Probabilistic Optimization of Top N Queries

Donko Donjerkovic

Raghu Ramakrishnan

Department of Computer Sciences
University of Wisconsin Madison
1210 W. Dayton St.
Madison, WI 53706 USA

{donko,raghu}@cs.wisc.edu

Abstract

The problem of finding the best answers to a query
quickly, rather than finding all answers, is of increas-
ing importance as relational databases are applied in
multimedia and decision-support domains. An ap-
proach to efficiently answering such “Top N” queries
is to augment the query with an additional selection
that prunes away the unwanted portion of the answer
set. The risk is that if the selection returns fewer than
the desired number of answers, the execution must be
restarted (with a less selective filter). We propose
a new, probabilistic approach to query optimization
that quantifies this risk and seeks to minimize overall
cost including the cost of possible restarts. We also
present an extensive experimental study to demon-
strate that probabilistic Top N query optimization can
significantly reduce the average query execution time
with relatively modest increases in the optimization
time.

1 Introduction

In the multimedia domain, Top N or “Get the best
matches” queries are common. The notion of the best
match is typically fuzzy, and the cutoff (how many
answers to return) is approximate, but the intent is
clear. The other area where Top N queries are impor-
tant is decision support, where users often want to see
the high or the low end of some ordered result set. A
typical example is “Find the 10 cheapest cars.” The
importance of Top N queries is underscored by the fact
that most major commercial DBMSs include language

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

constructs for expressing such queries. Informix sup-
ports FIRST N, Microsoft has SET ROWCOUNT N, IBM’s
DB2 has FETCH FIRST N ROWS ONLY, and Oracle sup-
ports LIMIT TO N ROWS.

The simplest way to support Top N queries is to
execute the query, sort the result in the desired order,
and then discard all but the first N tuples. Comput-
ing and sorting a large intermediate result and then
discarding most of it is a waste of resources. It was
shown [9] that large gains in performance are possible
when the database system utilizes the fact that only a
certain number of answers are needed.

A Top N query on an attribute X, denoted by
Topx, is equivalent to the simple selection query:

Topx = ox>k (1)

where k is a cutoff parameter determined by N and
by the data distribution. Consider the following ex-
ample query on a table that is neither sorted nor in-
dexed: “List the top 10 paid employees in the sales
department”. This query translates into: “List the
employees from the sales department whose salary is
greater than k”, where k is determined by the distri-
bution of employees’ salaries, and must be determined
by the optimizer. If k is too high, we will retrieve less
than N employees and therefore will have to restart
the query with smaller k. On the other hand, if &
is too small, the query will unnecessarily run longer.
Because restarts involve repetition of work, they are
characterized by a large jump in query cost.

How to estimate k is a nontrivial problem. If the
query optimizer had complete knowledge of the data
distributions, it could estimate x exactly, and elimi-
nate restarts. However, because the optimizer’s knowl-
edge of data distributions (usually maintained in the
form of histograms) is not perfect, it is better to un-
derestimate k as a guard against restart. The main
contribution of this paper is to propose a probabilistic
optimization framework that takes into account im-
precision in the optimizer’s knowledge of data distri-
bution and selectivity estimates. Using probabilistic

reasoning, the optimizer arrives at the ezpected cost,
and the optimal cutoff parameter is the one that min-
imizes expected cost. While we apply the probabilis-
tic optimization framework to the problem of estimat-
ing cutoffs for Top N queries, the approach clearly
has broader applicability to optimization problems in
the presence of important parameters (e.g., number of
available buffers, number of concurrent queries) that
can only be approximately estimated.

The rest of this paper is organized as follows. After
reviewing related work, we introduce our probabilis-
tic framework in Section 3. We introduce probabilistic
optimization of Top N queries in Section 3. We de-
velop this idea further in Section 4, where we show
how to obtain selectivity and cardinality distributions
for various kinds of selection predicates, starting with
traditional histograms. We then present performance
results for Top N queries involving selections and joins
in Section 6. Next, in Section 7 we consider two classes
of Top N queries that are more complex, involving
aggregates and unions. The first class, involving ag-
gregates, shows an interesting and useful connection
to the class of Iceberg queries [3]. In Section 8, we
then revisit the basic Top N problem formulation and
identify two useful variants that can be supported us-
ing our techniques. These include an “online” variant
in which answers are eagerly returned, together with
some confidence bounds that they are indeed in the
“top N”, and a variant in which the user can specify a
probability that returned answers will include all “top
N”, thereby controlling the time required to compute
answers.

2 Related Work

Carey and Kossman [9, 1] proposed a new operator
called STOP AFTER N (STOP for short) to terminate
computation after the first N results are computed.
Large performance gains are possible when the STOP
operator is pushed down the plan tree. In contrast,
while we can use the STOP operator at the root of
the query sub plan, we never push the STOP operator
down the plan tree. Instead, we push the equivalent
selection (1), using standard techniques for handling
selections. Our approach can lead to significantly bet-
ter plans in some situations, as illustrated in example
plans in Fig. 1. Suppose that the best plan found
by the STOP pushdown is the one shown in Fig. 1
(a). Obviously, this plan can only be made cheaper by
replacing the STOP operator above relation A with
the equivalent selection and thus eliminating the sort-
ing, as shown in Fig. 1 (b). Notice that the final
SORT is still necessary in both versions because the
hash join does not preserve sorting. All the implemen-
tations of STOP require at least partial sorting of the
input stream, and [1] proposes techniques for reducing
the sorting cost. In contrast, our approach does not
require sorting, except for the final result.

