
SRQL: Sorted Relational Query Language

Raghu Ramakrishnan Donko Donjerkovic Arvind Ranganathan Kevin S. Beyer
Muralidhar Krishnaprasad

Department of Computer Sciences
University of Wisconsin-Madison

Abstract

A relation is an unordered collection of records. Often,
however, there is an underlying order (e.g., a sequence of
stock prices), and users want to pose queries that reflect this
order (e.g., find a weekly moving average). SQL provides no
support for posing such queries. In this paper, we show how
a rich class of queries reflecting sort order can be naturally
expressed and efficiently executed with simple extensions to
SQL.

1. Introduction

Ordered data, orsequences, can be found in a wide range
of commercial, statistical, and scientific applications. These
applications require DBMS support to store, manipulate,
and query sequences efficiently, and such support is miss-
ing in RDBMSs since the relational model providessets of
tuplesas its only data structure. SQL [2], the most widely
used query language for relational systems is incapable of
answering some common queries posed by commercial and
scientific applications, such as moving aggregates.

One approach that is being explored in many commer-
cial systems is support for sequences as a new ADT. Users
can store a sequence in a field of a tuple, and manipulate
it using associated system-defined methods such as moving
averages. In earlier work [8], we argued that the ADT ap-
proach was inadequate for supporting bulk data types (such
as sequences) over which users might want to ask a rich
class of queries. The approach limits both the ease with
which queries can be formulated, and the degree of query

c
1998 IEEE. Published in the Proceedings of SSDBM’98, July 1-3
1998 in Capri, Italy. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component ofthis work in
other works, must be obtained from the IEEE. Contact: Manager, Copy-
rights and Permissions / IEEE Service Center / 445 Hoes Lane /P.O. Box
1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-
3966.

optimization that can be achieved. We proposed the con-
cept of anenhanced ADT(EADT) to handle such bulk data
types, and demonstrated the benefits of this approach.

In this paper, we consider another approach to extending
relational DBMSs with support for sequence data, based on
treating sequences as sorted relations, with features in the
query language that exploit the sort order. Our extensions
to SQL allow a combination of unordered and (logically)
ordered relations to be queried naturally, and permit effi-
cient evaluation with minimal extensions to a traditional re-
lational optimizer and evaluation engine. In comparison to
the ADT approach, a richer class of queries can be naturally
expressed, and efficiently evaluated. In comparison to the
EADT approach, queries involving a mixture of relations
and sequences are easier to express, and the full machinery
of EADTs need not be implemented. (Although, the EADT
approach offers more generality in that support for other
data types with rich query capabilities can be added easily.)

We present an extension to SQL to illustrate our ideas;
this is calledSorted Relational Query Language, or SRQL
(pronounced “circle”). We emphasize how a few simple ex-
tensions allow sort order to be effectively exploited at both
the language and optimization/evaluation levels. We have
implemented SRQL as part of the data transformation en-
gine of the DEVise system [5], which also supports power-
ful visualization features. (In this paper, we will not discuss
any aspects of DEVise other than SRQL.)

The main contributions of this paper are:� The approach to modelling sequences as sorted rela-
tions, rather than as ADTs, as is commonly being done
in Object-Relational DBMSs or ORDBMSs (e.g., [3]),
or as EADTs. This leads to easier querying of a com-
bination of relations and sequences, and enables more
integrated optimization and evaluation.� An algebra over sequences that extends relational al-
gebra to address sort order.� The extension of SQL to query sorted relations in
SRQL. We extend the earlier results of SEQUIN [8, 9]



significantly, and define SRQL semantics in terms of
our algebra.� An implementation demonstrating that efficient and
scalable query evaluation is feasible for SRQL.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide the motivation for our work by consider-
ing queries that illustrate the deficiencies of SQL in query-
ing sequences. We describe the extension of relational alge-
bra to a sequence algebra in Section 3, and we introduce the
SRQL language as an extension of SQL in Section 4. Per-
formance results of our initial SRQL implementation are
presented in Section 5. We talk of related work, especially
with respect to ORDBMSs, TSQL [10] and RISQL [7] in
Section 6. Section 7 concludes the paper.

2. Motivation

Sequence data is encountered in a wide variety of scien-
tific and commercial applications, e.g., experimental traces,
process evolution, satellite observations over time, stock
market prices, and salary histories. There is also great in-
terest in maintaining a history of a user’s queries, or a log
of the changes made to a database, and analyzing such trace
data to identify interesting patterns of usage. Given these
trends, the ability to analyze large sequences is becoming
increasingly important and DBMS vendors are beginning to
add such capabilities. The work reported here presents an
attractive alternative to the two main existing approaches,
which are based on ADTs and EADTs.

The following simple queries illustrate the usefulness of
sequence query support:

1. Find the leading weekly moving average of the Dow
Jones Industrial Average, given a tableDJIA(date,
close).

2. Find the trailing weekly moving average (i.e., the av-
erage for the past week, for each date) for each stock,
given a tableStocks(date, symbol, close). Order the re-
sulting sequences by stock name, date. (The result can
be thought of as a relation with fieldssymbol, date, av-
erage, sorted on the composite key(symbol, date).)

3. For each day in ’97, find the ten cheapest stocks.

4. For each day in ’97, find the ten most expensive stocks.

5. Compute the percent change of each stock during
1997, and then find stocks that were in the top 5%.

6. Find the of dates of stocks where the leading weekly
average is greater than 1.2 times the trailing weekly
average, given the Stocks table.

