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constructs for expressing such queries. Informix sup-ports FIRST N, Microsoft has SET ROWCOUNT N, IBM'sDB2 has FETCH FIRST N ROWS ONLY, and Oracle sup-ports LIMIT TO N ROWS.The simplest way to support Top N queries is toexecute the query, sort the result in the desired order,and then discard all but the �rst N tuples. Comput-ing and sorting a large intermediate result and thendiscarding most of it is a waste of resources. It wasshown [9] that large gains in performance are possiblewhen the database system utilizes the fact that only acertain number of answers are needed.A Top N query on an attribute X , denoted byTopXN , is equivalent to the simple selection query:TopXN � �X>� (1)where � is a cuto� parameter determined by N andby the data distribution. Consider the following ex-ample query on a table that is neither sorted nor in-dexed: \List the top 10 paid employees in the salesdepartment". This query translates into: \List theemployees from the sales department whose salary isgreater than �", where � is determined by the distri-bution of employees' salaries, and must be determinedby the optimizer. If � is too high, we will retrieve lessthan N employees and therefore will have to restartthe query with smaller �. On the other hand, if �is too small, the query will unnecessarily run longer.Because restarts involve repetition of work, they arecharacterized by a large jump in query cost.How to estimate � is a nontrivial problem. If thequery optimizer had complete knowledge of the datadistributions, it could estimate � exactly, and elimi-nate restarts. However, because the optimizer's knowl-edge of data distributions (usually maintained in theform of histograms) is not perfect, it is better to un-derestimate � as a guard against restart. The maincontribution of this paper is to propose a probabilisticoptimization framework that takes into account im-precision in the optimizer's knowledge of data distri-bution and selectivity estimates. Using probabilistic



reasoning, the optimizer arrives at the expected cost,and the optimal cuto� parameter is the one that min-imizes expected cost. While we apply the probabilis-tic optimization framework to the problem of estimat-ing cuto�s for Top N queries, the approach clearlyhas broader applicability to optimization problems inthe presence of important parameters (e.g., number ofavailable bu�ers, number of concurrent queries) thatcan only be approximately estimated.The rest of this paper is organized as follows. Afterreviewing related work, we introduce our probabilis-tic framework in Section 3. We introduce probabilisticoptimization of Top N queries in Section 3. We de-velop this idea further in Section 4, where we showhow to obtain selectivity and cardinality distributionsfor various kinds of selection predicates, starting withtraditional histograms. We then present performanceresults for Top N queries involving selections and joinsin Section 6. Next, in Section 7 we consider two classesof Top N queries that are more complex, involvingaggregates and unions. The �rst class, involving ag-gregates, shows an interesting and useful connectionto the class of Iceberg queries [3]. In Section 8, wethen revisit the basic Top N problem formulation andidentify two useful variants that can be supported us-ing our techniques. These include an \online" variantin which answers are eagerly returned, together withsome con�dence bounds that they are indeed in the\top N", and a variant in which the user can specify aprobability that returned answers will include all \topN", thereby controlling the time required to computeanswers.2 Related WorkCarey and Kossman [9, 1] proposed a new operatorcalled STOP AFTER N (STOP for short) to terminatecomputation after the �rst N results are computed.Large performance gains are possible when the STOPoperator is pushed down the plan tree. In contrast,while we can use the STOP operator at the root ofthe query sub plan, we never push the STOP operatordown the plan tree. Instead, we push the equivalentselection (1), using standard techniques for handlingselections. Our approach can lead to signi�cantly bet-ter plans in some situations, as illustrated in exampleplans in Fig. 1. Suppose that the best plan foundby the STOP pushdown is the one shown in Fig. 1(a). Obviously, this plan can only be made cheaper byreplacing the STOP operator above relation A withthe equivalent selection and thus eliminating the sort-ing, as shown in Fig. 1 (b). Notice that the �nalSORT is still necessary in both versions because thehash join does not preserve sorting. All the implemen-tations of STOP require at least partial sorting of theinput stream, and [1] proposes techniques for reducingthe sorting cost. In contrast, our approach does notrequire sorting, except for the �nal result.