SORT + STOP SORT + STOP
HASH JOIN HASH JOIN
/ /
SORT + STOP EQUIV SEL
/ /
A B A B
@ (b)

Figure 1: The plan with equivalent selection (b) may
be much cheaper to execute.

Technically, the focus of our paper is on a prob-
abilistic framework for optimization, specifically for
computing the selection cutoff for Top N queries. This
problem is not considered in [9, 1] or other previous
work.

A concurrent work [2] has independently suggested
that the optimizers should minimize expected cost of
a query, and therefore have introduced the probabil-
ity distributions for certain parameters. However, this
work does not deal with Top N queries, which is the
focus of our approach.

3 Framework for Probabilistic Query
Optimization

Every Top N query is equivalent to a selection query
(see Eq. (1)) with a specific cutoff parameter £ = K¢pis.
Formally, k..;; is defined as the largest cutoff param-
eter k that does not cause restart. If complete knowl-
edge of all selectivities and data distributions were
available, restarts would never happen since one would
always choose k = Kk..j:. However, since the optimizer
only has approximate knowledge of distributions and
selectivities, it is impossible to guarantee that more
than N tuples will be eventually retrieved, short of
choosing kK = —oo. Nonetheless, we can still rea-
son about the likelihood of restart and choose k ac-
cordingly. To enable such probabilistic reasoning, we
propose to generalize selectivity estimates to selectivity
probability distributions.

We consider all selectivities to be random variables
and denote a point in this multidimensional probabil-
ity space as o and the associated probability as p(c).
We then postulate that the optimizers should find a
plan with the minimum ezpected value of the cost C(o):

E(C) = C(o)p(o) (2)

Even though this work focuses on the random nature
of selectivity estimates, our approach applies to other
uncertain quantities that enter cost formulas such as

allocated memory and connection bandwidths. In fact,
the observation that optimizers should minimize ex-
pected cost was concurrently made by Chu, Halpern
and Seshadri [2] and applied to the problem of memory
variability.

At this point we note that, traditionally, optimizers
evaluate a cost function for expected values of input
parameters C(E(o0)) in the hope that this is a good
approximation for overall expected value of the cost.
However, it is well known that the approximation:

E(C(0)) = C(E(0)) (3)

is true only if C' is a linear function of ¢ within the
range of variability of . While most of the cost for-
mulas are not linear, in practice, they are usually well
approximated by linear values in the range of variable
parameters and consequently, Eq. (3) holds.

Problem of Top N optimization, is a typical example
where Eq. (3) does not hold, because the jump in the
total cost C' due to the restart cost R is within the
range of possible cutoff values. If we denote the initial
cost by I, and introduce a step function p which is
0 when restart does not happen and 1 otherwise, we
have:

C(0) = 1(0) + pl() R(o) (4)

We note that the selectivity of the cutoff & is included
in the Eq. (4) as one dimension of o. Also, Eq. (4)
assumes that only one restart is possible. Even though
multiple restarts could be included in this framework,
it would be impractical to optimize for multiple cutoff
parameters. Therefore, in our model, restart operation
amounts to retrieving the complement of the equiva-
lent selection query, sorting the result and stopping
after required number of tuples is returned. Assuming
that R is approximately linear in the possible selectiv-
ities of k, we can write:

E(C) = E(I) + E(R))_ p(a) p(0) (5)

Yo P(o) p(o) is the probability of restart (r) which
can also be written as the probability that fewer than
N answers are generated:

r= i p(n) (6)

where p(n) is the probability that the input cardinality
to the Top N operator will be n.

Finally, using the traditional approximation (Eq.
(3)) the objective function, parameterized by & be-
comes:

Cost(k) ~ Init(k) + (k) Rest(k) (7

where Init(k) denotes the traditional cost of processing
the query with cutoff parameter x and Rest(x) denotes

oA
Equivalent @
K (optimal) | Selection
Estimator

Figure 2: Architecture for incorporating sestimator
into a traditional DB system.

the traditional cost of processing the restart that will
complete the answer to the query.

A cutoff parameter, x, is optimal if it minimizes
the value of the query cost function (Eq. (7)). We
restate the problem of optimizing a Top N query as
the problem of finding the optimal cutoff parameter
Kopt and the associated execution plan. To find the
minimum of the cost function (Eq. (7)) we can use
a standard function minimization algorithm such as
Golden Section Search [15]. The probability of restart
is evaluated for every trial x using Eq. (6).

By using the traditional approximations for ex-
pected cost values (Eq. (7)), we are able to reuse the
traditional query optimizer for Top N query subtree
optimization. The relationship between the equiva-
lent selection (k) estimator, system statistics and an
optimizer are shown in Fig. 2. Equivalent selection
(k) estimator uses Golden Search to find optimal &,
and in the process calls the optimizer repeatedly to
evaluate Init(x) and Rest(x) and consults the system
statistics. For Golden search algorithm, one needs to
bound the . Initial bound would be the column min-
imum for the low and the column maximum for the
high. Golden search algorithm then successively splits
the bound until it becomes sufficiently small.

Init(k) and Rest(k) are expensive expressions to
evaluate because they require optimization of the
query subtree. On the other hand, the best plan for
Init(k) and Rest(x) are likely not to change for small
changes in k. Consequently, a further approximation
would be to find the best plan for these two queries
only once. Of course, Init(x) and Rest(x) should
still be re-evaluated for every trial k because the cost
will change depending on & even if the plan does not
change.

3.1 Probability Distribution Maintenance

In this section we describe how to practically main-
tain cardinality distributions; the ideas apply to main-
taining selectivity distributions as well. In general,
a cardinality distribution is completely specified by
(cardinality — value, probability) pairs, but maintain-
ing all such pairs is not practical. A simple approxi-
mation is to only store a certain number of cardinality
values whose associated probabilities are all the same.