7. For each week, find the stock in which a given cus-
tomer (say Joe) had the most invested. In addition to
the Stocks table, a tableTrans(customer, symbol, date,
shares)records the change in shares for a given cus-
tomer, symbol, and date.

These queries illustrate the rich class of queries one can
ask over sequences. Of course, a wider variety of aggre-
gate operations could be included, and various kinds of date
arithmetic and calendar support could be added (e.g., un-
derstanding leap years, the difference between a sequence
of week-days and a sequence of integers), but these will
not be our focus. We focus on howsequentialityleads to
novel query patterns, and how to express and optimize such
queries in a relational setting.

None of the above queries can be expressed in SQL-92.
Some (e.g., the first) but not all can be expressed by some
SQL extensions in current products such as Red Brick’s
RISQL. In particular, queries such as the second (which in-
volves nested sequences) or the last (which involves com-
bining sorted and unsorted tables) are not supported. In Ap-
pendix A we give SRQL versions of these queries.

Our approach is also relevant to temporal database query
languages, but additional work is required to address tem-
poral issues such as calendars and time intervals.

3. Extensions to Relational Algebra

To manipulate sorted relations, we extend relational al-
gebra (plusgroup-byandNULLsas in SQL) with four new
operators: Sequence (	), Shift (�), ShiftAll (�), and Win-
dowAggregate (!). Only 	 is a necessary extension; the
rest can then be defined using	, relational algebra (plus
group-by and NULLs). We define the semantics of SRQL
queries in terms of this “sequence algebra” in Section 4.
The algebra represents the logical operators; the implemen-
tation is free to define more efficient physical operators (like
join).

For consistency with SQL, we consider a relation to be a
multiset of tuplesrather than a set of tuples. Like SQL, we
use an operator “Distinct” to remove duplicates, and sup-
port operators that distinguish between groups of tuples in a
relation that are partitioned (but not necessarily fully sorted)
by value of the grouping attributes.

3.1. Sequences as Sorted Relations

We begin by defining our notion of sequences, which are
essentially just sorted relations. Asimple sequenceis a re-
lation that is (logically, though not necessarily physically)
sorted on a key that is a concatenation of attributes, which
we call thesequencing attributes.



A composite sequenceis a relation that is first grouped
on a set of attributes, calledgrouping attributes, and then se-
quenced by a concatenation of sequencing attributes within
each partition defined by identical group values. The value
of the grouping attributes in any tuple of the relation is
called thegroup value; likewise, the value of the sequenc-
ing attributes is called thesequence value. In the remainder
of the paper, we use the termsequenceto refer to either a
simple or composite sequence.

To be precise, a sequence is a relation plus a set of
grouping attributes and a list of sequencing attributes. The
grouping and sequencing attributes (which are allowed to
be empty sets) induce an ordering over the tuples. For each
tuple, we can therefore talk of the ordinal number of the tu-
ple in the sequence (within the group of the tuple). Within
each group, all integers between the first and last ordinal
for the group are assigned to some tuple of the group (i.e.,
the ordinal numbering isdense). For convenience, we treat
the ordinal number of a tuple as a special integer attribute,
ordinal, but the reader should note that this attribute is not
actually stored.1

3.2. Sequence Algebra

The algebra operates on sequences, of which unsorted re-
lations are just a special case having empty sets of grouping
and sequencing attributes. Thus, we begin with the basic
relational operators (defined on multisets, as in the algebra
underlying SQL, e.g., [6, 4], and extend them to work on
sequences: select (�), project (�), cross-product (�), union
([), and set-difference (�). To extend them, we must define
how the output is grouped and sequenced; we do this sim-
ply by defining the grouping set and sequencing lists to be
empty for the result of each of the above operators. Observe
that theordinal “attribute” of the input relations is not prop-
agated to the result! The most important point to note is that
we allow the select operator to specify selection conditions
over theordinalattribute of its input.

In contrast to relational algebra, we need to treat join (BC)
as a primitive operator because we want to be able to refer
to theordinal attributes of the input tables in the join con-
dition, and our version of cross-product does not propagate
these special attributes. We also include left-outer join (IC),
which is the same as join, except that it guarantees that all
tuples from its left input appear in the output. Any left tu-
ple that does not match a right tuple is matched with NULL
values for the right tuple. The join operators in SRQL, like
the other extended relational operators, are defined to have
empty grouping sets and sequencing lists.

In the rest of this section, we present the operators that
directly address sort order. The essential new operator, Se-
quence (	), creates a sequence. No additional operators

1We sometimes abbreviate the ordinal attribute asord.

are necessary, but it is convenient to introduce shift opera-
tors that align tuples of a sequence based on the sequence
order, and an operator for applying aggregate functions to
sequences. These additional operators are defined in terms
of the core SRQL algebra, which consists of the extended
relational operators and the	 operator.

3.3. Creating a Sequence

Our fundamental extension of relational algebra consists
of the Sequence operator (	), which (re)sequences its input
table by changing the grouping and sequencing attributes;
this has the effect of appropriately changing theordinal as-
sociated with each tuple. LetR be a table,g be the group-
ing attributes, ands be the sequencing attributes.	g;s(R)
partitionsR based ong into a set of partitions,P1 : : : Pn,
and then eachPi is sorted based ons. When grouping, all
NULL values in a grouping attribute are considered equal
(as in SQL), but if any sequencing attribute is NULL, the
tuple is discarded.

