SRQL: Sorted Relational Query Language

Raghu Ramakrishnan Donko Donjerkovic Arvind Ranganathan Kevin S. Beyer
Muralidhar Krishnaprasad

Department of Computer Sciences
University of Wisconsin-Madison

Abstract optimization that can be achieved. We proposed the con-
cept of anenhanced ADTEADT) to handle such bulk data

A relationis an unordered collection of records. Often, types, and demonstrated the benefits of this approach.
however, there is an underlying order (e.g., a sequence of In this paper, we consider another approach to extending
stock prices), and users want to pose queries that reflect thisrelational DBMSs with support for sequence data, based on
order (e.g., find a weekly moving average). SQL provides notreating sequences as sorted relations, with features in the
support for posing such queries. In this paper, we show howquery language that exploit the sort order. Our extensions
arich class of queries reflecting sort order can be naturally to SQL allow a combination of unordered and (logically)
expressed and efficiently executed with simple extensions terdered relations to be queried naturally, and permit effi-
SQL. cient evaluation with minimal extensions to a traditional re-
lational optimizer and evaluation engine. In comparison to
the ADT approach, a richer class of queries can be naturally
expressed, and efficiently evaluated. In comparison to the
EADT approach, queries involving a mixture of relations
) , and sequences are easier to express, and the full machinery

Ordered (_jata, @sequencesan .be fqund ina vv_|de range of EADTS need not be implemented. (Although, the EADT
of commercial, statistical, and scientific applications. These approach offers more generality in that support for other

applications require DBMS. support to store, mampula’ge, data types with rich query capabilities can be added easily.)
and query sequences efficiently, and such support is miss- We present an extension to SQL to illustrate our ideas;

ing in RD.BMSs since the relational model providets pf this is calledSorted Relational Query Languager SRQL
tuplesas its only data structur(_a. SQL [2], thg most widely (pronounced “circle”). We emphasize how a few simple ex-
used query language for reIatlgnaI systems is '”Cap""_b'e of ensions allow sort order to be effectively exploited at both
answering some common queries posed by commercial an he language and optimization/evaluation levels. We have

scientific applications, .SUCh asmoving aggregates. implemented SRQL as part of the data transformation en-
. One apprqach that is being explored in many commer- gine of the DEVise system [5], which also supports power-
cial systems is support.for sequences as anew ADT'_ Usersful visualization features. (In this paper, we will not discuss
can store a sequence in a field of a tuple, and manlpulateany aspects of DEVise other than SRQL.)
it using associated system-defined methods such as moving The main contributions of this paper are:
averages. In earlier work [8], we argued that the ADT ap- '
proach was inadequate for supporting bulk data types (such o The approach to modelling sequences as sorted rela-
as sequences) over which users might want to ask a rich tjons, rather than as ADTSs, as is commonly being done
class of queries. The approach limits both the ease with in Object-Relational DBMSs or ORDBMSs (e.g., [3]),
which queries can be formulated, and the degree of query oy as EADTS. This leads to easier querying of a com-
bination of relations and sequences, and enables more

1. Introduction

©1998 IEEE. Published in the Proceedings of SSDBM’'98, Ju 1-

1998 in Capri, Italy. Personal use of this material is petedit However, integrated optimization and evaluation.

permission to reprint/republish this material for adwartg or promotional

purposes or for creating new collective works for resaleeatistribution e An algebra over sequences that extends relational al-
to servers or lists, or to reuse any copyrighted componettisfwork in gebra to address sort order.

other works, must be obtained from the IEEE. Contact: Managepy-
rights and Permissions / IEEE Service Center / 445 Hoes L&1@./Box . . .
1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl2-5&- e The extension of SQL to query sorted relations in

3966. SRQL. We extend the earlier results of SEQUIN [8, 9]

significantly, and define SRQL semantics in terms of 7. For each week, find the stock in which a given cus-

our algebra. tomer (say Joe) had the most invested. In addition to
]] . o the Stocks table, a tablans(customer, symbol, date,
¢ An implementation demonstrating that efficient and shares)records the change in shares for a given cus-
scalable query evaluation is feasible for SRQL. tomer, symbol, and date.

The rest of this paper is organized as follows. In Sec- L . .
tion 2, we provide the motivation for our work by consider- These queries illustrate the rich cla_ss of queries one can
ing queries that illustrate the deficiencies of SQL in query- ask over sgquenceTa bOf. colurdseé a V\Qder_varlekty gf aggre—
ing sequences. We describe the extension of relational algegate operations could be included, and various kinds of date

bra to a sequence algebra in Section 3, and we introduce thgrithmetk_: and calendar SUPF’?” could be added (e.g., un-

SRQL language as an extension of SQL in Section 4. per-derstanding leap years, the dlﬁerence between a sequence
formance results of our initial SRQL implementation are ©f wbeek-dafys and a sfequence Ef mtegers.),llbut tgese wil

presented in Section 5. We talk of related work, especially not be our focus. We focus on hosequentia '“‘e"?‘ S to

with respect to ORDBMSs, TSQL [10] and RISQL [7] in novel query patterns, and how to express and optimize such

Section 6. Section 7 concludes the paper. queries in a relational settiljg. .
None of the above queries can be expressed in SQL-92.

