
DEVise: Integrated Querying andVisual Exploration of Large DatasetsM. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic,S. Lawande, J. Myllymaki and K. WengerDepartment of Computer Sciences, University of Wisconsin{Madisonfmiron,raghu,beyer,guangshu,donjerko,ssl,jussi,wengerg@cs.wisc.eduAbstractDEVise is a data exploration system that allows users to eas-ily develop, browse, and share visual presentations of largetabular datasets (possibly containing or referencing multi-media objects) from several sources. The DEVise frameworkis being implemented in a tool that has been already success-fully applied to a variety of real applications by a numberof user groups.Our emphasis is on developing an intuitive yet power-ful set of querying and visualization primitives that can beeasily combined to develop a rich set of visual presentationsthat integrate data from a wide range of application do-mains. While DEVise is a powerful visualization tool, itsgreatest strengths are the ability to interactively explore avisual presentation of the data at any level of detail (includ-ing retrieving individual data records), and the ability toseamlessly query and combine data from a variety of localand remote sources. In this paper, we present the DEViseframework, describe the current tool, and report on our ex-perience in applying it to several real applications.1 IntroductionIt is being widely recognized that the traditional boundariesof database systems need to be extended to support applica-tions involving many large data collections, whether or notall these collections are stored inside a DBMS. In this paperwe describe an e�ort to apply the query optimization andevaluation techniques found in a DBMS to work on datasetsoutside a DBMS, and to combine querying features withpowerful visualization capabilities. The main goals of theDEVise project include:� Visual Presentation Capabilities: Users can ren-der their data in a exible, easy-to-use manner. Ratherthan provide just a collection of presentation idioms(e.g., piecharts, scatterplots, etc.), we have developeda simple yet powerful mapping technique that allowsa remarkable variety of visual presentations to be de-veloped easily through a point-and-click interface (oreasy-to-write `plug-ins', if necessary). A distinguishing

feature is that a user can interactively drill down intoa visual presentation, all the way down to retrievingan individual data record.� Ability to Handle Large, Distributed Datasets:The tool is not limited by the amount of available mainmemory, and can access remote data over a network aswell as local data stored on disk or tape. Distributeddatabase query optimization is carried out to speedevaluation of queries over the Web; we do not dis-cuss this aspect of DEVise here. The ability to dealwith datasets larger than available memory is centralto DEVise's support for `drilling-down' into the data.� Collaborative Data Analysis: DEVise enables sev-eral users to share visual presentations of the data,and to dynamically explore these presentations, inde-pendently or concurrently (so that some of the changesmade by one user are seen immediately by several otherusers browsing the same data).By integrating querying with data visualization features,DEVise makes it possible to optimize data-level accessesthat arise due to visual operations more e�ectively; the se-mantics of how di�erent parts of the visual presentation are`linked' o�ers many hints for what to index, materialize,cache or re-compute. Further, memory can be managed bya single bu�er manager that supports both visualization andquery evaluation.The DEVise exploration framework is extremely power-ful, but to appreciate this power fully, one must work withthe system or at least look at several applications in somedetail. This is especially true with respect to understandingjust how exible the DEVise visual model (Sections 2, 3 and4) really is.The real power of DEVise's visualization capabilities liesin the support for interactively exploring the data visuallyat any level of detail, including retrieving individual datarecords. This results in complex queries being generatedthrough simple visual operations, and e�ective optimizationof these `visual queries' is crucial for interactive use.In this paper, we concentrate on describing the visualmodel and visual operations rigorously in set-oriented terms,to provide a foundation for database-style processing of vi-sual queries. The seamless integration of visual queries anddatabase-style queries in DEVise is one of its unique andmost useful features.



1.1 Motivating ExamplesDEVise is a novel tool in many ways, although many exist-ing tools support some of its features. We now present someexample scenarios to illustrate its capabilities, and to helpthe reader to understand how it goes beyond other relatedtools. (For details on these applications, including exam-ple full-color DEVise screens, see the DEVise home page athttp://www.cs.wisc.edu/~devise)Financial Data Exploration: In collaboration withthe Applied Securities Analysis program in the UW Busi-ness School, we've developed an environment for integratedvisual exploration of �nancial datasets from several vendors,including Compustat, ISSM and CRSP. This applicationillustrates DEVise's ability to access data from a varietyof formats, without requiring users to store all data in acommon repository, and its use in integrating informationfrom many sources|users can now look for correlations andtrends using the combined information from a variety of ven-dors. It also highlights DEVise's ability to support complex,large datasets: for example, the Compustat data containsrecords with over 350 �elds, and a hierarchical view of thisschema, supported by DEVise, makes it much easier to workwith. DEVise also makes it easy to `slice' such multidimen-sional data along any two axes and to correlate the rangesseen in di�erent slices; thus, it allows a user to navigatethrough the multidimensional space to identify interestingregions. The total size of the Compustat dataset is over1GB.In contrast to the `wide' Compustat data, ISSM providestrade and quote histories for over 5000 stocks; while eachhistory contains just a few �elds and relatively few records,the total amount of data is enormous. (The IBM historyfor 1992, for example, contains about a million records andis over 20MB.) DEVise makes it possible to browse severalhistories simultaneously, at various levels of detail, and tomove between them easily. Thus, DEVise deals with notonly large volumes, but also large data complexity.R-Tree Validation: The well-known R-tree multidi-mensional index organizes a collection of