We now describe how each tuple in a partitionPi is given
an ordinal value; again, we emphasize that this is concep-
tual. Theordinal attribute can be used by selection opera-
tions, but is not preserved by other relational operators. All
tuples with the first sequence value that appears inPi are
assigned ordinal value 1, the tuples with the next sequence
value are assigned the ordinal 2, and so on. The last ordinal
assigned to each partitionPi is calledLASTi. In this way,
each distinct value of the sequencing attributes is assigned
a unique ordinal value between 1 andLASTi, and every or-
dinal in this range is assigned to some tuple.

For example, consider a tableR(g; t; x). The result of	g;t(R) is:

g t x ord
3 4 a 1
3 6 b 2
3 6 c 2
3 8 b 3
2 1 a 1
2 1 b 1
2 3 c 2
2 5 d 3
2 9 e 4
2 9 f 4

3.4. Shifting a Sequence

3.4.1. ShiftAll Operator

A basic sequence operation is to align the tuples of the se-
quence with other tuples at some relative or fixed offset in
the sequence. For example, we can pair each tuple with



the next tuple in the sequence, or with the first tuple in the
sequence.

The ShiftAll operator�i(R) takes a sequenceR and a
relative ordinal valuei and joins each tuplet of R with all
the tuples ofR in the same group ast that have an ordinal
value = ordinal(t) + i. If no tuple with the appropriate ordi-
nal is found in the group oft (i.e., shifting to an ordinal less
than one or greater thanLAST), thent is paired with NULL
values. In other words:�i(R) = 	R:g;R:s(R ICR:g=R2:g^R:ord+i=R2:ord R2)
whereg is the grouping attributes,s is the sequencing at-
tributes,R2 is a copy ofR, and IC stands for left outer
join.

We extend� so that it can take fixed as well as relative
ordinals: when a fixed ordinalf is used (e.g.,FIRST, to
denote the first tuple), the expressionord + i used in the
outer join is replaced byf . This results in each tuple being
paired with all the tuples at the given fixed ordinal position.
We do not define the syntax here, but SRQL does include
such constructs.

In general, we are interested in matching a tuple with
tuples at several different ordinals, so we extend� to take a
set of (fixed or relative) ordinals. LetR1; : : : ; Rk be copies
of the sequence R. Now� is defined as:�fi1;::: ;ikg(R) =	R:g;R:s(: : :	R:g;R:s(R ICC1 R1) : : : ICCk Rk)
where eachCj is a predicate of the form:(R:g = Rj :g) ^ (R:ord + ij = Rj :ord)

Taking R(g; t; x; ord) from the example above,�f�1;2g(R) is:

g t x ord t�1 x�1 t+2 x+2
3 4 a 1 NULL NULL 8 b
3 6 b 2 4 a NULL NULL
3 6 c 2 4 a NULL NULL
3 8 b 3 6 b NULL NULL
3 8 b 3 6 c NULL NULL
2 1 a 1 NULL NULL 5 d
2 1 b 1 NULL NULL 5 d
2 3 c 2 1 a 9 e
2 3 c 2 1 b 9 e
2 3 c 2 1 a 9 f
2 3 c 2 1 b 9 f
2 5 d 3 3 c NULL NULL
2 9 e 4 5 d NULL NULL
2 9 f 4 5 d NULL NULL

3.4.2. Shift Operator

Sometimes we only want to match a tuple with the se-
quence value at some offset in the sequence, rather than
the whole tuple. When this is the case, the Shift opera-
tor, �, can be used to avoid the “cross-product effect” of�
caused by duplicate sequence values (e.g., tuple (2,3,c,2)
in the example above).� is similar to�, except that it
removes duplicate sequence values before joining. LetR
be a sequence with grouping attributesg and sequencing
attributess. Let T1; : : : ; Tk be copies of the sequence	g;s(Distinct(�g;s(R))). We define� as:�fi1;::: ;ikg(R) =	R:g;R:s(: : :	R:g;R:s(R ICC1 T1) : : : ICCk Tk)
where eachCj is a predicate of the form:R:g = Tj :g ^ R:ord + ij = Tj :ord
Like �, we can extend� to take both fixed and relative or-
dinals.

Using the example above,�f�1;2g(R) =

g t x ord t�1 t+2
3 4 a 1 NULL 8
3 6 b 2 4 NULL
3 6 c 2 4 NULL
3 8 b 3 6 NULL
2 1 a 1 NULL 5
2 1 b 1 NULL 5
2 3 c 2 1 9
2 5 d 3 3 NULL
2 9 e 4 5 NULL
2 9 f 4 5 NULL

We note the following properties of ShiftAll and Shift.
In what follows,R is a sequence with grouping attributesg
and sequencing attributess.

1. Shift with multiple offsets can be expressed as the
composition of multiple Shift operators:�fi;jg(R) = �i(�j(R)) = �j(�i(R))

2. Shift with two offsets is not the same as the join (or
outer join) of the two shifted sequences.�fi;jg(R) 6= �i(R) BCg=g^ord=ord �j(R)

3. ShiftAll with multiple offsets is not the same as the
composition of multiple ShiftAll operators:�fi;jg(R) 6= �j(�i(R))



4. ShiftAll with two offsets is not the same as the join (or
outer join) of the two shifted sequences:�fi;jg(R) 6= �i(R) BCg=g^ord=ord �j(R)

5. Shift and ShiftAll can be interchanged:�I (�J(R)) = �J (�I(R))
6. Shift simply adds attributes to a sequence:	g;s(�R(�i(R))) = R
7. ShiftAll not only adds attributes to a sequence, but can

also duplicate tuples in the sequence:

Distinct(�R(�i(R))) = Distinct(R)
3.5. Aggregate Operations

When applying an aggregate function on a sequence, a
different aggregate value can result from each ordinal value
of the sequence. For each ordinal, a section of the sequence,
called awindow, is created, and the aggregate function is
applied to the window. For example, when computing a
trailing weekly moving average of daily stock prices, the
window is the current day plus the previous six days.