L Some (e.g., the first) but not all can be expressed by some
2. Motivation SQL extensions in current products such as Red Brick’s
RISQL. In particular, queries such as the second (which in-
Sequence data is encountered in a wide variety of scien-volves nested sequences) or the last (which involves com-
tific and commercial applications, e.g., experimental traces, bining sorted and unsorted tables) are not supported. In Ap-
process evolution, satellite observations over time, stockpendix A we give SRQL versions of these queries.
market prices, and salary histories. There is also great in- Our approach is also relevant to temporal database query
terest in maintaining a history of a user's queries, or a log languages, but additional work is required to address tem-

of the changes made to a database, and analyzing such tragsoral issues such as calendars and time intervals.
data to identify interesting patterns of usage. Given these

trends, the ability to analyze large sequences is becomin . .
increasingly important and DBMS vendors are beginning tog‘?" Extensionsto Relational Algebra

add such capabilities. The work reported here presents an

attractive alternative to the two main existing approaches, To manipulate sorted relations, we extend relational al-

which are based on ADTs and EADTSs. gebra (plugroup-byandNULLsas in SQL) with four new
The following simple queries illustrate the usefulness of operators: Sequenc®}, Shift (9), ShiftAll (A), and Win-
sequence query support: dowAggregate). Only ¥ is a necessary extension; the

rest can then be defined usifg relational algebra (plus
1. Find the leading weekly moving average of the Dow group-by and NULLS). We define the semantics of SRQL
Jones Industrial Average, given a taldE)IA(date, queries in terms of this “sequence algebra” in Section 4.
close) The algebra represents the logical operators; the implemen-

_ . .) tation is free to define more efficient physical operators (like
2. Find the trailing weekly moving average (i.e., the av- join)

erage for the past week, for each date) for each stock,
given a tablestocks(date, symbol, clos€)rder the re-
sulting sequences by stock name, date. (The result ca
be thought of as a relation with fieldgmbol, date, av-
erage sorted on the composite kégymbol, date)

For consistency with SQL, we consider a relation to be a
multiset of tuplesather than a set of tuples. Like SQL, we
Tuse an operator “Distinct” to remove duplicates, and sup-

port operators that distinguish between groups of tuples in a
relation that are partitioned (but not necessarily fully sorted)
3. For each day in '97, find the ten cheapest stocks. by value of the grouping attributes.

4. Foreachdayin’97, find the ten most expensive stocks.3 1. Sequencesas Sorted Relations

5. Compute the percent change of each stock during) o))
1997, and then find stocks that were in the top 5%. We begin by defining our notion of sequences, which are
essentially just sorted relations. dmple sequends a re-

6. Find the of dates of stocks where the leading weekly lation that is (logically, though not necessarily physically)
average is greater than 1.2 times the trailing weekly sorted on a key that is a concatenation of attributes, which
average, given the Stocks table. we call thesequencing attributes

A composite sequends a relation that is first grouped are necessary, but it is convenient to introduce shift opera-
on a set of attributes, callggiouping attributesand then se- tors that align tuples of a sequence based on the sequence
guenced by a concatenation of sequencing attributes withinorder, and an operator for applying aggregate functions to
each partition defined by identical group values. The value sequences. These additional operators are defined in terms
of the grouping attributes in any tuple of the relation is of the core SRQL algebra, which consists of the extended
called thegroup value likewise, the value of the sequenc- relational operators and thie operator.
ing attributes is called theequence valuén the remainder
of the paper, we use the tersequencedo refer to eithera 3.3 Creating a Sequence
simple or composite sequence.

To be precise, a sequence is a relation plus a set of

grouping attributes and a list of sequencing attributes. Themc the Sequence operatok), which (re)sequences its input

grouping and sequencing attributes (which are allowed totable by changing the grouping and sequencing attributes;

be empty sets) induce an ordering over the tuples. For ead}his has the effect of appropriately changing thiinal as-
tuple, we can therefore talk of the ordinal number of the tu- sociated with each tuple. Lt be a tableg be the group-

ple If? the sequ"ep(ie (W'thg] ';he grotl;]p (;f tfge tudplle).tW|gh|n Iing attributes, and be the sequencing attribute®,, ;(R)
?acth group, all in eg_ers detween te |Irs ??h astor !na partitions R based ory into a set of partitionsp; ... P,,
or the group are assigned to some tuple ot the group ("e"and then eacl®; is sorted based onn. When grouping, all

e e e s NOLL Yaltes n & grouin arbue e considerd e
. P P Integ . '(as in SQL), but if any sequencing attribute is NULL, the
ordinal, but the reader should note that this attribute is not tuple is di ded
actually stored? up'e 1s ciscarded. : G
' We now describe how each tuple in a partitiBris given
an ordinal value; again, we emphasize that this is concep-
tual. Theordinal attribute can be used by selection opera-

. tions, but is not preserved by other relational operators. All
The algebra operates on sequences, of which unsorted re: ; . .
: . . : . tuples with the first sequence value that appearB;iare

lations are just a special case having empty sets of groupin . . .

' . LT .<assigned ordinal value 1, the tuples with the next sequence

and sequencing attributes. Thus, we begin with the basic . . .

;) : . value are assigned the ordinal 2, and so on. The last ordinal

relational operators (defined on multisets, as in the algebra

underlying SQL, e.g., [6, 4], and extend them to work on aSSIQH.ed.tO each partitiah} is Ca”eqLASTif In th'.s way.
) : ; each distinct value of the sequencing attributes is assigned
sequences: seleat), project (r), cross-productx), union

(V), and set-difference<). To extend them, we must define aunique (_)rdmal V"?"“e bgtween 1 adiST;, and every or-
dinal in this range is assigned to some tuple.

how the output s groupe_d and sequenced; we dq this sim- For example, consider a tablR(g,t,z). The result of
ply by defining the grouping set and sequencing lists to be\p R is:
empty for the result of each of the above operators. Observe ot (I1) is:
that theordinal “attribute” of the input relations is not prop-
agated to the result! The mostimportant point to note is that
we allow the select operator to specify selection conditions
over theordinalattribute of its input.