For example, a selectivity vector of size n could be
represented as an array:

o={01,02,...,0,}

where o; are all equally probable selectivities. By
choosing this alternative we don’t have to store in-
dividual probabilities, since they are all the same and
equal to 1/n. The size of the probability vector ()
is system dependent. A selectivity distribution can be
represented in a similar manner.

To find the result of multiplying a cardinality distri-
bution with a selectivity distribution, we just multiply
every possible selectivity with every possible cardinal-
ity. However, the resulting distribution will have n?
elements and must be reduced to only 7 elements; this
approximation can be carried out by replacing 7 neigh-
boring values with their average.

4 Estimating Initial Probability Densi-
ties

We have discussed how to propagate cardinality den-
sities through the plan tree, by multiplying the op-
erator selectivity and the input cardinality densities.
However, we have not yet addressed the problem of es-
timating the initial cardinality density and the initial
selectivity density for every predicate in the query; we
turn to this next. Database systems usually maintain
exact cardinalities for the base tables. Therefore, ini-
tial cardinality densities are likely to be single values
with probability one. Estimating selectivity densities
is much more complex. Keeping in mind that our es-
timates will be used for optimization purposes only,
precision is not of crucial importance, so we choose
simplicity as our guiding principle.

We will estimate initial selectivity distributions
from histograms. In order for the selectivity distribu-
tion to be consistent with the traditional (single value)
histogram estimate, we require that the expected value
of the selectivity distribution coincide with the tradi-
tional selectivity estimate. ! Therefore, we propose
to construct a selectivity distribution whose average
is equal to the traditional selectivity for a predicate,
call it o. As described in Sec. 3.1, our distribution
consists of a set of equally probable cardinality values.
Finally, we need to bound our distribution to the left
and to the right. Distribution spread reflects the pre-
cision of the histogram estimates; the more accurate
the histogram is the tighter the bounds.

Summarizing these ideas, we arrive at the generic
distribution shown in Fig. 3. Notice that, in general,
the left bound (By) need not be equal to the right
bound (Bg). For example, bounds for a predicate can

LGiven a predicate, say X < 100, its selectivity is estimated
from a histogram on the data distribution by adding counts in
buckets to the left of the point X = 100 and taking the ratio to
the total count over all buckets.

average
I

B L : B R
z |
= I
g |
o |
o I
I

vaue

Figure 3: Example of an initial selectivity density.

be asymmetric because a predicate selectivity may not
exceed one nor be less than zero. Given the average
value (traditional estimate o from a histogram) and
bounds (By, and Bpg) one can easily construct a simple
distribution with a certain number of possible values
located equi-distantly to the left of the average and
the remaining values positioned equi-distantly to the
right. Equi-distant positioning is chosen for simplicity,
notice that the distance between the left-hand side val-
ues may not be the same as the corresponding distance
on the right. The total number of values in a selectiv-
ity distribution is a predetermined constant (we used
32 in our experiment). Number of values to the left
of o is calculated so that the expected value of all the
distribution is equal to o. In the following sections
we will discuss how to estimate the two distribution
parameters By and Bg for common predicates.

4.1 Estimating the Quality of a Histogram

Distribution parameters B, and Bg are dependent on
the quality of the histogram on the referenced col-
umn. Research on histograms has mainly focused on
improving their precision [10]. The first paper to in-
troduce the idea of augmenting a histogram with some
measure of accuracy is [5]. They suggest maintaining
the largest equality selection error within each bucket.
This error is determined by comparing histogram esti-
mates to the actual result of an equality selection.

Although the idea of maintaining some error esti-
mates within a histogram is a good one, maintaining
per bucket information has the following disadvan-
tages: (1) Per bucket error information will increase
the size of the bucket and therefore use space that
could otherwise be used to increase histogram pre-
cision. (2) Selection errors for range queries will be
largely overestimated if they are based on the largest
errors per bucket. This is because errors in single val-
ues tend to cancel each other, and simply adding them
up will greatly overestimate the error.

We propose to maintain the worst-case error for an
open-ended range predicate. This has an advantage

of requiring little space, independent of the number
of buckets, and it provides good bounds for queries of
type field < value. More specifically, let z denote the
domain values, P,.,1(7) denote the cumulative proba-
bility distribution of the real data set and P ;s (=) de-
note the cumulative probability distribution deduced

from a histogram. Then, we define € as:

| Prea](m) - Phist(m) | (8)

€ = max

—oo<zr <00
In other words, € is the maximum deviation of the se-
lectivity of the predicate field < wvalue between the
histogram and the real data set. We propose to exper-
imentally measure € for each histogram and maintain
this value as a part of the system statistics. Notice
that a table without a histogram is usually assumed
to have uniform distribution that corresponds to the
trivial histogram, with only one bucket. Therefore,
without the loss of generality, we consider every table
to have an associated histogram.

The most precise (and the most expensive) way of
measuring € is by sorting the original table and per-
forming the full scan. A much cheaper way is to take
a random sample of the original table and measure €
from the random sample. The crucial question here
is how big a sample is needed in order to estimate €
correctly. In general, this depends on the precision
of the histogram: the more precise the histogram is,
the larger the required sample. Histogram precision in
turn depends on the type of the histogram and on the
number of buckets 8. The most commonly used his-
togram in current database systems is the equi-depth
histogram, and so we present a short analysis for it
here. The value of € for an equi-depth histogram is

bounded as: .