Because each ordinal value of the sequence can have its
own window, we do not collapse groups when aggregating.
Instead, the aggregate result is simply appended to the tu-
ple. Aggregating in this manner allows us to use a different
window for each aggregate function that is applied to the
sequence.

The WindowAggregate operator,!, allows a different
window to be defined for each tuplet of a sequenceR. It
uses a selection predicatep(t), which can refer to the value
of theordinal attribute in the current tuplet to select a sub-
set oft’s group inR. The result of the WindowAggregate
operator has the same grouping set and sequencing list as
its input, and contains one tuple per input tuple. For each
input tuplet, the output contains the tuple:< t;Agg(�x(�t:g=R:g^p(t)(R))) >
whereAgg is an aggregate operator (e.g.,MIN, MAX, SUM,
COUNT, AVG), x is an attribute ofR, andg is the grouping
attributes ofR. 2 3

Using our running example,!(R; true;MAX; x) is:

2We note that the WindowAggregate operator can be defined using the
other operators, but will not discuss this further.

3There is also a value-based version of WindowAggregate where p(t)
is allowed to reference the sequencing attributes.

g t x MAX(x)
3 4 a c
3 6 b c
3 6 c c
3 8 b c
2 1 a f
2 1 b f
2 3 c f
2 5 d f
2 9 e f
2 9 f f

If we let T be this result, notice that the SQL query:

SELECT g,MAX(x)
FROM R
GROUP BY g

is equal to Distinct(�g;MAX(x)(T )).! is similar to, yet distinct from, the� operator defined
by Chatziantoniou and Ross in [1]. The� operator was also
introduced to define aggregation windows, although for dif-
ferent motivating problems. We defined! because it allows
a more natural treatment of SRQL.

As described in Section 4.3, SRQL currently restricts the
use of! to ensure efficient evaluation. We are investigating
ways to efficiently incorporate additional functionality of!.

4. The SRQL Language

The SRQL language enhances SQL to support queries
that reflect sort order. Using the operators defined in the
previous section, we can now define the syntax and seman-
tics of SRQL. An implementation of SRQL is allowed to
execute the query in any manner, as long as the semantics is
preserved.

4.1. Shift Operators

SRQL allows tables to be ordered in theFROMclause so
that we can match tuples of the sequence with other tuples
at some relative or fixed offset in the sequence. TheSHIFT
function takes a (sequence) tuple variable and an offset and
provides access to the sequencing attributes at that offset.
Similarly, theSHIFTALLfunction provides access to all of
the attributes, not just the sequencing attributes. For exam-
ple:

SELECT S.t, S.x, SHIFTALL(S,-1).x,
SHIFT(S,1).t

FROM R GROUP BY g SEQUENCE BY t as S

returns each tuple ofS matched with all of thex values
immediately before the tuple inS, and the singlet value
that occurs immediately after the tuple. If nox or t value is



found, a NULL value is used. IfS does not have duplicate
(g; t) values, then only onex value will occur immediately
before the tuple.

To evaluate queries withSHIFTandSHIFTALL, the off-
sets from all of theSHIFTcalls for a sequence are gathered
into a setI , and the offsets from theSHIFTALLcalls are
gathered into a setJ . The definition of the sequence is then
replaced with calls to� and� on that definition; the above
query is equivalent to the expression:�t;x;x�1;t+1(�f�1g(�f+1g(	g;t(R)))

SRQL has two special values,FIRSTandLAST, that can
be used withSHIFT andSHIFTALL to get fixed ordinals.
For example,SHIFTALL(S,LAST-3).x gets all x values as-
sociated the fourth to last ordinal. The only types of offsets
allowed are�i, FIRST+i, andLAST�i, wherei is an inte-
ger constant.

4.2. Joining Sequences

To illustrate the power of shifting, consider the following
query: For each volcano eruption where the the most recent
earthquake that was greater than 7.0 on the Richter scale,
what was the name of the earthquake?

Volcano Earthquake
time name time name magnitude

3 v1 1 e1 8
4 v2 2 e2 2
5 v3 5 e3 8
8 v4 6 e4 9
9 v5 7 e5 8

SELECT V.name, E.name
FROM Volcano AS V,

Earthquake SEQUENCE BY time AS E
WHERE E.time <= V.time
AND (SHIFT(E,1).time > V.time

OR SHIFT(E,1).time IS NULL)
AND E.magnitude > 7

The result is:

V.name E.name
v3 e3
v4 e5
v5 e5

Now consider a similar query: For each earthquake that was
greater than 7.0 on the Richter scale, what was the next non-
concurrent volcano eruption?