points and boxes(which `bound' spatial objects). Each leaf node (page) con-tains several points or boxes, and each index node containsseveral boxes (each of which `bounds' all the contents of achild page). While developing R-tree algorithms, it is im-portant to understand how di�erent datasets are `packed'into R-trees, and this can be accomplished naturally by vi-sualizing the tree. An R-tree can be visualized in DEVise asfollows. First, note that each box is a data record with �elds(xlo; ylo; xhi; yhi); this information can be used to `map' eachdata record to a rectangle on-screen. By mapping all recordsin a node, we can `see' the node as a collection of boxes, andby mapping all the nodes in a given level, we `see' a hori-zontal slice of the R-tree. Given such a visual presentation,the visual operations supported in DEVise allow a user toexplore the tree, level by level, to scan around in a level andon a page, to zoom into a speci�c region of the tree, andeven retrieve individual data records (`boxes' in leaf nodes,in this example).The `visual presentation' of an R-tree can be applied toany R-tree dataset, since there is a clean separation betweenthe de�nition of the presentation and the data that it oper-ates on; this is analogous to the separation between a queryand the input relations in a DBMS. De�ning the R-tree vi-sual presentation in DEVise is straightforward, and can bedone using a point-and-click GUI.This example illustrates the exibility of the presenta-tion mechanism. We were able to develop a sophisticated

presentation for a specialized data structure with ease, usingthe DEVise point-and-click interface for de�ning new visu-alizations. It also highlights DEVise's ability to deal withlarge datasets, and demonstrates the value of visual `mining'for unusual patterns: examining some real datasets (Tigerdata for Orange county, a few hundred thousand records),we noticed some unusual arrangements of boxes near pageboundaries, and by retrieving the relevant records (simplyby clicking on them!) we were able to �nd some subtle bugsin our R-tree bulk loading algorithms that would otherwisehave been extremely di�cult to spot.Family Medicine and NCDC Weather Data: DE-Vise is being used by the UW Family Medicine departmentto provide physicians access to data that is collected andmaintained independently by �ve clinics in the Madisonarea. In addition to the clinic data, which is presented vi-sually in such a manner as to allow physicians to look forcertain trends and correlations, we provide uniform accessto weather data for the Madison area from the NationalClimate Data Center (NCDC) data repository. For exam-ple, when a physician looks at a series of patient visits inJanuary 96, she may want to look at the temperature inMadison over the same period to see if there is a correla-tion. (The physicians indicated that they wanted to lookfor such correlations!)A common usage pattern is that a physician zooms andscrolls on the visit data, which is local, and the `linked'temperature view must then be automatically updated. DE-Vise does this intelligently, by translating visual operationsinto queries on the underlying data, and utilizes form-basedquery capabilities at the NCDC archive| one can specify aregion and period of interest for a particular time-series| toensure that only the desired data is fetched. In this example,visual operations generate simple selections on the remotedata; more generally, joins of remote or remote and localdatasets may be involved, and DEVise generates a suitabledistributed query evaluation plan and evaluates the queryaccordingly.Cell Image-set Exploration: In this application, weare working with biologists who are dealing with large setsof images of cells, where each cell image has an associatedrecord with over 30 �elds, containing information aboutwhen and where the image was recorded and details aboutthe content of the image. The biologists working with theseimages are looking for correlations in the records that canbe used to predict pathological features in the associatedimages. Using DEVise, we have developed a visual pre-sentation that allows a biologist to extract records satisfy-ing certain selection criteria, identify subsets of the selectedrecords that satisfy further conditions, and then retrieve theassociated images at any desired level of resolution. Thedevelopment of the DEVise application was done using avisual interface, using the notions of views, mappings, linksetc. supported by DEVise, and the biologists' exploration isalso done entirely through a visual interface supporting DE-Vise's notion of visual queries. Executing user operationsinvolves a combination of evaluating SQL-style queries andthen updating the visual presentation of the results, but thebiologists can think (and express desired operations) entirelyin terms of what they see on-screen.If a biologist �nds an interesting correlation in the data,he can send an active report to a colleague. The active re-port consists essentially of the de�nition of the visual pre-sentation, and, at the sender's discretion, parts of the actualdata being visualized. The recipient can open the report us-ing her own copy of the data, see the identical screen as the



sender, and then proceed to interactively explore the datafurther. This is extremely useful for collaborative analysis ofthe biologists' experimental data. Indeed, the DEVise archi-tecture makes it possible for two or more biologists to con-currently view the same report, so that changes made by oneare instantaneously visible to others, although the tool doesnot support this capability yet. Another feature enabled bythe architecture, and which we are currently working on, iscalled hyperdata. Biologists may �nd several trends, each ofwhich can be shared with others through an active report:in addition, they can create a summary presentation (say)that draws upon the underlying data and also `points' to thevarious active reports of interest. This enables a reader ofthe summary presentation (which is itself just another ac-tive report) to interactively bring up any of the referencedactive reports simply by clicking on the relevant portion ofthe summary report; the referenced report can then be in-teractively explored. Intuitively, an active report is like aphotograph that can `come alive'|users can scroll, zoometc. on it|and hyperdata enables references to other re-ports, not just data values.Soil Sciences Classi�cation: This application illus-trates an important point: users often want to generatevarious kinds of summaries of their data, explore the sum-mary information, and then be able to interactively look atthe `corresponding' portion of the underlying data. Thismakes it necessary for the visualization component of DE-Vise to understand the semantics linking the summary andthe summarized data. A research group in Soil Sciences isworking on automatic classi�cation of forestry-canopy im-ages, which are being generated in large numbers as partof the BOREAS �eld experiments. They want to processimages and classify the pixels into categories like `trees' and`sky', and even `branches', `soil', `sunlit leaves', etc. We'vecombined a tool called BIRCH [15], which was developedfor �nding clusters of points in multidimensional datasets,with DEVise to create an analysis environment that they arecurrently using on a daily basis for classifying images. Byapplying BIRCH, they obtain a collection of clusters, eachof which corresponds to a category (e.g., `trees'). This col-lection of clusters can be thought of as the summary of thedata for that image. A scientist can iteratively see the clus-ters, re�ne the parameters of BIRCH, and re-cluster, untilthe clustering is satisfactory. They can then take the datapoints that are summarized by a cluster, say `trees', andidentify clusters within this set of points (e.g., `sunlit leaves'and `branches').The crucial point here is how the relationship betweenclusters (such as `trees') and the points summarized by themis preserved, and communicated by BIRCH to DEVise. Suchintegrated interactive exploration of data and summary `meta-data' is an extremely powerful paradigm, and one of thechallenges facing us is to develop general mechanisms thatallow any analysis tool (e.g., a tool that �nds associationrules, or even an SQL query that �nds averages by somegroup like department!) to communicate the semantics link-ing the summary information and the summarized data toDEVise.1.2 Related WorkDEVise is related to tools that support data visualization,data integration, distributed query processing, Web browsers,and collaborative computing. Clearly, a comprehensive dis-cussion of all the related work is beyond the scope of thispaper, but we now briey discuss the relationship of DEVise

to well-known tools in each of these categories.An introduction to existing visualization software can befound in the surveys by Kornbluh[7] and Braham[2]. Fromthe standpoint of data visualization, DEVise is a general-purpose tool for visual exploration of tabular datasets, un-like tools like Vis5D [5], LinkWinds [6], Traceview [10], Para-Graph [4], etc., that are specialized for a particular ap-plication domain. Other visualization tools (e.g., Vis5D,LinkWinds, AVS [14], Khoros [13]) also assume that thedatasets are su�ciently small for them to run entirely inmain memory; such an assumption limits the ability of thetool to `go back' to the source data record from its visualpresentation. Recently, the Tioga project at Berkeley andthe DataSpace project at Bell Labs [11] have also addressedthe problem of visualizing large datasets [12, 1], which is in-dicative of the growing importance being attached to this is-sue. Their approach, however, di�ers from ours in importantways. DataSpace is not as exible in terms of the kinds of vi-sualizations that can be developed, although it supports 3Dpresentations much better than DEVise (at least currently)does. However, DataSpace assumes that very large datasetsare stored in an external database, whereas all its data struc-tures are assumed to �t in memory: thus, it cannot handlevisualizations in which the data to be rendered on-screenexceeds these memory bounds. We have taken a declarativeapproach to de�ning our visualization primitives, whereasTioga supports a more imperative, programming-orientedstyle of de�ning visual presentations. DEVise is also morecomprehensive in its support for distributed query optimiza-tion over the Web, its novel bu�er management features, andits collaborative computing features.While DEVise has aspects in common with data integra-tion systems like IBM's DataJoiner, we will not cover theseaspects in the present paper; we therefore omit discussionof related work in this area as well.With respect to collaboration tools, such as groupwarelike Lotus Notes or workow products, DEVise is largelycomplementary. There is no support in DEVise for many ofthe functions provided by such tools. However, DEVise en-ables several users to share visual presentations of the data,export such presentations over the Web, and to dynamicallyexplore these presentations, independently or concurrently(so that some of the changes made by one user are seen im-mediately by several other users browsing the same data).Thus, DEVise adds an important capability for collaborativeanalysis of large datasets.In two previous papers ([3, 8]), we reported on earlyversions of DEVise, with a focus on how its visualizationfeatures could be used to develop a variety of applications.While the basic mapping technique has remained unchangedin the current version, the visualization capabilities of DE-Vise have evolved considerably since, and we have addeddata transformation/querying capabilites and extended theframework to support collaborative computing. In this pa-per, for the �rst time, we give rigorous set-oriented seman-tics for all visual operations, thereby establishing a �rmconnection between visualization in DEVise and relationalqueries, and laying the foundation for database-style opti-mization of visual queries.1.3 Paper OutlineThe rest of this paper is organized as follows. We describevisual presentations in DEVise in Section 2, queries over vi-sual presentations in Section 3, and illustrate the power ofvisual presentations in Section 4 by showing how sophisti-