ESB (9)

where 3 is the number of buckets. Also, by the theo-
rem due to Kolmogorov [7] we have:

A
D < — 10
<7 (10)
where s is the size of the random sample, D is the
maximal deviation between the real data set and its
sample (Eq. (8)), and A is a number that depends on
the confidence limit. For 80% confidence, A ~ 1. So,
the pessimistic estimate of D for 80% confidence is:
1
D~ — 11
7 (11)
To reliably estimate e, D should be much smaller than

€, say
€

From formulas (9), (11), and (12) it follows that s can
be approximated by:

D (12)

s >1003° (13)

We have verified experimentally that the sample size
of approximately 100 82 produces satisfactory results.
(See Fig. 10).

Notice that e can be calculated at the histogram
construction time, using the single sample for both,
building the histogram and estimating e. In fact, the
required sample size is, for the most cases, of the same
order of magnitude. For example, a histogram with
100 buckets (8 = 100) would require a sample of size
of 1 million (Eq. (13)). On the other hand, a recent
paper on equi-depth histogram construction [13] sug-
gests that for the reasonable values of confidence, data
size and deviations from true equi-depth histogram,
0.8 million is the recommended sample size.

4.2 Estimating Selectivity Probability Den-
sity for Open Range Selection

From the definition of € (Eq. (8)) and the definition of
the cumulative probability density it is clear that the
maximal error in the open range selection is €. There-
fore, we construct a selectivity density shown in Fig. 3
with the average equal to the selectivity estimate from
the histogram and B;, = By = €.

4.3 Estimating Selectivity Probability Den-
sity for Equality and Closed Range Selec-
tion

By knowing €, one can bound the error in an equality
selection as well. If one denotes the histogram error
in the frequency of a domain value i by Af; then the
following condition must hold:

< Y Af<e (14)

i=—00

for any j element of the value domain. One can express
the error in frequency Af; as:

J j—1
Afj= > Afi— > Afi

i=—00 i=—00
from which it is seen than Af; is bounded as:
2 < Af <2 (15)

Following the same argument, it can be shown that
the error in the cardinality result R of the closed range
query (like a < z < b) is bounded by:

—2¢ < AR < 2¢ (16)

i.e., it is independent of the range. Similar to the
open range selection, we construct a selectivity density
shown in Fig. 3 with the average equal to the selectiv-
ity estimate from the histogram and By, = By = 2e.

4.4 Estimating Selectivity Probability Den-
sity for Equi-join Selection

The resulting cardinality of an equi-join (R) can be
expressed as:

R = Zfigi (17)

where f and g stands for the frequency vectors of the
two tables to be joined and i ranges over all domain
values in the join columns. Error in R can be obtained
by differentiating Eq. (17):

AR = ZAfigi+Zfz'Agi (18)

where we have ignored the term). A f; A f; because it
is small compared to the other terms. This expression
can be further simplified by rewriting:

fi = fi+Afi (19)
g9 = §i+Agi (20)

where f; and g; stand for the histogram estimate of
fi and g; respectively. After substituting the above
expressions into Eq. (18) and ignoring the terms with
two differentials we get:

AR~ Afigi+ Y filg (21)

or by noticing that f (and §) is constant within a
bucket b:

AR G Y A+ f > Mg (22)
b

JEDb b JEb

Finally, using the bounds from Eq. (16) we obtain:
AR< 2> Gn+2e > fo (23)
b b

From these bounds, we construct a selectivity density
shown in Fig. 3 with the average equal to the selectiv-
ity estimate from the histogram and B;, = Br = AR.

4.5 Estimating Selectivity Probability Den-
sity for Selections on Union

We examine the issues related to Top N queries over
unions motivated by the following observations:

1. Many database integration systems, which are ex-
pected to have significant presence on the Web,
are built as unions over the base tables (see for
example [8] and [11]).

2. Top N queries are one of the most common queries
in the Web environment. We will then especially
be concerned with running a Top N query on a
distributed union.

Maximum error in the resulting cardinality AR of a
selection on union is just the sum of all the component
errors AR;.

AR = |ARy| + |ARz| + ... + |AR,| (24)

From this bounds, we construct a selectivity density
shown in Fig. 3 with the average equal to the selectiv-
ity estimate from the histogram and B; = Br = AR.

5 Example

Assume that we want the salaries of top 50 paid em-
ployees whose age is less than 40. Selectivities pre-
sented in the following table were determined from the
system statistics using standard estimation techniques.

Predicate Selectivity | Max Error
age < 40 0.4 0.2
salary > 100K | 0.1 0.3

Maximal errors for the open range selections was mea-
sured and stored with other system statistics. Sup-
pose that the Golden Search technique is currently try-
ing to evaluate the cost function (Eq. (7)) for cutoff
k = 100K. Assuming that the system is configured
with 7 = 4, we construct the initial distribution for
age predicate, as shown in Fig. 4. Similarly, initial
distribution for salary > 100K is shown in Fig. 5. In
general, the number of columns to the left of the aver-
age 17, and to the right of the average ng is determined
by the following equations:

nBr, = nrBr
nL,+nNr = 1N

Result of multiplying these two selectivity distribution,
multiplied by the total number of input tuples (1,000),
is shown in Fig. 6. From Fig. 6 we conclude that the
probability of restart for kK = 100K is 75% because 3
out of 4 columns are less than 50. In a similar man-
ner, one would continue with the next iteration of k
and stop when the minimum is bounded with sufficient
precision (e.g., 1/10 of the bucket width).

6 Performance Evaluation for Selec-
tion and Join Queries

In the following sections, we have applied the ideas
developed so far to the optimization of Top N queries
on a single table or a join. We compare execution
times for the following three algorithms, using average
execution time for 15 randomly generated input data
sets:

Traditional: Compute all answers, sort, and return
the top N.

Naive: Estimate the cutoff parameter for top 1.2 N
(20% safety margin) using available system statis-
tics.