SELECT V.name, E.name
FROM Volcano SEQUENCE BY time AS V,

Earthquake AS E
WHERE V.time > E.time
AND (SHIFT(V,-1).time <= E.time

OR SHIFT(V,-1).time IS NULL)
AND E.magnitude > 7

The result is:

V.name E.name
v1 e1
v4 e3
v4 e4
v4 e5

Since we expect this type of sequence join to be com-
mon, we created four predicate operators that express it
more succinctly.A:s SUCCEEDSB:x means join aB tu-
ple with theA tuple (or tuples ifA has duplicate sequence
values) having theminimumA:s value that is greater thanB:x. A must be sequenced bys. Similarly, A:s PRE-
CEDESB:x says to join a tuple ofB with the tuple(s) ofA
that have themaximumvalue ofA:s which is less thanB:x.
SUCCEEDS= and PRECEDES= allowA:s to be equal toB:x. Using these predicates, the above queries become:

SELECT E.name, V.time
FROM Volcano AS V

Earthquake SEQUENCE BY time AS E
WHERE E.time PRECEDES= V.time
AND E.magnitude > 7

SELECT E.name, V.time
FROM Volcano SEQUENCE BY time AS V,

Earthquake AS E
WHERE V.time SUCCEEDS E.time
AND E.magnitude > 7

4.3. Aggregation

Moving aggregation operators are used for calculating
an aggregate function (e.g.,average) repeatedly on subsec-
tions of a sequence (called windows). For example, a 2-day
moving average of expenses over a week will produce a list
of values, starting with the average of expenses on Mon and
Tue, followed by the average of expenses on Tue and Wed,
and so on. The aggregate is calculated over the window as
the window slides down the sequence.

Moving aggregates can be categorized as position-based
or value-based. The position based operators ignore the
actual distance between the sequencing values. For ex-
ample, a positional window of (-3,0) includes the records
corresponding to the three previous sequence values in
the sequence plus the current sequence value. The value-
based moving aggregates take into account the actual value
of the position when calculating the window. Thus a



value window of (-3,0) would include only those records
whose sequencing attribute value falls within the range (cur-
rent value�3, currentvalue).

Each of the normal aggregate functions (MAX, MIN,
SUM, COUNT, AVG) can be used as a window aggregate
function. The window of aggregation is specified in the
OVERclause. The offsets to theOVERclause follow the
same rules as theSHIFT operator, and allow one or both
of the ends of the window to be fixed by usingFIRST
or LAST. The corresponding value based windows use the
OVER VALUESclause. A moving aggregation with no
OVERclause is the same as the corresponding normal ag-
gregation over the entire sequence (i.e., the default window
is defined to be all tuples in the same group).

Here is an example that illustrates the difference between
the two classes of moving aggregate operators:

Example
num vol

1 100
2 200
3 90
5 120
7 50
8 120

The positional moving average is given by the following
query:

SELECT num, AVG(vol) OVER 0 TO 1
FROM Example
SEQUENCE BY num

The equivalent algebra expression is:!(	fg;num(Example);ord >= t :ord + 0 ^ ord <= t :ord + 1;AVG; vol)
and results in:

num AVG(vol)
1 150
2 145
3 105
5 85
7 85
8 120

Similarly, the value based moving average is given by the
following query:

SELECT num,
AVG(vol) OVER VALUES 0 TO 1

FROM Example
SEQUENCE BY num

The equivalent algebra expression is:!(	fg;num(Example);num >= t :num + 0 ^ num <= t :num + 1;AVG ; vol)
and results in:

num AVG(vol)
1 150
2 145
3 90
5 120
7 85
8 120

Consider the record at position 3 of the input sequence. The
position based moving average looks ahead one step in the
given sequence(at the record at position 5) to calculate the
average of 90 and 120. However, the value based moving
average looks ahead one position in thedomainof the se-
quencing attribute to calculate the average of the values cor-
responding to positions 3 and 4 which is just 90, because
records corresponding to non-existent positions are not con-
sidered in the aggregation.

Note that we have defined aggregation on a sequence to
always produce the same number of tuples as the original
sequence. In other words, sequence aggregates only add
attributes to the sequence, and the entire original tuple can
be placed in theSELECTclause.

4.3.1. Aggregates on Composite Sequences

GROUP BYandSEQUENCE BYmay be combined to cre-
ate a composite sequence which may be thought of as a
set of sequences. Consider the following example relation
Sales(product, batch, volume)and suppose we need to find
the 2-batch moving average of volumes sold for each prod-
uct. This may be expressed in SRQL as:

SELECT product, batch,
AVG(volume) OVER 0 TO 1

FROM Sales
GROUP BY product
SEQUENCE BY batch

The equivalent algebra expression is:!(	product;batch(Sales);(ord >= t :ord + 0) ^ (ord <= t :ord + 1);AVG ; volume)
and results in:



product batch volume AVG(volume)
bolts 1 10 15
bolts 2 20 55
bolts 5 90 90
nails 43 50 75
nails 44 100 80
nails 45 60 60
tacks 24 100 90
tacks 25 80 70
tacks 26 60 50
tacks 27 40 40

Clearly the bolts have done well with each successive batch
while tacks have lost their ground, and the picture with nails
is not so clear!

4.3.2. Variants of Aggregation

Another variant of the aggregate operations is cumulative
functions. These calculate “running” sums, averages etc.
over the entire sequence. Cumulative functions are speci-
fied using theCUMULATIVEkeyword ahead of the appro-
priate aggregation function. WhenCUMULATIVEis speci-
fied withGROUP BY, the function only accumulates within
each partition.

Cumulative aggregates introduce a number of interesting
syntactic short-cuts:

1. CUMULATIVE is an just an abbreviation forOVER
FIRST TO0, and traditional (non-moving) aggregates
are equivalent toOVER FIRST TO LAST.