In contrast to relational algebra, we need to treat juif) (
as a primitive operator because we want to be able to refer
to theordinal attributes of the input tables in the join con-
dition, and our version of cross-product does not propagate
these special attributes. We also include left-outer jein),(
which is the same as join, except that it guarantees that all
tuples from its left input appear in the output. Any left tu-
ple that does not match a right tuple is matched with NULL
values for the right tuple. The join operators in SRQL, like .
the other extended relational operators, are defined to have3'4' Shifting a Sequence
empty grouping sets and sequencing lists.

In the rest of this section, we present the operators that3-4-1. ShiftAll Operator
directly address sort order. The essential new operator, Se-,

i No additional ; A basic sequence operation is to align the tuples of the se-
quence ¥), creates a sequence. No additional opera c)rsquence with other tuples at some relative or fixed offset in

Lwe sometimes abbreviate the ordinal attributems the sequence. For example, we can pair each tuple with

Our fundamental extension of relational algebra consists

3.2. Sequence Algebra

NDNDNDNDNDDNDDNDNDWWWWae
O O U WEFREFPROOOO NN~
hbWNHHWNNH%

the next tuple in the sequence, or with the first tuple in the 3.4.2. Shift Operator

sequence.

The ShiftAll operatorA, (R) takes a sequende and a
relative ordinal value and joins each tupleof R with all
the tuples ofR in the same group asthat have an ordinal
value = ordinalf) + i. If no tuple with the appropriate ordi-
nal is found in the group of (i.e., shifting to an ordinal less
than one or greater thdrAST), thent is paired with NULL
values. In other words:

Ai(R) =Ygy rs(R b

R.g=Rs.gA
R.ord+i=Rs.ord

R»)

whereg is the grouping attributes; is the sequencing at-
tributes, R, is a copy ofR, and »< stands for left outer
join.

We extendA so that it can take fixed as well as relative
ordinals: when a fixed ordingf is used (e.g.FIRST, to
denote the first tuple), the expressionl + i used in the
outer join is replaced by. This results in each tuple being
paired with all the tuples at the given fixed ordinal position.

Sometimes we only want to match a tuple with the se-
guence value at some offset in the sequence, rather than
the whole tuple. When this is the case, the Shift opera-
tor, 4, can be used to avoid the “cross-product effectof
caused by duplicate sequence values (e.g., tuple (2,3,c,2)
in the example above)Jd is similar to A, except that it
removes duplicate sequence values before joining. et

be a sequence with grouping attributgsand sequencing
attributess. Let T4,... ,Ty be copies of the sequence
U, s(Distinct(r, ;(R))). We defing) as:

Ofiy iy (R) =
\IJR.g,R.s(- .. ‘IIR.g7R.s(R qu T]) cee E‘Q Tk)
/1 k

where eaclt’; is a predicate of the form:
Rg=T;9gNR.ord +1i; =T;.ord

Like A, we can extend to take both fixed and relative or-

We do not define the syntax here, but SRQL does includedinals.

such constructs.
In general, we are interested in matching a tuple with
tuples at several different ordinals, so we exténtb take a

set of (fixed or relative) ordinals. Let,, ... , Ry be copies
of the sequence R. Now is defined as:
Agiy . ay (BR) =
\I'R.g,R.s(- .. “I'R.g,R.s(R < Rl) N o Rk)
C1 Ck

where eaclt’; is a predicate of the form:
(R.g=Rj.g) N (R.ord +i; = Rj.ord)

Taking R(g,t,z,ord) from the example above,

Ay 21 (R) Is:
g t | x| ord t 4 Tr_1 tio D))
3|4 |al 1 | NULL | NULL 8 b
3/6|b| 2 4 a NULL | NULL
3|/6|c| 2 4 a NULL | NULL
3/8|b| 3 6 b NULL | NULL
3/8|b| 3 6 c NULL | NULL
2|1|a| 1 | NULL | NULL 5 d
2(1|b| 1 | NULL | NULL 5 d
213|c| 2 1 a 9 e
213|c| 2 1 b 9 e
2(3|c| 2 1 a 9 f
2(3|c| 2 1 b 9 f
2(5|d]| 3 3 c NULL | NULL
29| e| 4 5 d NULL | NULL
29| f| 4 5 d NULL | NULL

Using the example abové;_; 5, (R) =

g|t|x|ord| t_4 tio
3/4|a|l 1 | NULL 8
3|/6|b| 2 4 NULL
3|/6|c| 2 4 NULL
3/8|b| 3 6 NULL
2/ 1|a| 1 |NULL 5
2/ 1|b| 1 |NULL 5
213|c| 2 1 9
2|5(d| 3 3 NULL
219|e| 4 5 NULL
219|f| 4 5 NULL

We note the following properties of ShiftAll and Shift.
In what follows, R is a sequence with grouping attributes
and sequencing attributes

1. Shift with multiple offsets can be expressed as the
composition of multiple Shift operators:

Ogi gy (R) = 8:(0;(R)) = 0;(0:(R))

2. Shift with two offsets is not the same as the join (or
outer join) of the two shifted sequences.

0gi gy (R) # 0i(R) S5 6;(R)

ord=ord

3. ShiftAll with multiple offsets is not the same as the
composition of multiple ShiftAll operators:

Ay (R) # Aj(Ai(R))

4. ShiftAll with two offsets is not the same as the join (or g | t|x || MAX(x)
outer join) of the two shifted sequences: 3|4 a c
3/6|b c
Ay (B) # Ai(R) - >4 Aj(R) 316l ¢ c
ord=ord 3 8 b c
. . :) 2|1 a f
5. Shift and ShiftAll can be interchanged: >111p f
Ar(6s(R)) =6,(A1(R)) 213]|c f
2|5|d f
o) 2|19 | e f
6. Shift simply adds attributes to a sequence: 219l f f