cated SQL queries are generated through intuitive user-leveloperations on visual presentations. We briey discuss datatransformation/query capabilities and the challenges posedby the DEVise combination of visualization and querying,especially in the context of Web data, in Section 5. We dis-cuss optimization issues in Section 6 and DEVise support forcomplex tasks such as uniform data/metadata explorationand collaborative data analysis in Section 7.2 The DEVise Visualization ModelVisualization in DEVise is based on mapping each sourcedata record to a visual symbol on screen. Source data ta-bles are called TData (for `tabular data'), and the result ofapplying a mapping to a TData table is aGData (for `graphi-cal data') table, which is a high-level representation of whatis to be painted on-screen. The actual painting is carriedout by drawing routines that are typically platform speci�c(e.g., using X-window primitives or Windows NT drawingprimitives); we will not discuss the details of how GData is`painted' any further. Mappings, TData and GData formthe building blocks for abstractions such as views and visualpresentations. We de�ne below the various elements of theDEVise model and its visual idioms. As an illustration weconsider visualization of data in the following tables:DEPARTMENT ( DID, DNAME, BUDGET, NUMEMPS )department id, name, budget andnumber of employeesITEMS ( ITEMID, INAME, COST, DID )item id, item name, cost of item anddepartment selling itSALES ( DATE, ITEMID, CUSTID, NUMBER )items sold, their number and customer ID,on each date (mm/dd)OVERALL_SALES ( DATE, DID, TOTREV )total sales revenue by dept id and date2.1 Basic ConceptsTDATA: This is a collection of records with one or moreattributes, along with a schema that speci�es the domain(type) of each attribute. In our illustrative example, eachtable (DEPARTMENT, ITEMS, OVERALL SALES andSALES) represents a TData source. We assume that anappropriate type is speci�ed along with the attribute in eachschema.GDATA: To create a visualization, each TData recordis mapped to a visual symbol. A GData record has a setof visual attributes: x, y, size, color, pattern,orientationand shape.MAPPING: This is a function that is applied to aTData record to produce a GData record. The mapping isassociated with the TData schema (and not with the dataitself|thus the same mapping may be applied to di�erentdata sources with the same schema).Figure 1 shows a visualization of the TData sources de-scribed earlier. V1 shows TOTREV on the y-axis andDATE on the x-axis. Also, each DID is mapped to a dif-ferent symbol (square, circle, triangle). Each symbol on thescreen represents a single TData record. Thus the mappingis (x = DATE , y = TOTREV, shape = DID). An alter-native mapping may use a di�erent color for each DID. V1is an example of a DEVise view and is enclosed in W1, aDEVise window, both of which we de�ne below.

2.2 View: The Unit of PresentationA view is the basic display unit in DEVise, and consists ofthree layers: the background, data display and cursor dis-play. The background includes the actual background onwhich the data is drawn and decorations such as title andaxes. The cursor display layer is a data-independent layerthat gives additional information about the data displaylayer. For instance, it can be used to highlight a portionof the data display, as in view V3 in Figure 1.Before describing the data display layer, we observe thateach view has an associated mapping and TData, and anassociated visual �lter. A visual �lter is a set of selectionson the GData attributes of the view. For instance, a visual�lter may select a range of x and y attributes and a certaincolor. View V1 in Figure 1 has a visual �lter restricting thex-axis to DATEs for the month of July. The data displaylayer is GData obtained by applying the mapping to TDataand then selecting the GData records that satisfy the visual�lter. We use VGData to denote the GData records visiblein the data display layer, and view template, or viewde�nition, to refer collectively to all components of a viewexcept the TData and data display layer. Intuitively, a viewtemplate is the data-independent portion of a view, and theVGData, which is computed from the TData, is the data-dependent portion. Together, they de�ne a view completely.2.3 Coordinating ViewsCursors and links are two kinds of view coordination mech-anisms in DEVise. A cursor allows the visual �lter of oneview (called the source view) to be seen as a highlight in an-other view (the destination view). Cursors are bidirectionalin that a change in either the source or the destination viewcauses a corresponding change in the other view. For in-stance, Figure 1 shows a cursor with view V1 as source andV3 as destination. Notice that the two views have the samex-attribute and the highlight in V3 extends over the rangeof DATE values displayed in V1, i.e., the month of July. Ifthe highlight is moved over to the month of December, ViewV1 will show the data corresponding to December.A link is a constraint that allows the contents of twoviews to be coordinated. Figure 1 illustrates di�erent typesof links supported by the DEVise model.A visual link is a selection condition that is added tothe visual �lters associated with each of the linked views(obviously, the GData attribute sets for each of the linkedviews must contain the attributes mentioned in the visuallink selection). For example, the views V1 and V2 have avisual link on the x axis. This means that both the viewsdisplay data for the same range of DATE values. So if theuser zooms in on V1 to see the data for the last week ofJuly, view V2 will also change appropriately.A record link links two views (with possibly di�erentTData sources T1 and T2), on a set of common TData at-tributes, say A. A record link requires that the projectionof the VGData on the linked attributes for �rst linked view(called the master) should act as a �lter on the TData of thesecond linked view (called the slave). A record link couldbe either positive or negative. Consider the set of TDatarecords, say T , that contribute to the VGData for the �rstview. (Some TData records do not satisfy the selections inthe visual �lter for the view, and therefore do not contributeto the VGData for the view.) The positive (negative) recordlink intuitively says that the second view should behave as ifits TData consists of only those records in T2 that have (donot have) the same A values as those in T . A positive record
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link is useful for synchronizing two views that display dif-ferent attribute combinations from the same TData set. Anegative record link gives us the ability to do set di�erences.Figure 1 shows a positive record link from Views V6 to V1on DID. Notice that view V6 shows three DID records andV1 shows the TOTREV corresponding to these DIDs only(as indicated by the shape attribute of the GData in boththe views). The record for DID = 4 has not been selectedin V6 and so does not appear in V1. Assuming there areonly four DID values, if the record link had been negative,then V1 would only display TOTREV (for the month ofJuly), for DID = 4.An operator link is associated with views that arecalled the link masters and an operator (such as union,intersection, negation or join). The link creates a TDatasource that is the result of applying the operator on theTData(s) corresponding to the VGData(s) of the link mas-ters; whether this TData table is materialized or computedas needed in response to user operations is implementationdependent. The user can now de�ne a view (called a slave)on this TData source by specifying a mapping. Once