2. We defineRANK()asCUMULATIVE COUNT(*).

3. We definePERCENTILE()asRANK()/ COUNT(*) *
100.

4. We defineQUARTILE()asdPERCENTILE()=25e.
4.3.3. A Note on Duplicates

Since a sequence is just a sorted relation, duplicates still
need to be handled. Each position in the sequence is treated
as a set of one or more records. All operations described
above hold in the presence of duplicates. Hence a window
of (0,0) is well defined for all moving aggregates; it is es-
sentially a window on the set of values for each position.
For example, “COUNT(*) OVER0 TO 0” gives a count of
the number of duplicates for each position in the sequence.

4.3.4. WITH, WHERE, and HAVING

We introduce a new clause, theWITHclause, and extend the
HAVINGclause to deal with sequences. TheWITH clause
specifies the selection condition to be applied to each record

within a windowbefore the aggregation is done. When us-
ing position based aggregates, this is different from spec-
ifying a selection condition in theWHEREclause: If the
selection condition is specified in theWHEREclause, then
certain records may be eliminated and hence the window
for the neighboring records would change. When we need
the window to cover the original set of records and the se-
lection to be applied within this window theWITH clause is
required.

The following example illustrates the difference between
WITH andWHERE. Consider the sequenceSales(day, vol-
ume, profits)and suppose we need to find the 2-day mov-
ing average of the profits made such that only the sales of
volume greater than 100 are significant (the rest should be
omitted from the aggregation):

SELECT day, AVG(profits) OVER 0 TO 1
FROM Sales
SEQUENCE BY day
WITH volume > 100

The equivalent algebra expression is:!(	fg;day(Sales);(ord >= t :ord + 0) ^ (ord <= t :ord + 1)^ (volume > 100);AVG; pro�ts)
day volume profits AVG(profits)

Mon1 100 10 20
Tue1 200 20 20
Wed1 90 30 40
Fri1 110 40 40

Mon2 50 10 20
Tue2 120 20 20

Suppose we replace theWITH clause in the above query
with a similarWHEREclause:

SELECT day, AVG(profits) OVER 0 TO 1
FROM Sales
WHERE volume > 100
SEQUENCE BY day

This changes the window of aggregation and hence the
result, shown below, corresponds to the query: For all days
with volume greater than 100, find the 2-day moving aver-
age of the profits made.

day volume profits AVG(profits)
Tue1 200 20 30
Fri1 110 40 30
Tue2 120 20 20

Next, we consider theHAVINGclause. Just as in SQL,
predicates in theHAVINGclause are evaluated after aggre-
gation is complete, and are applied to the table computed



using the grouping, sequencing and aggregation steps. Of
course, unlike SQL, there may be several tuples per group
if the SEQUENCE BYclause is used. Let us replace the
WITH clause from above with a similarHAVINGclause:

SELECT day, AVG(profits) OVER 0 TO 1
FROM Sales
SEQUENCE BY day
HAVING volume > 100

Now the window of aggregation is the same as in the
first query, but all tuples are included in the moving aver-
age, and those tuples that have volume< 100 are removed
after aggregation. This corresponds to the query: Find the
2-day moving average of the profits made and report those
that had volume> 100. Note that just like in SQL, aggre-
gate functions, whether moving or not, can be placed in the
HAVINGclause but not theWHEREclause.

day volume profits AVG(profits)
Tue1 200 20 25
Fri1 110 40 25
Tue2 120 20 20

4.4. Summary of Evaluation

In general, a SRQL query block looks like this:

SELECT <expr list>
FROM <table/sequence list>
WHERE <predicate>
GROUP BY <expr list>
SEQUENCE BY <expr list>
WITH <predicate>
HAVING <predicate>
ORDER BY <expr list>

and the order of evaluation is:

1. SHIFTandSHIFTALLare moved to theFROMclause.

2. All expressions in theFROMclause are evaluated, in-
cluding sequencing and shifting.

3. If there is noSEQUENCE BYclause, then proceed as
in SQL; otherwise continue.

4. Take the cross-product of all the tables in theFROM
clause.

5. TheWHEREclause is evaluated.

6. TheGROUP BYandSEQUENCE BYclauses are used
to define a sequence.

7. For each tuple (and each aggregate), a window is
formed using theGROUP BY, SEQUENCE BY, OVER,
OVER VALUES, andWITH clauses. Then the window
is aggregated.

8. TheHAVINGclause is evaluated.

5. Performance of SRQL

In this section, we present the results of our implementa-
tion of SRQL, which is still an ongoing effort. The guiding
principle behind the design of SRQL was that the language
must be implementable with minimal extensions to a stan-
dard relational DBMS at both the query optimization and
query evaluation levels.

The results we present here are illustrative of SRQL’s
capabilities, rather than a thorough performance evaluation.
In particular, we do not provide a comparison of our imple-
mentation with other systems such as RISQL, but merely
aim to illustrate that our proposed language extensions in
SRQL may be efficiently implemented. In most cases, the
cost of the query is dominated by the cost of scanning or
sorting the relation. The optimizer uses catalog information
(or other information from its execution plan) to determine
whether the relation is already sorted, whether there is an
index on the sequencing attribute, or whether the relation
needs to be sorted.

Many moving aggregates can be computed incremen-
tally using a small cache of tuples. Consider the following
query with a window of size three:

SELECT age, AVG(salary) OVER 0 TO 2
FROM EMPLOYEE
SEQUENCE BY age

Initially, tuples covering three distinct values in the se-
quencing field are scanned in and added to the cache (which
is essentially a queue). The average of the tuples in the
cache is calculated and output along with the first value of
the sequencing attribute. Next, the window is slid down
by one value: all tuples of the next value are read into the
cache, and all tuples of the first value in the cache are thrown
out.