Vys(mr(di(R))) = R If we let T' be this result, notice that the SQL query:

)) SELECT g, MAX(x)
7. ShiftAll not only adds attributes to a sequence, butcan Frov R

also duplicate tuples in the sequence: GROUP BY g
Distinct(mg(A;(R))) = Distinct(R) is equal to Distingtr, a4 x (x) (T))-
w is similar to, yet distinct from, thé operator defined
by Chatziantoniou and Ross in [1]. Theoperator was also
introduced to define aggregation windows, although for dif-
ferent motivating problems. We definetbecause it allows
When applying an aggregate function on a sequence, @ more natural treatment of SRQL.
different aggregate value can result from each ordinal value As described in Section 4.3, SRQL currently restricts the
of the sequence. For each ordinal, a section of the sequenceyse ofw to ensure efficient evaluation. We are investigating
called awindow is created, and the aggregate function is ways to efficiently incorporate additional functionality.of
applied to the window. For example, when computing a

trailing weekly moving average of daily stock prices, the
window is the current day plus the previous six days. 4. The SRQL Language

Because each ordinal value of the sequence can have its The SROL | h SOL ¢ N .
own window, we do not collapse groups when aggregating. e SRQL language ennhances QL to support queries
that reflect sort order. Using the operators defined in the

Instead, the aggregate result is simply appended to the tu . y define th ; d
ple. Aggregating in this manner allows us to use a different Previous section, we can now detin€ the syn'ax and seman-

window for each aggregate function that is applied to the fics of SRQL. An !mplementatlon of SRQL is allowed t.o .

sequence. execute the query in any manner, as long as the semantics is
The WindowAggregate operatay, allows a different preserved.

window to be defined for each tupteof a sequencé. It

uses a selection predicaig), which can refer to the value

of theordinal attribute in the current tupleto select a sub-)

set oft’s group in R. The result of the WindowAggregate SRQL allows tables to be ordered in tRROMclause so

operator has the same grouping set and sequencing list al1at We can match tuples of the sequence with other tuples
its input, and contains one tuple per input tuple. For each &t SOme relative or fixed offsetin the sequence. ShEFT

input tuplet, the output contains the tuple: funcFion takes a (sequence) tuplg variab_le and an offset and
provides access to the sequencing attributes at that offset.
< t, Agg(me (01, 9= gnp(t) (R))) > Similarly, theSHIFTALL function provides access to all of
the attributes, not just the sequencing attributes. For exam-
whereAgg is an aggregate operator (e gIN, MAX, SUM, ple:
actgitélljlt'g,sﬁ\g,;nals an attribute of, andy is the grouping SELECT S.t, S.x, SHIFTALL(S,-1).x,
' SH FT(S,1).t

Using our running exampley(R, true, MAX x) is: FROM R GROUP BY g SEQUENCE BY t as S

3.5. Aggregate Oper ations

4.1. Shift Operators

2We note that the WindowAggregate operator can be defined) tisi returns each tuple of matched with all of ther values
other operators, but will not discuss this further. ’

3There is also a value-based version of WindowAggregate evhig) immediately befor(_e the tuple i, and the single vaIu.e
is allowed to reference the sequencing attributes. that occurs immediately after the tuple. If m@r ¢ value is

found, a NULL value is used. I§ does not have duplicate Eart hquake AS E

(g,t) values, then only one value will occurimmediately WHERE V.tine > E. tine

before the tuple. AND (SHIFT(V,-1).tine <= E. tinme
To evaluate queries witBHIFT andSHIFTALL, the off- OR SHI FT(V,-1).time |I'S NULL)

sets from all of the&SHIFT calls for a sequence are gathered AND E. nagni tude > 7

into a set/, and the offsets from th8HIFTALL calls are)

gathered into a set. The definition of the sequence is then The resultis:

replaced with calls té andA on that definition; the above V.name| E.name
guery is equivalent to the expression: vl el
v4 e3
Tra,e_ 1,0 (D13 (0413 (Pg 0 (R))) va ed
v4 e5

SRQL has two special valudsIRSTandLAST, that can
be used withSHIFT and SHIFTALL to get fixed ordinals. Since we expect this type of sequence join to be com-
For exampleSHIFTALL(S,LAST-3).x gets all x values as- mon, we created four predicate operators that express it
sociated the fourth to last ordinal. The only types of offsets more succinctly.A.s SUCCEEDSB.z means join aB tu-

allowed areti, FIRST+i, andLAST—i, wherei is an inte- ple with the A tuple (or tuples ifA has duplicate sequence

ger constant. values) having theninimumA.s value that is greater than
B.xz. A must be sequenced by Similarly, A.s PRE-