theslave view is created any visual query on the link masterswould a�ect the data in the slave view, just like in a vi-sual or record link. Figure 1 illustrates union and join links.View V9 has a join link from views V6 and V7. Thus, theTData records in V6 (DEPARTMENT) and V7 (ITEMS)are joined on DID, to produce a new TData source con-sisting of attributes BUDGET, DID and COST. Note thatthe join is performed only on those records (determined bythe visual �lter) contributing to the VGData of the views.View V9 is a visualization of attributes COST and BUD-GET. Contrast this with a visual join shown in views V6and V8 where a join is performed on DID by visual align-ment of the x-axes of the views. The visual join in this casegives the same information as the join link at a considerablylower cost. View V10 has a union link from views V6 andV7, on the DID attribute.A careful reader may have observed that a record linkprovides a mechanism similar to operator links for intersec-tion and negation operators, without the need for explicitlycreating an intermediate TData source. Notice however thata record link, unlike operator links, is always binary.An aggregate link is a link between two views, withan explicit (user-de�ned) or implicit (value-based) groupingof attribute values for the TData in the �rst view. Thesecond view visualizes some aggregate function (such as sum,average) performed on each group of records in the �rstview. For instance, Figure 1 shows an aggregate link fromV1 to V4 showing the sum of TOTREV of all departments(whose DIDs appear in V1) for each day in July. Anotheraggregate link exists between views V2 and V5 showingthe total number of items sold for each week in July. Thegrouping in V5) is de�ned by the user and in V4 is implicit(every value of DATE).2.4 Organizing Complex Visual PresentationsAwindow is a collection of views, together with a set of cur-sors and links on these views. A window has an associatedlayout that speci�es the relative location of views within thewindow. A visual presentation is a collection of windows,plus a collection of links and cursors that relate views indi�erent windows. We use visual template to denote thedata-independent portion of a visual presentation, i.e., a col-lection of view templates, cursors and links for each windowin the visual presentation, plus the links and cursors that

span two windows. Thus Figure 1 is an example of a visualpresentation. Views V1 and V2 are in a window W1. No-tice the di�erent layouts of views in windows W1 and W3.DEVise supports other layouts such as tiling and stackingof views. It also provides a mode for transparent overlaysof views. These features are not central to the visualizationmodel and we do not discuss them further for lack for space.3 Visual QueriesOnce a visual presentation is created, a user can expressselections on the visual attributes of a view, or change acursor, and we refer to these operations as visual queries.A visual query is applied to a visual presentation, and theresult is another visual presentation.Visual queries can be classi�ed into three kinds:op1 Create an x-y `rubberband selection' on a view, orzoom in/out in a view, or scroll; these are all exam-ples of x-y selections. In general, a user can expressselections on any visible GData attributes.op2 Click on a point in the view to display the actualTData record; this is an x-y point selection, but witha di�erent display behavior.op3 Move a cursor highlight by �rst clicking on it and thenclicking on the new position to which it should bemoved.When the user performs one of the above operations ona view V, queries may be generated on views that are linkedto V. A linked query is a query generated as a side-e�ect ofa visual query.The presentation of the DEVise visualization model inSection 2 is su�cient for purposes of understanding howto create visual presentations and ask visual queries, but isnot su�ciently rigorous to de�ne equivalence of alternativeimplementation strategies. We now de�ne the semantics ofmappings, views, cursors, links and visual queries in DEVisein terms of relational operations on TData. In addition togiving queries a formal semantics, this lays the foundationfor database-style optimization of visual queries.We use the operators selection (�), projection (�) andfunction composition (�).3.1 Mappings and VGDataA mapping � is a function that is applied to a TData recordto produce a GData record. In the current implementa-tion of DEVise, a mapping is in fact a set of selectionsf�1; �2; � � � ; �ng such that if < t1; t2; � � � ; tm > is a recordof TData and < g1; g2; � � � ; gn > is a record of GData, then< t1; t2; � � � ; tm > �1�! g1< t1; t2; � � � ; tm > �2�! g2...< t1; t2; � � � ; tm > �n�! gnThe mapping function need not be one-to-one; several TDatarecords could be mapped to the same GData record.A view V can be represented as a 5-tuple (B;�G; �; T;C)where B represents the background, �G the visual �lter, �the mapping, T the TData associated with the view and Cthe cursor layer of the view. The GData G associated withthe view is �(T ), and the VGData displayed in the view is�G(G).



3.2 Visual LinksA visual link between two views on attributes L means thatthe selection conditions in their visual �lters that involveonly attributes in L are identical. In other words,if viewsV1(B1; �G1 ; �1; T1; C1) and V2(B2; �G2 ; �2; T2; C2) are twoviews with a visual link on attributes L:vlink(v1; v2; L))�G1 = �G11�L � �G12L and�G2 = �G21�L � �G12LWhen any visual query operation changes the visual �lteron L, both views change accordingly.3.3 Record LinksTo de�ne the semantics of record links, we must identifythe set of TData records that contribute to VGData forthe �rst linked view. We do this by de�ning an implicitselection on TData, as illustrated in Figure 2. Consider a
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σ TFigure 2: VGData and Implicit TData Selectionsview V1 = (B1; �G1 ; �1; T1; C1). The VGData for this viewis �G1 � �1(T1). Let �T be a selection on TData such thatapplying this selection and then applying mapping � yieldsthe same VGData as before:�G1 � �1(T1) = �1 � �T (T1)i:e:; �G1 � �1 = �1 � �TEquivalently, �T can be de�ned using the following equa-tion: �T (T1) = ft 2 T1 j �G1 � �1(t) is non emptygWe can now de�ne the semantics of a record link us-ing the selection �T . A record link between two viewsV1(B1; �G1 ; �1; T1; C1) and V2(B2; �G2 ; �2; T1; C2) implies thatVGData for V2 is equal to:�G2 � �2 � �T1 (T1) for a positive record link:�G2 � �2 � (1� �T1 )(T1) for a negative record link:Notice that the two views related by a record link havethe same TData component.