0.4 : : : : 0.4 0.4
03}] 03} 03}
2
£
E 02t] 02| 0.2t
[e]
s
0.1t] 01t 0.1t
0 : : : : 0 0
0 02 04 06 08 1 0 01 02 03 04 05 0.6 0 20 40 60 80 100 120 140

selectivity on age

Figure 4: Selectivity distribution of
predicate age < 40.

Probabilistic: Determine the cutoff parameter prob-
abilistically, using available system statistics (in-
cluding the measured ¢).

We varied several parameters: (1) Skew of the underly-
ing data distribution (Zipf parameter[16] Z, by default
one). (2) Number of buckets in the histogram. (3)
N, the number of tuples selected, by default 1,000.
(4) s, the size of the random sample used to estimate
€. We fixed the total number of tuples in the data
file (100,000), and the total spread of the data, which
is approximately equal to the number of distinct val-
ues (5,000). We estimated execution times by using
standard analytical formulas for cost estimation [12],
estimating the cost of a disk I/O as 10ms and the
CPU cost of a tuple swap (in sorting) as 10us. Our
results show the performance gains to be sufficiently
large that the relative merits of our probabilistic ap-
proach hold regardless of the approximations inherent
in this simple estimation of execution time.

6.1 Top N on a Single Table Selection Query

Consider the query that asks for the Top N employees
by salary. Assume that the Employees table is neither
sorted nor indexed on salary field. As suggested by [1],
the best plan for this query is probably to use range-
partitioning sort. However, the crucial question is how
many partitions to materialize. In order to simplify
our presentation, we consider only two partitions, one
which is materialized and sorted and the other with
the rest of the data. (In the terminology of the paper
[1] these two partitions are called the winner and the
loser, respectively.) In the case of multiple (memory-
sized) partitions, there will still be two large groups,
one that contains materialized partitions and the other
that contains unmaterialized ones. Therefore, our sim-
plified analysis and conclusions would still hold in the
more complex multi-partition case. We discuss the pa-
rameters varied and the corresponding figures next.
Data Skew: Fig. 7 has the number of histogram
buckets fixed to one, implying the uniformity assump-
tion. When data is really uniform (Z = 0), the naive

3

selectivity on salary

Figure 5: Selectivity distribution of
predicate salary > 100K.

final cardinality

Figure 6: Output cardinality dis-
tribution.

and the probabilistic algorithm have the same per-
formance. With a large data skew, uniformity as-
sumption becomes significantly violated and the naive
algorithm frequently runs into restarts. Notice that
restarts are more expensive that the traditional scan
+ sort approach. The probabilistic algorithm handles
skew gracefully by just becoming more pessimistic in
choosing the cutoff.

Number of Buckets: Fig. 8 shows that as the
number of buckets increases, the difference between
the probabilistic and the naive algorithm becomes less
pronounced. This is due to the fact that with a larger
number of buckets, the histogram error falls below 20%
in which case the naive algorithm will not restart.

Top N selected: Fig. 9 shows that the naive and
the probabilistic algorithm converge as N increases.
This is because of the fact that eventually the 20%
overestimate becomes adequate (conservative), pro-
vided that N is large enough. For small N, 20% obvi-
ously does not provide enough safety margin.

Sample Size: Fig. 10 shows that the sample size
of 100 or more (as predicted by Eq. (13)) is satis-
factory for this experiment, and that the performance
of the probabilistic algorithm is not sensitive to small
variations in the sample size.

6.2 Top N on Equi-Join Queries

Consider an equi-join query of two identical tables that
have on average 20 duplicates for each value in the join
column, augmented by Top N operator on an indepen-
dently distributed column. In this section, we compare
the performance of naive and probabilistic algorithms
on equi-join queries such as this. We used the same
data generator as for the selection queries, which im-
plies that the average number of duplicates for a cer-
tain attribute value is 20. We discuss the parameters
varied and the corresponding figures next.

Data Skew: Fig. 11 shows the increased gap in
performance as the data skew increases initially, due
to the fact that the naive algorithm runs into restarts.
Restarts for the Naive algorithm become more com-
mon for increasing skew because the histogram esti-

Fixed N = 1K, buckets = 1, sample = 100

100 ¢ 20% Overestimate heuristics —— |
Probabilistic optimization -+

S traditional
3 80 7
L2,
[}
g 60 r :
5 P
3 40 t - 7
2 e
n e

20 | |

0 ‘ ‘ |

0 0.5 1 15 2 25 3
Skew in the data frequencies (Z parameter)

Figure 7: Execution time vs. data skew, using trivial
(1 bucket) histogram.
Fixed Z = 1, buckets = 1, sample = 100

100 20% Overestimate heuristics —— |
Probabilistic optimization -+
oy traditional -
3 80 r |
2,
()
E e0f]
c
i)
3 40 f . |
Q
x
w USRS B
20 b]
0 : : ‘ ‘
2000 4000 6000 8000 10000

Top N required

Fixed Z = 1, N = 1K, sample = 100

100 | 20% Overestimate heuristics ——
Probabilistic optimization -+
. traditional -
o 80]
&2,
(]
£ 60 |]
c
Rl
3 40 +]
Q
b
i
20 BT~]
0 1 1 1 1
0.1 0.2 0.3 0.4 0.5
Histogram Size [KB]
Figure 8: Execution time vs. number of buckets in
histogram.
Fixed Z =1, N = 1K, buckets = 1
100 | 20% Overestimate heuristics ——
Probabilistic optimization -+
. traditional -
o 80]
2,
(]
£ 60 |]
c
Rl
3 40 + g
Q
x
i
207 7
0 1 1 1
50 100 150 200

Random Sample Size

Figure 9: Execution time for different values of Top N Figure 10: Execution time vs. sample size used to cal-

selected (in percents of relation size).

mates become increasingly unreliable. However, al-
gorithms converge for the extreme skews because the
result of the equi-join query goes to zero (no matches)
and both algorithms select the whole result (N is larger
than the result size).