4.2. Joining Sequences CEDESB.z says to join a tuple oB with the tuple(s) ofd

that have thenaximunvalue of A.s which is less thaB.z.
To illustrate the power of shifting, consider the following SUCCEEDS= and PRECEDES= allads to be equal to
query: For each volcano eruption where the the most recentB.z. Using these predicates, the above queries become:
earthquake that was greater than 7.0 on the Richter scale

what was the name of the earthquake? SELECT E. nane, V.tine

FROM Vol cano AS V

Volcano Earthquake Eart hquake SEQUENCE BY tine AS E
time | name|| time | name| magnitude WHERE E. time PRECEDES= V. tine
3 Vi 1 el 3 AND E. magni tude > 7
4 v2 2 e2 2)
5 v3 5 e3 8 SELECT E. name, V.tine _
8 va 6 ed 9 FROM Vol cano SEQUENCE BY tinme AS V,
9 V5 7 e5 3 Eart_hquake AS E .
VWHERE V. time SUCCEEDS E.tine
SELECT V. nane, E. nane AND E. nagni tude > 7
FROM Vol cano AS V,
Eart hquake SEQUENCE BY tinme AS E 4.3. Aggregation
VWHERE E.tine <= V.tine
AND (SHIFT(E,1).time > V.tine Moving aggregation operators are used for calculating
OR SHI FT(E, 1).time |'S NULL) an aggregate function (e.@veragé repeatedly on subsec-
AND E. nmagni tude > 7 tions of a sequence (called windows). For example, a 2-day
moving average of expenses over a week will produce a list
The resultis: of values, starting with the average of expenses on Mon and
Vname| Ename Tue, followed by the average of expenses on Tue and Wed,
V3 o3 and so on. The aggregate is calculated over the window as
va e5 the W|n_dow slides down the sequence. N
V5 e5 Moving aggregates can be categorized as position-based

or value-based. The position based operators ignore the
Now consider a similar query: For each earthquake that wasactual distance between the sequencing values. For ex-
greater than 7.0 on the Richter scale, what was the next nonample, a positional window of (-3,0) includes the records

concurrent volcano eruption? corresponding to the three previous sequence values in
the sequence plus the current sequence value. The value-
SELECT V. nane, E.nane based moving aggregates take into account the actual value

FROM Vol cano SEQUENCE BY tine AS V, of the position when calculating the window. Thus a

value window of (-3,0) would include only those records The equivalent algebra expression is:
whose sequencing attribute value falls within the range (cur-
rentvalue-3, currentvalue). W(¥ sy num (Ezample),

Each of the normal aggregate functiondAX, MIN, num >= t.num + 0 A num <= t.num + 1.
SUM, COUNT, AV@Ecan be used as a window aggregate AVG, vol) '
function. The window of aggregation is specified in the '
OVERCclause. The offsets to th@VERclause follow the
same rules as th8HIFT operator, and allow one or both

and results in:

of the ends of the window to be fixed by usifidRST num | AVGvol)
or LAST The corresponding value based windows use the 1 150
OVER VALUE<clause. A moving aggregation with no 2 145
OVERCclause is the same as the corresponding normal ag- 3 20
gregation over the entire sequence (i.e., the default window 5 120
is defined to be all tuples in the same group). 7 85
Here is an example that illustrates the difference between 8 120

the two classes of moving aggregate operators:
Consider the record at position 3 of the input sequence. The

Example position based moving average looks ahead one step in the
num | vol given sequencgt the record at position 5) to calculate the

1 | 100 average of 90 and 120. However, the value based moving
2 | 200 average looks ahead one position in temainof the se-

3 90 guencing attribute to calculate the average of the values cor-
5 | 120 responding to positions 3 and 4 which is just 90, because
7 50 records corresponding to non-existent positions are not con-
8 120 sidered in the aggregation.

Note that we have defined aggregation on a sequence to

The positional moving average is given by the following 5y avs produce the same number of tuples as the original

query. sequence. In other words, sequence aggregates only add
SELECT num AVG(vol) OVER 0 TO 1 attributes to the sequence, and the entire original tuple can
FROM Exanpl e be placed in th&ELECTclause.

SEQUENCE BY num

The equivalent algebra expression is: 4.3.1. Aggregates on Composite Sequences

GROUP BYandSEQUENCE BYnay be combined to cre-

(¥ (), num (Ezample), ate a composite sequence which may be thought of as a

ord >= t.ord + 0 A ord <= t.ord +1, set of sequences. Consider the following example relation
AVG@G, vol) Sales(product, batch, volumahd suppose we need to find
. the 2-batch moving average of volumes sold for each prod-
and results in: uct. This may be expressed in SRQL as:
num | AVGvol)
1 150 SELECT product, batch,
2 145 AV volunme) OVER 0 TO 1
3 105 FROM Sal es
5 85 GROUP BY pr oduct
7 85 SEQUENCE BY bat ch
8 120

.) o The equivalent algebra expression is:
Similarly, the value based moving average is given by the

fOIIOWing query: W(\Pproduct,batch(sales)7

SELECT num (ord >= t.ord + 0) A (ord <= t.ord + 1),
AVE vol) OVER VALUES 0 TO 1 AVG, volume)
FROM Exanpl e

SEQUENCE BY num and results in:

product | batch| volume || AVGvolume) within a windowbefore the aggregation is done. When us-
bolts 1 10 15 ing position based aggregates, this is different from spec-
bolts 2 20 55 ifying a selection condition in th&VHEREclause: If the
bolts 5 90 90 selection condition is specified in tvéHEREclause, then
nails 43 50 75 certain records may be eliminated and hence the window
nails 44 100 80 for the neighboring records would change. When we need
nails 45 60 60 the window to cover the original set of records and the se-
tacks 24 100 90 lection to be applied within this window th&ITH clause is
tacks 25 80 70 required.
tacks 26 60 50 The following example illustrates the difference between
tacks 27 40 40 WITH andWHERE Consider the sequen&ales(day, vol-

ume, profitsland suppose we need to find the 2-day mov-
ing average of the profits made such that only the sales of
volume greater than 100 are significant (the rest should be
omitted from the aggregation):

Clearly the bolts have done well with each successive batch
while tacks have lost their ground, and the picture with nails
is not so clear!