3.4 Operator LinksAn operator link consists of master views V1(B1; �G1 ; �1; T1; C1),V2(B2; �G2 ; �2; T2; C2) � � � Vn(Bn; �Gn ; �n; Tn; Cn) and anoperator op. Suppose �T1 ; �T2 � � ��Tn be the TData selec-tions (as de�ned for record links) corresponding to the VG-Data's in V1; V2; � � � ; Vn. Then we can de�ne a TData Topgiven by �T1 (T1)op�T2 (T2)op � � � op�Tn (Tn):Now a view V (B;�G; �; Top;C) may be de�ned using Topas TData. The VGData for this view will be�G � � � (Top)The kind of operator associated with the operator linkputs certain constraints on the TData's in the master views.The number of master views should be consistent with thearity of the operator op. If the operator is union or inter-section, then the TData's T1; � � � ; Tn should have the sameschema. Finally, for the operation to be a join an appropri-ate join condition must be speci�ed with the operator.3.5 Aggregate LinksAn aggregate link between two views V1(B1; �G1 ; �1; T1; C1)and V2(B2; �G2 ; �2; T2; C2) has an associated grouping onattributes of G1 or T1 and an aggregation function f. Agrouping on attributes A1; � � � ;Ak provides a grid of valuesof attributes. The aggregate function is computed for eachcoordinate (A1; � � � ;Ak) on the grid. Let Tagg be the TDatawhose records are of the form (A1; � � � ;An; f(A1; � � � ;An)).The second view is some mapping de�ned on Tagg. Thegrouping grid may be implicitly speci�ed by having onepoint on the grid for each value of (A1; � � � ;Ak), as a rangeof attribute values or some other manner which we leaveunspeci�ed.3.6 CursorsA cursor links a source view and a destination view, and hastwo parts:1. A selection on visible GData attributes that operateson the display layer of the destination view, and resultsin highlighting some range of values for the GData at-tributes in the selection. For instance, an x-y selectioncould be shown as a highlighted area with a lightercolor. For selections on other attributes, a di�erenthighlighting technique would have to be used; we leavethis unspeci�ed, as an implementation detail.2. A selection on the GData of the source view that se-lects the same range as the selection on the displaylayer of the destination view. Note that the GDatalayer of the destination view is not constrained by thecursor.Formally, a cursor between V1 (source) and V2 (destina-tion) imposes the following conditions on the visual �lters ofthe two views. For the source view, the visual �lter shouldbe of the form: �G1 = �G11�L � �G1Lwhere �G1L is a conjunction of range selections on visibleGData attributes in L.



For the destination view, the visual �lter �G2 can beany selection on GData attributes, but ranges of attributesselected by �G1L that lie within the ranges determined by thevisual �lter �G2 have to be highlighted in the display layer.3.7 Semantics of a Visual QueryA visual query can be represented formally by a 2-tuple(op; V1) where op is one of the three operations describedin Section 3, and V1 is the view on which the operation isperformed. A visual presentation consists of a collection ofviews, fV1; V2; � � � ; Vng and if other views are linked to V1 bycursors, visual links or record links, additional (sub-)queriesare generated on these views.We now de�ne the visual query (and sub-queries) gener-ated by each visual operation.Let an operation op be performed on view V1 representedby (B1; �G1 ; �1; T1; C1). Assume that the following (typesof) views exist in the visual presentation; this set of views in-cludes an example of every kind of view that can be a�ectedby a visual query on V1:� View V2 represented by (B2; �G2 ; �2; T2; C2) with a vi-sual link vlink(V1; V2; L) on attribute L between V1and V2.� View V3 represented by (B3; �G3 ; �3; T1; C3) with arecord link rlink(V1; V3) from V1 to V3.� View V4 represented by (B4; �G4 ; �4; T4; C4) with acursor cursor(V1; V4) that has V1 as source and V4 asdestination.� View V5 represented by (B5; �G5 ; �5; T5; C5) with acursor cursor(V5; V1) with V5 as source and V1 as des-tination.� View V6 represented by (B6; �G6 ; �6; T6; C6) with anaggregate link on attribute L from V1 to V6. Let thegrouping be based on values of L. Let the aggregationfunction be sum(L) and let �8 map L to x and sum(L)to y attributes of GData.� Views V7 and V8 represented by (B7; �G7 ; �7; T7; C7)and (B8; �G8 ; �8; T8; C8) such that there is an operatorlink from V1 and V7 to V8 with the operator beingunion.We now describe the e�ect of op on V1. Views V2 throughV5 are also a�ected by the visual query on V1; the e�ect onsome of these other views can be described directly, andin other cases is described by specifying a subquery that isgenerated as a consequence of op on V1. Several cases arisedepending on the nature of operation op, which can be oneof the three kinds op1, op2 or op3 as described in Section 3:Case 1 (op = op1): This operation is a selection �G01on attributes of GData. As a result, the visual �lter of V1changes to �G01 , which means that the VGData displayed inthe view is now �G01 (�1(T1)).According to the semantics of a visual link, a sub-query(op1; V2) will be generated on V2, with the selection being�G01 . Thus the VGData displayed in V2 is now (�G21�L ��G01L )(�2(T2)). This is illustrated in Figure 3.Let �T 01 be the implicit TData selection determined by�G01 . Then, due to the record link between V1 and V3 the