Size of Histogram: Fig. 12 shows that the naive
algorithm improves as the histograms become larger,
as expected. The probabilistic algorithm improves too
but the trend is too small to be visible.

Top N Selected: Fig. 13 shows that the differ-
ences between algorithms are less pronounced when
larger N is selected, because the 20% overestimate be-
comes adequate for larger N. The reasoning here is the
same as in single table case.

Number of Joins: Fig. 14 shows that the naive
algorithm does not work for more than 2 way joins on
the test data. The reason for this is twofold. First, the
quality of the estimates deteriorates rapidly with the
number of joins, thus making the restarts more likely.
Second, the punishment for restart skyrockets due to
the large join size (100,000 * 20 * 20 tuples for the
3-way join).

culate e.

In general, join experiments reflect the fact that es-
timating join selectivity is much more difficult than
estimating selectivity of range predicates [4], and con-
sequently, the probabilistic approach is of greater value
in this case.

7 Improvements on Some Common
Top N Query Evaluations

In this section we consider two cases in which signif-
icant additional improvements over the standard Top
N query processing are possible: Top N on aggregate
queries and Top N over distributed unions.

7.1 Efficient Evaluation of Top N Queries on
Aggregates

Consider a Top N aggregate query such as this one
asking for the N most common ages among employees:

select age, count(age) from Employees emp
group by age order by count(age)
stop after N

Fixed N = 1K, M =0.5

120 + 20% Overestimate heuristics —— -
Probabilistic optimization -+~
= 100 L traditional — |
Q
L,
) 80 ¢
£
§ oof —
3
o 40 + 1
W Y +
20 1
0 ! ! ! ! !
0 0.5 1 15 2 25 3
Skew in the data frequencies (Z parameter)
Figure 11: Execution time vs. data skew.
FixedZ=1,M=0.5
120 + 20% Overestimate heuristics —— -
H\ Probabilistic optimization -+~
= 100 | traditional — |
[0}
92,
) 80 r 1
£
§ oof |
5
o
] o 1
L e Homommmmmooes -
20 1
0 ! ! ! ! ! ! ! ! !
0O 10 20 30 40 50 60 70 80 90 100

Top N selected [100 tuples]

Fixed N=1K,Z=1

20% Overestimate heuristics ——
Probabilistic optimization -~

100 traditional

120 |

60 r 1

40 |]

Execution time [sec]

20 r 1

0 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Size of the histograms [KB]

Figure 12: Execution time vs. number of buckets in the

histogram.
FixedN=1K,Z=1,M=0.5

1000 -
20% Overes{‘imate heuristics ——
Probabilistic optimization -+
— 800 r j traditional = A
g f
= |
] L ¥ |
= 600
c .
S
5 400 ¢ |
o
(] .
n g
W /_",
200t # |
o LT ‘
! 3

Number of joins

Figure 13: Execution time for different values of Top N Figure 14: Execution time dependency on the number

selected (in thousand of tuples).

Given a small candidate set of “frequent” ages,
we can scan the data to compute accurate frequency
counts, maintaining one main memory counter per
candidate age, and then select the top N by frequency.
The main problem is to identify a small set of frequent
age values that includes the top N ages by frequency.
We discuss two alternative evaluation strategies.

(I) Reduction to an Iceberg Query: The idea
is to replace the Top N operator by the equivalent se-
lection. We need to estimate the cutoff value x for
count(age), then group employees by age and com-
pute the counts above the cutoff. Given the cutoff «,
we can turn the above Top N query into an Iceberg
query, allowing us to use the algorithms proposed in
[3], as follows: just replace the stop after clause with
having count(age) > k. Using this approach, the algo-
rithms of [3] require two full scans of the dataset (one
to identify the “frequent” ages, and one to compute
their counts), and there is the possibility of additional
scans in the case of restart (due to the Top N nature
of our main query).

of joins.

(IT) Direct Use of a Histogram: This approach
requires a histogram on the Top N attribute (age in
this example). Let the largest error in equality selec-
tion on this histogram be FE. Using the histogram,
choose an attribute value V that has the smallest
frequency F' among the N attribute values with the
largest frequencies. The actual dataset may have a fre-
quency for value V that is as low as F'— E. Also, other
frequencies in the histogram may be underestimated,
and so the candidate set (for inclusion in the Top N) is
any value whose histogram frequency is above F' —2F.
The existence of a histogram therefore allows us to
identify a candidate set of frequent attribute values
that is conservative: the top N values by frequency are
guaranteed to be here (provided that the error bounds
stored with the histogram are accurate!). This elim-
inates the problem of restart, and further, the candi-
date set generation is based purely on the histogram.
The database is scanned once to count frequencies for
each candidate “frequent” attribute value. In Fig. 15
we present experimentally measured number of candi-
dates for the example Top N query on a synthetically

Fixed N=5 M=1
10000 . ! .