SELECT day, AVE profits) OVER 0 TO 1

FROM Sal es

Another variant of the aggregate operations is cumulative SEQUENCE BY day

functions. These calculate “running” sums, averages etc.W TH vol une > 100

over the entire sequence. Cumulative functions are speci-) o

fied using theCUMULATIVEkeyword ahead of the appro- 1 h€ €quivalent algebra expression is:

priate aggregation function. Wh&UMULATIVEIs speci-

. : . o wW(¥ 3, day(Sales),

fied with GROUP BYthe function only accumulates within '

each partition. (ord >= t.ord + 0) A (ord <= t.ord + 1)
Cumulative aggregates introduce a number of interesting A (volume > 100), AVG, profits)

syntactic short-cuts:

4.3.2. Variants of Aggregation

day | volume | profits || AVEprofits)
1. CUMULATIVE s an just an abbreviation fdDVER Monl 100 10 20
FIRST TOO, and traditional (non-moving) aggregates Tuel 200 20 20
are equivalent t©VER FIRST TO LAST Wed1 90 30 40
Fril 110 40 40
2. We definecRANK()asCUMULATIVE COUNT(*) Mon2 50 10 20
Tue2 120 20 20

3. We definelPERCENTILE()asRANK()/ COUNT(*) *
100. Suppose we replace th&1TH clause in the above query

] with a similarWHEREclause:
4. We definelQUARTILE()as[PERCENTILE()25].

SELECT day, AVE profits) OVER 0 TO 1
FROM Sal es

WHERE vol umre > 100

Since a sequence is just a sorted relation, duplicates stillSEQUENCE BY day

need to be handled. Each position in the sequence is treated his ch he wind ¢ . dh h
as a set of one or more records. All operations described This changes the window of aggregation and hence the

above hold in the presence of duplicates. Hence a Windowre_sun’ shown below, correspon(_js to the query: qu all days
of (0,0) is well defined for all moving aggregates; it is es- with volume greater than 100, find the 2-day moving aver-

sentially a window on the set of values for each position. age of the profits made.

4.3.3. A Noteon Duplicates

For example, COUNT(*) OVERO TO 0" gives a count of day | volume | profits | AVG(profits)
the number of duplicates for each position in the sequence. Tuell 200 20 30
Fril 110 40 30
4.3.4. WITH, WHERE, and HAVING Tue2| 120 20 20
We introduce a new clause, tdé TH clause, and extend the Next, we consider thelAVING clause. Just as in SQL,

HAVING clause to deal with sequences. Th&TH clause predicates in th&lAVING clause are evaluated after aggre-
specifies the selection condition to be applied to each recordgation is complete, and are applied to the table computed

using the grouping, sequencing and aggregation steps. Ob. Performance of SRQL
course, unlike SQL, there may be several tuples per group
if the SEQUENCE BYtlause is used. Let us replace the

WITH clause from above with a simil&tAVING clause:

SELECT day,

AVE profits) OVER 0 TO 1

FROM Sal es
SEQUENCE BY day
HAVI NG vol une > 100

Now the window of aggregation is the same as in the
first query, but all tuples are included in the moving aver-

age, and those tuples that have voluné00 are removed

after aggregation. This corresponds to the query: Find the

In this section, we present the results of our implementa-
tion of SRQL, which is still an ongoing effort. The guiding
principle behind the design of SRQL was that the language
must be implementable with minimal extensions to a stan-
dard relational DBMS at both the query optimization and
guery evaluation levels.

The results we present here are illustrative of SRQL's
capabilities, rather than a thorough performance evaluation.
In particular, we do not provide a comparison of our imple-
mentation with other systems such as RISQL, but merely
aim to illustrate that our proposed language extensions in

2-day moving average of the profits made and report thoseSRQL may be efficiently implemented. In most cases, the
that had volume> 100. Note that just like in SQL, aggre-

gate functions, whether moving or not, can be placed in the

HAVINGclause but not theVHEREclause.

4.4. Summary of Evaluation

In general, a SRQL query block looks like this:

SELECT <expr list>

FROM <t abl e/ sequence |ist>
WHERE <pr edi cat e>

GROUP BY <expr list>
SEQUENCE BY <expr list>

W TH <pr edi cat e>

HAVI NG <pr edi cat e>

ORDER BY <expr |ist>

and the order of evaluation is:

1.
2.

SHIFT andSHIFTALLare moved to theROMclause.

All expressions in th&ROM clause are evaluated, in-
cluding sequencing and shifting.

cost of the query is dominated by the cost of scanning or
sorting the relation. The optimizer uses catalog information
(or other information from its execution plan) to determine

day | volume | profits | AVGEprofits) whether the relation is already sorted, whether there is an
Tuel| 200 20 25 index on the sequencing attribute, or whether the relation
Fril 110 40 25 needs to be sorted.

Tue2| 120 20 20 Many moving aggregates can be computed incremen-

tally using a small cache of tuples. Consider the following
guery with a window of size three:

SELECT age, AV(E salary) OVER 0 TO 2
FROM EMPLOYEE
SEQUENCE BY age

Initially, tuples covering three distinct values in the se-
guencing field are scanned in and added to the cache (which
is essentially a queue). The average of the tuples in the
cache is calculated and output along with the first value of
the sequencing attribute. Next, the window is slid down
by one value: all tuples of the next value are read into the
cache, and all tuples of the first value in the cache are thrown
out.

To demonstrate that moving aggregates can be efficiently
computed using this caching technique, we timed the exe-
cution of a number of queries. Each of the queries are posed
on the relation “Sales that has three relevant fi¢histch:

3. If there is NoOSEQUENCE B¥Xlause, then proceed as : . :

: . . . Integer, price: Integer, date: Datgynd seven integer fields

in SQL; otherwise continue. . . -

that are not referenced in the queries. We consider the fol-

4. Take the cross-product of all the tables in #ROM lowing queries:

clause.
5. TheWHEREclause is evaluated. + SELECT * F Sal es
6. TheGROUP BYandSEQUENCE BYlauses are used Projection: SELECT price FROM Sal es

to define a sequence.

