representation can be analyzed with the procedure. A manual review 
of the effectively narrowed search space is required.
•	 A case study for crashes occurring in 2010 on about 1,500 mi of 

Wisconsin freeways was conducted. From the crash pairs extracted 
by using the two-phase procedure, 73 secondary crashes were con-
firmed via careful manual review of police reports. Secondary crashes 
occurring in the same traffic direction of the primary incidents were 
about three times those occurring in the opposite direction. Two-
vehicle rear-end collisions, multiple-vehicle rear-end collisions, 
and sideswipes were three major types of secondary crashes (about 
84%). Other crash types, such as hitting debris, angle crashes, losing 
control, and striking squad vehicles were also observed.

Three major efforts for future work are recommended. First, to 
make the whole workflow of secondary crash identification more 
automatic, optical character recognition and artificial intelligence 
might be employed to assist human reviewers in examining police 
reports. Second, more years of data must be collected to establish 
a larger sample of secondary crashes for more comprehensive sta-
tistical analyses. Finally, because the objective of this study was 
to analyze secondary crashes that can be mitigated by traffic inci-
dent management strategies, crashes in inclement weather were 
not included. The authors realize that secondary crashes occur in 
inclement weather and recommend that future studies examine the 
impact of weather on secondary crashes.
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