10000

Fixed Z=1 N=5

Fixed Z=1 M=1

1000 ¢ 1000 ¢

100 100

10 ¢+ 10 ¢

Number of candidates

10000

1000 ¢

100

10 ¢

1 L L L L L
0 05 1 15 2 25 3
Frequency skew (Z)

l L L L L L L
05 1 15 2 25 3 35 4
Histogram Size (KB)

l L L L L L L L L
1 2 3 456 7 8 910
Top N values requested

Figure 15: Number of candidates generated by the direct histogram usage as a function of data skew, histogram

size, and number of tuples requested.

generated data set. The three graphs in Fig. 15 show
expected trends in the effectiveness of the direct his-
togram alternative, which can be summarized as fol-
lows:

1. Number of candidates decreases as the data skew
increases. This is expected behavior since it is
easier to identify the Top N candidates when there
are large differences among frequencies.

2. Number of candidates decreases as the histogram
precision (size) increases. This is because the er-
ror decreases when the size is increased, making
the candidate threshold frequency F' — 2F higher.

3. Number of candidates exponentially increases
with N (number of tuples requested). This is
mainly an artifact of the Zipf distribution, which
is exponential.

The conclusion of this section is that the direct his-
togram method of finding the candidate set is an ex-
cellent way to answering Top N queries on aggregates
under the circumstances of high skew, large histograms
(> 1K B), and small N.

7.2 Lazy Evaluation of Top N Over Dis-
tributed Unions

In a distributed environment, a Top N query could be
run in parallel, ensuring the shortest response time.
However, this may unnecessarily waste the comput-
ing resources of remote sites. We can reduce resource
consumption by waiting to access a new site until it is
necessary to do so, at the cost of slowing the execution.

If the user chooses to conserve the resources, what
is the proper order of accessing the sites so that the
number of accessed sites is minimal? We propose to
access the sites in the order of estimated probabilities
that they will be useful in answering the query. Sup-
pose that at a certain site S the maximum value for
the field of interest is Mg. If Mg is less than the cutoff
parameter k, we will certainly not access the site S.
However, even if kK < Mg there is still a chance that
the site S will not be accessed because the s might be

underestimated. The probability of accessing the site
S is the probability of restart when x = Mg. (The
Top N query is translated to selection above the cutoff
parameter.) In other words, if K = Mg and no restart
occurs than the site S need not be accessed. So, the
sites should be accessed in the order of the decreasing
probability of being needed. Because the probability
of restart is a monotonically decreasing function of the
cutoff parameter, this order coincides with the order
of decreasing Mg. The benefits of the lazy approach
can be potentially large, as shown in Fig. 16. The
reduction of the resource usage for certain values of N
is due to the fact that one connection to the remote
source was saved. In this experiment, we used a union
with 20 members whose data are identically but inde-
pendently distributed.

8 Useful Variants of Top N Queries
8.1 Omnline Top N with Confidence Estimates

Motivated by the ideas of Online Aggregation [6], we
consider an online version of the Top N operator. On-
line operators are characterized by providing (1) ap-
proximate answers that are periodically updated, and
(2) some probabilistic guarantees about the (degree of)
correctness of the current answers. An online Top N
operator should therefore provide a set of N or fewer
answers that are likely to be in the Top N list, along
with associated probabilities indicating the likelihood
that a given answer will be in the final Top N list.

Our probabilistic framework provides the infras-
tructure to implement such an operator. Consider,
for example, a Top N query on a single table. The sys-
tem will periodically display the current set of tuples
that satisfy the cutoff predicate. The probability of a
value x not being in the Top N results is the probabil-
ity of no restart happening when k = z. Equivalently,
the probability of a selected value z being in the final
Top N values is the probability of restart when k = =z,
where the probability of restart is calculated using Eq.
(6). These probabilities do not depend on the order in
which the data is read.

In the event of restart, while getting all N results

40 ‘

Aggressive ——
Lazy —— 1

35
30 r 1
25 1

20 1

10 o N 4 1

Resource usage [sec]

5t 4

o ! ! ! ! !
400 600 800 1000 1200 1400 1600 1800 2000
Top N selected

Figure 16: Total resource usage for a union consisting Figure 17:
specified restart probability for single table scans

of 20 members with trivial histograms.

will take longer, the user at least has a subset of K
results which, as of the time restart is initiated, are
guaranteed to be the top K. If K is sufficiently close
to N, the user may well terminate computation at this
point (after all, the choice of N is likely to be rather
ad hoc in the first place).

8.2 Fuzzy Top N: An Alternative Formulation
of Top N

Top N queries require exactly N answers, and the sys-
tem has to guarantee N results by restarting the query
if necessary. We observe that many times, users may
not insist on exactly N answers but may be ready to
accept less. We formalize this intuition by allowing a
user to specify a bound on the likelihood of restarts.
So if a user is willing to accept a small likelihood of
restart, the system can compute the cutoff kK more ag-
gressively, and find answers in less time. Of course,
as k is set more and more aggressively, the likelihood
of restart increases, and intuitively, the number of an-
swers computed as of the time of restart decreases. So
the user indirectly also controls the number of answers
that are likely to be computed at the time of restart
by directly controlling the bound on the likelihood of
restart.

In this formulation of the problem, the cutoff & is
determined solely by p and N (and of course data dis-
tribution) but not by the estimated execution time.
The desired cutoff is such that it minimizes |r — p|
where r is the probability of restart (defined in Eq.
(6)) and p is the probability of calculating N or more
answers (given by the user). For minimization one can
again use the Golden Search technique. After this cut-
off is determined, we could just use a traditional op-
timizer to optimize the query augmented with equiv-
alent selection. This makes it very easy to support
Fuzzy Top N in an existing system; all that is needed
is a thin layer (using the probabilistic estimation tech-

Fixed C=5000 M=0.25

45 F : : : : : =
Traditional ——

g‘ 40 Probabilistic, Z=2 -+ 1

2, 35 | Probabilistic, Z=1.5 - |

< Probabilistic, Z =1 ~x

5] lo 4

2 30

(O]

= 25 o 1

9 20 + Gq oo e b

o 4

£ 15+ & 1

2 10 D 7777777777777777777 o 1

X Tl .

| |]

0 L L L L L L L ~
0 01 02 03 04 0506 07 08 09 1
Probability of restart requested

Execution time dependency on user-

niques presented here) to augment a query with a cut-
off selection predicate.