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A4=5Figure 6: E�ect of op2Case 3 (op = op3): This operation changes the positionof the cursor highlight on the destination view. Thus, thehighlight in V1 is centered around the new position givenby the user. As a result a new GData �lter �G01L is created.According to the bidirectional semantics of a cursor, the VG-Data displayed in V5 is now given by (�G01L � �G51�L)(�5(T5)).This is illustrated in Figure 7.We will see how these de�nitions provide a foundationfor database-style visual query optimization in Section 6.4 Visual Queries and SQLThe visual query paradigm enables users who are not databaseexperts to generate sophisticated SQL queries through intu-itive graphical operations. We illustrate this now throughseveral examples. The point of this section, however, isnot to argue that DEVise can be an SQL front-end (al-though it is indeed a very good front-end for a large classof SQL queries!). Rather, we demonstrate the close interac-tion of data visualization and relational querying in DEVise.Of course, the visual presentation o�ers the|signi�cant!|additional value of rendering the answers in a desired visual
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We create the visual link on x between the two views asbefore. Now if we perform a color selection on any of theviews (say View1):color1 (longitude = 50) < color< color2 (longitude = 60)we generate the following SQL queries:SELECT (latitude, totalamount, longitude)FROM TWHERE (50 < longitude < 60) : Query1SELECT (latitude, totalamount, longitude)FROM TWHERE( SELECT( min(latitude)FROM Query1 )< latitude <SELECT( max(latitude)FROM Query1 ))Consider an aggregate link giving Sum of totalamountswhere the aggregation is done on the latitude. If this link iscreated from View1 to View3, whose mapping is totalamountvs. latitude then we have visualized the SQL query,SELECT (latitude, sum(totalamount))FROM TGROUP BY latitudeIf a visual �lter of latitude < 30, is applied to the view,then the query would have the appropriate selection condi-tion added to it.Finally, we consider an operator link with the operationbeing join. Suppose we have another table T1 with thesame schema as T, for a di�erent company. Let V1 andV2 display tables T and T1 respectively, with the mappingbeing totalamount vs. latitude. Consider a join operator linkwith V1 and V2 as the masters, join predicate (T:latitude =T1:latitude), creating a TData source table with attributes(latitude, totalamount1, totalamount2). We can then createa visualization of totalamount1 vs. totalamount2 in thecreated table, which gives us the answer to the followingSQL query:SELECT (T.totalamount1, T2.totalamount)FROM T, T1WHERE (T.latitude = T1.latitude)In contrast, observe that visual links allow us to displaythe output of some simple joins without explicitly computingthe join. We call such joins visual joins. For instance, theinformation computed with a join operator link in the aboveexample could also be obtained visually: Suppose mapping�1 on T is used to create a scatter plot of totalorders vs.latitude, �2 the same for T1, and we have a visual link onthe x attribute. If these views are laid out one below theother we can see the totalamount corresponding to the samelatitude in the two views. However the queries evaluated inthe two views themselves are:SELECT (totalamount, latitude)FROM TSELECT (totalamount, latitude)FROM T1

In fact, since a visual link on x implies that the twoviews have the same range of x attributes, but need nothave exactly same attributes we can get a visual `range' joinby simply creating an x-y rubberband on one of the aboveviews. The resulting query is:SELECT (T.totalamount, T1.totalamount)FROM T, T1WHERE (30 < T.latitude < 40)AND (30 < T1.latitude < 40)Similarly, we could write corresponding SQL queries forthe more complex visualization in Figure 1.4.1 Visualizing an SQL QueryWe now show how an example SQL query could be expressedusing a visual presentation. We use the schema for salesdata described before for TData T1. Consider the SQL viewgenerated by the following query:SELECT (latitude, longitude)FROM T_1WHERE (totalamount > 20000)AND (50 < longitude < 60)This query intuitively asks the following question: \In agiven geographical area, which locations had a totalamountsale greater than a threshold?"The following visual presentation achieves this e�ect.De�ne mapping �1 as (longitude vs. totalamount) (View1).Create a rubberband on View1 to select totalamount> 20000.De�ne mapping �2 as latitude vs. longitude (View2). Createa record link from View1 to View2. This places the restric-tion that the records displayed in View2 are also displayed inView1. Now select the correct subset of records from View2using a rubberband 50 < longitude< 60. View2 now showsthe result of the query.Thus a query on TData attributes can be performed by aappropriate sequence of operations on GData. These exam-ples hopefully illustrate the power of visual queries, althoughlack of space prohibits a fuller discussion of the expressivepower of visual queries.5 Data Transformation and QueryingAs DEVise was utilized in real applications, we repeatedlyreceived feedback from users indicating that more sophisti-cated database-style query and data transformation capabil-ities were needed. This might seem strange, considering thatwe have just �nished discussing how many SQL queries canbe e�ectively expressed in DEVise; in part, this was becausevisual queries in the earlier version of DEVise were not aspowerful as the ones described in this paper. On the otherhand, in enhancing the expressive power visual queries, wefound ourselves implementing much of a database query fa-cility. After considering this issue, we decided to re-designthe system to support data transformation and query ca-pabilities within the DEVise engine. DEVise now supportsa subset of SQL queries (essentially, queries without nestedblocks), and extensions to support sequence queries are un-der way.An important feature of DEVise is that queries can op-erate on both local and remote data sources. At remotesites, if software is available that can provide query pro�l-ing and/or evaluation services, the DEVise optimizer seeksto exploit this; otherwise, it will retrieve complete relationsand essentially do the rest of the query evaluation at the sitewhere it is executing.