To demonstrate that moving aggregates can be efficiently
computed using this caching technique, we timed the exe-
cution of a number of queries. Each of the queries are posed
on the relation “Sales that has three relevant fields(batch:
Integer, price: Integer, date: Date)and seven integer fields
that are not referenced in the queries. We consider the fol-
lowing queries:

Scan: SELECT * FROM Sales

Projection: SELECT price FROM Sales

Selection 1:
SELECT * FROM Sales
WHERE price > 100

Sort:
SELECT * FROM Sales
ORDER BY price



Aggregate:
SELECT AVG(price) FROM Sales

Multiple Aggregate:
SELECT AVG(price), SUM(cost)
FROM Sales

Grouping:
SELECT batch, SUM(price)
FROM Sales GROUP BY batch

Moving Aggregate:
SELECT batch,
SUM(price) OVER 0 TO 2
FROM Sales SEQUENCE BY batch

Multiple Moving Aggregates:
SELECT batch,

SUM(price) OVER 0 TO 2,
AVG(cost) OVER 0 TO 2

FROM Sales SEQUENCE BY batch

Composite Sequence:
SELECT batch, date,

AVG(price) OVER 0 TO 2
FROM Sales
GROUP BY batch SEQUENCE BY date

Duplicate Count:
SELECT batch,

COUNT(cost) OVER 0 TO 0
FROM Sales SEQUENCE BY batch

Selection 2:
SELECT batch, SUM(price) OVER 0 TO 2
FROM Sales WHERE price > 100
SEQUENCE BY batch

These queries were run against three tables of sizes 1MB,
10MB and 100MB (40,000 tuples, 400,000 tuples, and
4,000,000 tuples respectively). We allocated memory for
100,000 tuples during the in-memory sorting phase of the
external sort. Selectivity of the predicateprice > 100 is
1/20. All the fields of the relation Sales are uniformly dis-
tributed with 20 duplicate values for each attribute. The
results of our experiments are shown in the following table
(all values are in seconds).

Query 1MB 10MB 100MB
Scan 1.05 8.86 79.58
Projection 0.81 6.65 68.95
Selection 1 0.94 7.31 69.05
Sort 3.70 31.98 318.65
Aggregate 0.93 6.83 71.16
Multiple Aggregate 0.74 6.98 71.60
Grouping 1.65 6.99 72.32
Moving Aggregate 0.84 8.70 82.22
Mult. Moving Aggregate 0.94 9.18 92.87
Composite Sequence 1.25 11.02 110.26
Duplicate Count 0.99 7.41 74.30
Selection 2 0.87 6.84 70.58

From these results, the following key observations may be
made:� The smaller output size of a projection makes it cost

less than a scan. For the same reason, grouping takes
less time than a sort.� The cost of moving aggregates is just the cost of sort-
ing and scanning without the overhead of writing the
entire relation out. If the table is stored in sorted order,
the sorting phase may be omitted, which is the case in
our experiments.� Calculating multiple (moving) aggregates in the same
query does not have a significant effect on the perfor-
mance since they are evaluated during the same pass
over the sequence.� Composite sequences may be evaluated at a slightly
higher cost than grouping. Once the relation is
grouped, the moving aggregate for each group is com-
puted in a single pass over the relation.� Our implementation exhibits scalable performance
across a large range of data set sizes.� As one might expect, pushing down selections is a use-
ful strategy for sequence queries too.

These numbers are not intended to be a comprehensive per-
formance evaluation of SRQL. Rather, they demonstrate
that SRQL is implemented in an efficient and scalable man-
ner, and show that query cost is comparable to the costs
of scanning and sorting for the (broad class of) sequence
queries where we would expect this to be the case. We ex-
pect the behavior of the remaining SRQL operators that we
have not presented results for (in particular, queries involv-
ing joins) to follow the same pattern. For more detailed ex-
perimental results we refer you to the related work on SEQ
presented in [9].



6. Related Work

Object-relational (O-R) systems handle sequences by
considering them as another ADT. Sequences are stored as
objects in the database and methods are provided for per-
forming operations on sequences. While this approach is
attractive for providing extensibility, the treatment of se-
quences in this fashion may not be optimal. In particular,
since each invocation of a method for the sequence ADT is
typically executed independently of other methods, certain
queries requiring interaction of these methods may not be
optimized. This point was experimentally demonstrated in
the SEQ system [9].

SEQ extended the ADT approach of O-R systems by
treating the sequence type as an enhanced ADT (EADT)
with its own query optimizer and evaluator. This allowed
the SEQ optimizer to consider interactions of different
methods (and properties such as associativity and commuta-
tivity of sequence operators) when finding an optimal plan.

SRQL is based on the SEQ system’s query language (SE-
QUIN). However, unlike SEQ, which deals with arbitrary
EADTs, SRQL considers only relations and sequences. The
motivation for the design of SRQL is to identify simple lan-
guage extensions to SQL that can support queries on mix-
tures of sequences and relations, and that can be imple-
mented with minimal extensions to conventional RDBMSs.

Red Brick System’s RISQL (Red Brick Intelligent SQL)
has an approach similar to our own in extending SQL to
handle sequence data. However, based on the limited in-
formation available to us4, SRQL is overall a richer lan-
guage and our approach to optimization is more compre-
hensive. On the other hand, RISQL contains a large num-
ber of statistical functions for business applications, which
are presently lacking in SRQL. In particular, RISQL seems
to focus on extending SQL to handle more easily certain
queries arising in business databases whereas SRQL does
not make any such assumption about the domain of the ap-
plication.