We have experimentally measured the query exe-
cution times (not including restart) for various restart
probabilities requested and the skew of the input data.
In Fig. 17 we show the results for the single table Top
N query for input data files of 100,000 tuples spread
over attribute range of 5,000 distinct values. The top
10,000 answers were requested and the histogram size
was fixed to 0.25 KB. For comparison, we also include
the time for the Traditional alternative which would
sort all the data and return first N tuples only. Fig.
17 indicates that for low skews the execution time is
not very dependent on the probability of restart. This
is due to the fact that a 0.25KB compressed histogram
can bound the possible cutoff values well within a small
range of attribute values. On the other hand, datasets
with high skew require much longer execution time for
low values of the probability of restart. This can be
explained by the fact that with high skew there are
certain attribute values that make up the bulk of the
distribution. Selecting such a value ensures no restart
with certainty and not selecting it ensures a restart
with certainty. When choosing between zero and one,
the system chooses zero for small restart probabilities,
effectively selecting and sorting large chunks of input
data.

9 Future Work

We plan to examine the benefits of the probabilistic
optimization for traditional select-project-join queries.
Probabilistic query optimization should reduce the av-
erage execution time in cases when plan’s cost is not a
linear function of resources that vary within the non-
linear region. Example of such cases are the join cost
formula non-linear dependency on the available mem-
ory. Another example is the problem of executing
queries that refer to relations scattered over a wide-

area network [14]. The challenge here is to come up
with plans whose execution times are not too sensitive
to the possible delays in the network. Yet another ex-
ample can be found in distributed query processing,
where the optimizer has to distribute the jobs to the
sites depending on the machine loads.

10 Conclusion

We have presented a new solution to the optimization
of Top N queries that offers an interesting, and in some
ways simpler, alternative to the approach of [9, 1].
Our extensions to a traditional query optimizer are
relatively easy to implement and they show significant
improvements in execution times over the naive ap-
proach to aggressive pushing of STOP operator. The
underlying idea of taking imprecision in estimates into
account during query optimization has much wider ap-
plicability than just Top N queries.

References

[1] Michael J. Carey and Donald Kossmann. Reduc-
ing the braking distance of an sql query engine.
In Proceedings of the International Conference on
Very Large Data Bases, 1998.

[2] P. Seshadri F. Chu, J. Halpern. Least expected
cost query optimization: An exercise in utility.
In Proceedings of the International Conference on
Very Large Data Bases, 1999.

[3] Min Fang, Narayanan Shivakumar, Hector
Garcia-Molina, Rajeev Motwani, and Jeffrey D.
Ullman. Computing iceberg queries efficiently.
In Proceedings of the International Conference on
Very Large Data Bases, pages 299-310, 1998.

[4] Yannis E. Ioannidis and Stavros Christodoulakis.
On the propagation of errors in the size of join
results. In Proceedings of ACM-SIGMOD Con-
ference on Management of Data, 1991.

[5] H.V. Jagadish, Nick Koudas, S. Muthukrishnan,
Viswanath Poosala, Ken Sevick, and Torsten
Suel. Optimal histograms with quality guaran-
tees. In Proceedings of the International Confer-
ence on Very Large Data Bases, 1998.

[6] Helen J. Wang Joseph M. Hellerstein, Peter
J. Haas. Online aggregation. In Proceedings of
ACM-SIGMOD Conference on Management of
Data, Tucson, Arizona, 1997.

[7] A. N. Kolmogorov.
unknown distribution function.
Statist., pages 461-463, 1941.

Confidence limits for an
In Ann. Math.

[8] Alon Levy, Anand Rajaraman, and Joann Or-
dille. Querying heterogeneous information sources
using source descriptions. In Proceedings of the

[10]

[13]

[15]

International Conference on Very Large Data

Bases, 1996.

Donald Kossmann Michael J. Carey. On Say-
ing “Enough Already!” in SQL. In Proceedings
of ACM-SIGMOD Conference on Management of
Data, Tucson, Arizona, 1997.

Viswanath Poosala, Yannis Ioannidis, Peter Haas,
and Eugene Shekita. Improved histograms for se-
lectivity estimation of range predicates. In Pro-
ceedings of ACM-SIGMOD Conference on Man-
agement of Data, pages 294-305, June 1996.

Raghu Ramakrishnan and Avi Silberschatz. Scal-
able integration of data collection on the web. In
Technical Report: CS-TR-98-1376. University of
Wisconsin-Madison, June 1998.

Leonard D. Shapiro. Join processing in database
systems with large main memories. In ACM
Transactions on Database Systems, volume 11,
pages 239-264, 1986.

Vivek R. Narasayya Surajit Chaudhuri, Ra-
jeev Motwani. Random sampling for histogram
construction: How much is enough? In Proceed-
ings of ACM-SIGMOD Conference on Manage-
ment of Data, pages 436447, 1998.

Tolga Urhan, Michael J. Franklin, and Laurent
Amsaleg. Cost based query scrambling for initial
delays. In Proceedings of ACM-SIGMOD Con-
ference on Management of Data, pages 130-141,
1998.

Saul A. William H. Press, Brian P. Flannery and
William T. Vetterling. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge Uni-
versity Press, 1993.

G. K. Zipf. Human Behavior and the Principle
of Least Effort. Addison-Wesley, Reading, MA,
1949.