. For each tuple (and each aggregate), a window is

formed using th&&ROUP BYSEQUENCE BYOVER
OVER VALUESandWITH clauses. Then the window
is aggregated.

TheHAVING clause is evaluated.

Selection 1.
SELECT * FROM Sal es
VWHERE price > 100

Sort:
SELECT * FROM Sal es
ORDER BY price

Aggregate: Query 1MB | 10MB | 100MB
SELECT AVQE price) FROM Sal es Scan 1.05| 8.86| 79.58
Projection 0.81 6.65| 68.95

Selection 1 094| 7.31| 69.05

Multiple Aggregate: Sort 3.70| 31.98| 318.65
SELECT AV price), SUMcost) Aggregate 0.93| 6.83| 71.16
FROM Sal es Multiple Aggregate 0.74| 6.98| 71.60
Grouping 1.65 6.99| 72.32

. Moving Aggregate 0.84| 8.70| 82.22
Grouping: _ Mult. Moving Aggregate| 0.94| 9.18| 92.87
SELECT batch, SUMpri ce) Composite Sequence | 1.25| 11.02| 110.26
FROM Sal es GROUP BY bat ch Duplicate Count 0.99| 7.41| 74.30
Selection 2 0.87 6.84 70.58

Moving Aggregate:
SELECT bat ch,
SUM price) OVER 0 TO 2
FROM Sal es SEQUENCE BY batch

From these results, the following key observations may be
made:

e The smaller output size of a projection makes it cost
less than a scan. For the same reason, grouping takes

Multiple Moving Aggregates: less time than a sort.

SELECT bat ch,

SUM price) OVER 0 TO 2,
AV@ cost) OVER 0 TO 2

e The cost of moving aggregates is just the cost of sort-

ing and scanning without the overhead of writing the
entire relation out. If the table is stored in sorted order,

FROM Sal SEQUENCE BY bat ch i . L .
ales U are the sorting phase may be omitted, which is the case in

our experiments.

Composite Sequence:))))
SELECT batch, date, e Calculating multiple (moving) aggregates in the same
AVG(price) OVER 0 TO 2 query does not have a significant effect on the perfor-
FROM Sal es mance since they are evaluated during the same pass

GROUP BY batch SEQUENCE BY date over the sequence.

e Composite sequences may be evaluated at a slightly

Duplicate Count: higher cost than grouping. Once the relation is
SELECT bat ch, grouped, the moving aggregate for each group is com-

COUNT(cost) OVER O TO 0 puted in a single pass over the relation.

FROM Sal es SEQUENCE BY bat ch)) o
e Our implementation exhibits scalable performance

across a large range of data set sizes.
Selection 2:
SELECT batch, SUMprice) OVER 0 TO 2 e As one might expect, pushing down selections is a use-
FROM Sal es WHERE price > 100 ful strategy for sequence queries too.
SEQUENCE BY bat ch
These numbers are not intended to be a comprehensive per-
formance evaluation of SRQL. Rather, they demonstrate
These queries were run against three tables of sizes 1MBthat SRQL is implemented in an efficient and scalable man-
10MB and 100MB (40,000 tuples, 400,000 tuples, and ner, and show that query cost is comparable to the costs
4,000,000 tuples respectively). We allocated memory for of scanning and sorting for the (broad class of) sequence
100,000 tuples during the in-memory sorting phase of the queries where we would expect this to be the case. We ex-
external sort. Selectivity of the predicateice > 100 is pect the behavior of the remaining SRQL operators that we
1/20. All the fields of the relation Sales are uniformly dis- have not presented results for (in particular, queries involv-
tributed with 20 duplicate values for each attribute. The ing joins) to follow the same pattern. For more detailed ex-
results of our experiments are shown in the following table perimental results we refer you to the related work on SEQ
(all values are in seconds). presented in [9].

6. Related Work we have demonstrated that it is possible to evaluate these
queries very efficiently with a few simple extensions to the

Object-relational (O-R) systems handle sequences bystandard relational query optimizer and evaluation engine.

considering them as another ADT. Sequences are stored aghe performance numbers presented in this paper are based

objects in the database and methods are provided for perupon an implementation of SRQL in the DEVise system be-

forming operations on sequences. While this approach ising developed at UW-Madison.

attractive for providing extensibility, the treatment of se-

guences in this fashion may not be optimal. In particular, Refer ences

since each invocation of a method for the sequence ADT is

typically executed independently of other methods, certain [1] p. Chatziantoniou and K. A. Ross. Querying multiple fea-

queries requiring interaction of these methods may not be tures of groups in relational databasesPhoceedings of the
optimized. This point was experimentally demonstrated in 22nd VLDB ConferengéMumbai, India, 1996.
the SEQ system [9]. [2] M. Gruber. SQL Instance Referenc8&ybex, Alameda, CA,

SEQ extended the ADT approach of O-R systems by 1993. _ _
treating the sequence type as an enhanced ADT (EADT) [3] IIIu_stra Information Technolgies, Inf:., 1111 _Broadway
with its own query optimizer and evaluator. This allowed fggj 2000, Oakland, CA 9460Hlustra’s User Guide June
the SEQ optimizer to consider interactions of different , '

h S] Y. E. loannidis and R. Ramakrishnan. Containment of
methods (and properties such as associativity and commuta- conjunctive queries: Beyond relations as setIODS

tivity of sequence operators) when finding an optimal plan. 20(3):288-324, Sept. 1995.