TSQL [10] is an extension of SQL to handle temporal
databases. While our work on sequences is applicable to
temporal sequences, we have not directly addressed issues
of temporality.

7. Conclusion

We have presented an approach to handling sequence
queries by considering a sorted relation as a sequence and
extending SQL with features to exploit the sort order. We
have shown that it is possible to express a large class of
sequence queries very naturally using SRQL. Moreover,

4There is no published description of RISQL, and our knowledge of the
language is based on the white paper on Red Brick’s home pages[7], and
on discussions with Donovan Schneider at Red Brick.

we have demonstrated that it is possible to evaluate these
queries very efficiently with a few simple extensions to the
standard relational query optimizer and evaluation engine.
The performance numbers presented in this paper are based
upon an implementation of SRQL in the DEVise system be-
ing developed at UW-Madison.

References

[1] D. Chatziantoniou and K. A. Ross. Querying multiple fea-
tures of groups in relational databases. InProceedings of the
22nd VLDB Conference, Mumbai, India, 1996.

[2] M. Gruber. SQL Instance Reference. Sybex, Alameda, CA,
1993.

[3] Illustra Information Technolgies, Inc., 1111 Broadway,
Suite 2000, Oakland, CA 94607.Illustra’s User Guide, June
1994.

[4] Y. E. Ioannidis and R. Ramakrishnan. Containment of
conjunctive queries: Beyond relations as sets.TODS,
20(3):288–324, Sept. 1995.

[5] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Don-
jerkovic, S. Lawande, J. Myllymaki, and K. Wenger. DE-
Vise: Integrated querying and visual exploration of large
datasets. InProceedings of the ACM SIGMOD Conference
on Management of Data, May 1997.

[6] M. Negri, G. Pelagatti, and L. Sbattella. Formal semantics
of SQL queries.TODS, 16(3):513–534, Sept. 1991.

[7] Red Brick Systems, Inc.Decision-Makers, Business Data
and RISQL, August 1996. White paper.
http://www.redbrick.com/rbs-g/whitepapers/risqlwp.html.

[8] P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence
query processing. InProceedings of the ACM SIGMOD
Conference on Management of Data, pages 430–441, May
1994.

[9] P. Seshadri, M. Livny, and R. Ramakrishnan. The design and
implementation of a sequence database system. InProceed-
ings of the 22nd VLDB Conference, Mumbai, India, 1996.

[10] Snodgrass et al. TSQL2 language specification.ACM SIG-
MOD Record, 23(1):65–86, March 1994.

A. Motivation Queries Expressed in SRQL

1. Find the leading weekly moving average of the Dow
Jones Industrial Average, given a tableDJIA(date,
close).

SELECT date, AVG(close) OVER 0 TO 6
FROM DJIA
SEQUENCE BY date

2. Find the trailing weekly moving average (i.e., the av-
erage for the past week, for each date) for each stock,
given a tableStocks(date, symbol, close). Order the re-
sulting sequences by stock name, date. (The result can
be thought of as a relation with fieldssymbol, date, av-
erage, sorted on the composite key(symbol, date).)



SELECT symbol, date,
AVG(close) OVER -6 TO 0

FROM Stocks
GROUP BY symbol
SEQUENCE BY date
ORDER BY symbol, date

3. For each day in ’97, find the ten cheapest stocks.

SELECT symbol, date, RANK()
FROM Stocks
GROUP BY date SEQUENCE BY close
HAVING RANK() <= 10

4. For each day in ’97, find the ten most expensive stocks.

SELECT symbol, date, RANK()
FROM Stocks
GROUP BY date SEQUENCE BY close
HAVING RANK() > LAST() - 10

5. Compute the percent change of each stock during
1997, and then find stocks that were in the top 5%.

CREATE VIEW Change AS
SELECT S.symbol,
SHIFTALL(S,LAST).change /
SHIFTALL(S,FIRST).change - 1
as pct_change

FROM (SELECT * FROM Stocks
WHERE year(date) = 1997)

GROUP BY symbol
SEQUENCE BY date AS S

WHERE ORDINAL(S) = FIRST(S);

SELECT symbol, PERCENTILE() as pct
FROM Change
SEQUENCE BY pct_change
HAVING pct < 5;

6. Find the of dates of stocks where the leading weekly
average is greater than 1.2 times the trailing weekly
average, given the Stocks table.

SELECT symbol, date
FROM Stocks
GROUP BY symbol SEQUENCE BY date
HAVING AVG(close) OVER 0 TO 6 >

1.2 * AVG(close) OVER -6 TO 0

7. For each week, find the stock in which a given cus-
tomer (say Joe) had the most invested. In addition to
the Stocks table, a tableTrans(customer, symbol, date,
shares)records the change in shares for a given cus-
tomer, symbol, and date.

CREATE VIEW Shares AS
SELECT customer, symbol, date
CUMULATIVE SUM(shares) AS shares

FROM Trans
GROUP BY customer, symbol
SEQUENCE BY date;

CREATE VIEW Invested AS
SELECT C.customer, C.symbol, C.date
C.shares * S.close as value
FROM Shares SEQUENCE BY date AS C,

Stocks AS S
WHERE C.date PRECEDES= S.date;

SELECT WEEK(date), symbol, value
FROM Invested
WHERE customer = "Joe"
GROUP BY WEEK(date) SEQUENCE BY NULL
HAVING value = MAX(value);