6 Optimization IssuesOperations on the cursor and background layers are inexpen-sive, and optimization must therefore focus on the impactof visual queries on the VGData components of views. Therelational de�nitions given in Section 3.7 summarize how vi-sual queries change the VGData components of the queriedview, as well as all linked views, and suggest several alterna-tives for query evaluation. For example, selections in visual�lters and links can often be used to �lter TData records be-fore applying the mapping associated with the view. Thesealternative evaluation strategies must be considered, theircost estimated, and the alternative with the least estimatedcost chosen for execution. This is done to a limited extentin the current version of DEVise, and is an area for furtherwork.To see how new optimization opportunities arise becausevisualization and database-style querying are combined ina single tool, consider a very simple example: a view (inDEVise terms) V that is created by mapping records from aTData source T . Visual operations on V generate database-style queries on T . If T is a locally stored table, examiningthe mapping from T to V can tell us what indexes to createon T .For a more complex example, consider the following sce-nario. Suppose that a particular selection can indeed bepushed down, and expressed against the TData. If theTData collection is de�ned by a database-style query, ratherthan being an explicitly stored set of tuples, run-time queryevaluation is used to generate the tuples as needed. Clearly,knowing about the selections that can be expected|this isdetermined by the visual presentation| helps in planningthe database-style query. To take this one step further, a vi-sual presentation might contain several linked views. Evenif selections cannot be pushed, the computation of their VG-Data sets (required, say, due to subqueries generated inresponse to a user operation on a linked view) can oftenbe combined, especially if the views share a single TDatasource.7 Advanced Exploration TasksIn this section, we consider the use of DEVise for two ad-vanced exploration tasks: integrated exploration of data andsummary information and collaborative data analysis. Thelatter activity is supported by two DEVise features: activereports and hyperdata.7.1 Integrated Access to Data and MetadataEven with intelligent bu�er management, interactive responsetimes cannot be achieved for very large datasets, and toomuch information is lost by compressing a very large vol-ume of data onto a single screen. A powerful paradigm foraddressing this fundamental problem is to let users createsummaries of data (which are typically much smaller thanthe original dataset) and to browse the summaries, or meta-data, to get an overview of the entire dataset. Subsequently,users can look at interesting portions of the data in more de-tail; our experience has been that users �nd it very usefulto interleave the browsing of data and metadata.The Soil Sciences application described in Section 1.1 isa concrete example of interleaved data and metadata brows-ing. The visualization of clusters of image points usingDEVise is illustrated in Figure 8. The important point tobe noted in this example is that the clusters produced by

BIRCH can be seen as a summary of the original data. Usersexplore the clusters produced by BIRCH to obtain a high-level overview of the data, and thereby narrow the scope ofsubsequent detailed analysis to interesting portions of thedata.The clusters produced by BIRCH are only one exampleof a summary description of data. Other examples of sum-maries include:1. Statistical measures over subsets of the data. Indeed,such summaries are so useful that support is built di-rectly into the current version of the visualization en-gine of DEVise.2. Compressed versions of images [9]. Again, DEVise hasbuilt-in support for retrieving images at various levelsof compression.7.2 Collaborative AnalysisA visual presentation, as we noted earlier, has two parts:a data-independent visual template, and a data-dependentVGData. A user can save a visual template, if desired withsome portion of the underlying TData, and send it to an-other user. The recipient can then re-create the exact visualpresentation seen by the sender, if the rest of the TDatais also available to the recipient, and continue exploring it.This is supported in the current version of DEVise. We calla visual template that is used in this manner an active re-port: intuitively, it is like a conventional report, except thatthe reader can interactively explore the data contained in it,i.e., it is `active'.A powerful extension that is allowed by the architec-ture, but is not fully supported in the current version, isthat multiple users can share part of a visual presentationand changes made by one user to this part are automaticallyseen by all users; further, any user can make changes (with amechanism for passing control between users to avoid con-icting changes). The basic mechanism here is similar toactive reports; each user runs a copy of DEVise, and onlythe operations are communicated between copies (and exe-cuted independently by each copy). Clearly, this approachplaces little or no burden on network bandwith, in contrastto approaches that ship screen-snapshots.DEVise currently allows �eld values in TData records tobe images or text, and these can be GData �eld values aswell. This allows the creation of visual presentations thatlook like conventional reports, with text and imagery inter-leaved with presentations of tabular data (e.g., bar chartsor scatter-plots). The DEVise framework also allows TDataand GData attribute values to be a view or a window, ca-pable of being manipulated using all the DEVise power; wecall this hyperdata. The tool does not yet support thisfunctionality fully, and is being extended in this direction.Clearly, this greatly enhances the value of active reports,since they become much more expressive.References[1] Alexander Aiken, Jolly Chen, Michael Stonebraker, andAllison Woodru�. Tioga-2: A direct manipulationdatabase visualization environment. In Proc. Interna-tional Conference on Data Engineering, New Orleans,LA, February 1996.[2] Robert Braham. Math & visualization: New tools,new frontiers. IEEE Spectrum, 32(11):19{36, Novem-ber 1995.
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