SRQL is based on the SEQ system’s query language (SE- [5] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Don-
QUIN). However, unlike SEQ, which deals with arbitrary jerkovic, S. Lawande, J. Myllymaki, and K. Wenger. DE-
EADTs, SRQL considers only relations and sequences. The Vise: Integrated querying and visual exploration of large
motivation for the design of SRQL is to identify simple lan- datasets. IfProceedings of the ACM SIGMOD Conference
guage extensions to SQL that can support queries on mix- __ On Management of DajMay 1997.

M. Negri, G. Pelagatti, and L. Shattella. Formal semasnti
of SQL queriesTODS 16(3):513-534, Sept. 1991.
Red Brick Systems, IncDecision-Makers, Business Data

tures of sequences and relations, and that can be imple- [6]
mented with minimal extensions to conventional RDBMSs. 71

Red Brick System’s RISQL (Red Brick Intelligent SQL) and RISQL August 1996. White paper.
has an approach similar to our own in extending SQL to http://www.redbrick.com/rbs-g/whitepapers/risgp.html.
handle sequence data. However, based on the limited in- [8] P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence
formation available to ué, SRQL is overall a richer lan- guery processing. IfProceedings of the ACM SIGMOD
guage and our approach to optimization is more compre- Conference on Management of Dafmges 430-441, May
hensive. On the other hand, RISQL contains a large num- 1994.

[9] P.Seshadri, M. Livny, and R. Ramakrishnan. The desigh an

ber of statistical functions for business applications, which ' :
implementation of a sequence database systefrdoeed-

are presently lacking in SRQL. In particular, RISQL seems ings of the 22nd VLDB Conferenddumbai. India, 1996,

to focus on extending SQL to handle more easily certain [10] Snodgrass et al. TSQL2 language specificatib@M SIG-
queries arising in business databases whereas SRQL does ~ \op Record 23(1):65-86, March 1994.

not make any such assumption about the domain of the ap-
plication. — . .
TSQL [10] is an extension of SQL to handle temporal A. Motivation Queries Expressed in SRQL
databases. While our work on sequences is applicable to , , ,
temporal sequences, we have not directly addressed issues - Find the leading weekly moving average of the Dow

of temporality. Jones Industrial Average, given a taleIA(date,
close)

7. Conclusion SELECT date, AVGQ close) OVER O TO 6
FROM DJI A

We have presented an approach to handling sequence SEQUENCE BY dat e
gueries by considering a sorted relation as a sequence and
extending SQL with features to exploit the sort order. We 2. Find the trailing weekly moving average (i.e., the av-
have shown that it is possible to express a large class of erage for the past week, for each date) for each stock,
sequence queries very naturally using SRQL. Moreover, given a tableStocks(date, symbol, clos®rder the re-

4There is no published description of RISQL, and our knowtedbthe sultlng Sequences by stock name, date. (The result can

language is based on the white paper on Red Brick’s home fjagesd be thought of as a relation Wi.th fieldgmbol, date, av-
on discussions with Donovan Schneider at Red Brick. erage sorted on the composite késymbol, date)

SELECT synbol , date,
AV@ cl ose) OVER -6 TO 0O
FROM St ocks
GROUP BY synbol
SEQUENCE BY dat e
ORDER BY synbol, date

. For each day in '97, find the ten cheapest stocks.

SELECT synbol , date,
FROM St ocks

GROUP BY dat e SEQUENCE BY cl ose
HAVI NG RANK() <= 10

RANK()

. Foreach dayin’97, find the ten most expensive stocks.

SELECT synbol , date,
FROM St ocks

GROUP BY dat e SEQUENCE BY cl ose
HAVI NG RANK() > LAST() - 10

RANK()

. Compute the percent change of each stock during
1997, and then find stocks that were in the top 5%.

CREATE VI EW Change AS
SELECT S. synbol ,
SHI FTALL(S, LAST) . change /
SHI FTALL(S, FI RST) . change - 1
as pct_change
FROM (SELECT * FROM St ocks
WHERE year (date) = 1997)
GROUP BY synbol
SEQUENCE BY date AS S
VWHERE ORDI NAL(S) = FIRST(S);

SELECT synbol ,
FROM Change
SEQUENCE BY pct _change
HAVI NG pct < 5;

PERCENTI LE() as pct

. Find the of dates of stocks where the leading weekly
average is greater than 1.2 times the trailing weekly
average, given the Stocks table.

SELECT symbol , date

FROM St ocks

GROUP BY synbol SEQUENCE BY dat e

HAVI NG AVGE cl ose) OVER 0 TO 6 >
1.2 * AV close) OVER -6 TO O

. For each week, find the stock in which a given cus-
tomer (say Joe) had the most invested. In addition to
the Stocks table, a tableans(customer, symbol, date,
shares)records the change in shares for a given cus-
tomer, symbol, and date.

CREATE VI EW Shares AS

SELECT custoner, synbol, date
CUMULATI VE SUM shares) AS shares

FROM Tr ans

GROUP BY custoner, synbol

SEQUENCE BY dat €;

CREATE VI EW I nvested AS

SELECT C. custoner, C synbol, C. date

C.shares * S.close as val ue

FROM Shar es SEQUENCE BY date AS C,
Stocks AS S

VWHERE C. dat e PRECEDES= S. dat €;

SELECT WEEK(date), synbol, value
FROM | nvest ed

VWHERE cust oner = "Joe"

GROUP BY WEEK(dat e) SEQUENCE BY NULL
HAVI NG val ue = MAX(val ue);