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Figure 1: The plan with equivalent selection (b) maybe much cheaper to execute.Technically, the focus of our paper is on a prob-abilistic framework for optimization, speci�cally forcomputing the selection cuto� for Top N queries. Thisproblem is not considered in [9, 1] or other previouswork.A concurrent work [2] has independently suggestedthat the optimizers should minimize expected cost ofa query, and therefore have introduced the probabil-ity distributions for certain parameters. However, thiswork does not deal with Top N queries, which is thefocus of our approach.3 Framework for Probabilistic QueryOptimizationEvery Top N query is equivalent to a selection query(see Eq. (1)) with a speci�c cuto� parameter � = �crit.Formally, �crit is de�ned as the largest cuto� param-eter � that does not cause restart. If complete knowl-edge of all selectivities and data distributions wereavailable, restarts would never happen since one wouldalways choose � = �crit. However, since the optimizeronly has approximate knowledge of distributions andselectivities, it is impossible to guarantee that morethan N tuples will be eventually retrieved, short ofchoosing � = �1. Nonetheless, we can still rea-son about the likelihood of restart and choose � ac-cordingly. To enable such probabilistic reasoning, wepropose to generalize selectivity estimates to selectivityprobability distributions.We consider all selectivities to be random variablesand denote a point in this multidimensional probabil-ity space as � and the associated probability as p(�).We then postulate that the optimizers should �nd aplan with the minimum expected value of the cost C(�):E(C) =X� C(�)p(�) (2)Even though this work focuses on the random natureof selectivity estimates, our approach applies to otheruncertain quantities that enter cost formulas such as



allocated memory and connection bandwidths. In fact,the observation that optimizers should minimize ex-pected cost was concurrently made by Chu, Halpernand Seshadri [2] and applied to the problem of memoryvariability.At this point we note that, traditionally, optimizersevaluate a cost function for expected values of inputparameters C(E(�)) in the hope that this is a goodapproximation for overall expected value of the cost.However, it is well known that the approximation:E(C(�)) � C(E(�)) (3)is true only if C is a linear function of � within therange of variability of �. While most of the cost for-mulas are not linear, in practice, they are usually wellapproximated by linear values in the range of variableparameters and consequently, Eq. (3) holds.Problem of Top N optimization, is a typical examplewhere Eq. (3) does not hold, because the jump in thetotal cost C due to the restart cost R is within therange of possible cuto� values. If we denote the initialcost by I , and introduce a step function � which is0 when restart does not happen and 1 otherwise, wehave: C(�) = I(�) + �(�)R(�) (4)We note that the selectivity of the cuto� � is includedin the Eq. (4) as one dimension of �. Also, Eq. (4)assumes that only one restart is possible. Even thoughmultiple restarts could be included in this framework,it would be impractical to optimize for multiple cuto�parameters. Therefore, in our model, restart operationamounts to retrieving the complement of the equiva-lent selection query, sorting the result and stoppingafter required number of tuples is returned. Assumingthat R is approximately linear in the possible selectiv-ities of �, we can write:E(C) � E(I) +E(R)X� �(�) p(�) (5)P� �(�) p(�) is the probability of restart (r) whichcan also be written as the probability that fewer thanN answers are generated:r = N�1Xn=0 p(n) (6)where p(n) is the probability that the input cardinalityto the Top N operator will be n.Finally, using the traditional approximation (Eq.(3)) the objective function, parameterized by � be-comes: Cost(�) � Init(�) + r(�) Rest(�) (7)where Init(�) denotes the traditional cost of processingthe query with cuto� parameter � and Rest(�) denotes
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(optimal) Q, κκFigure 2: Architecture for incorporating �estimatorinto a traditional DB system.the traditional cost of processing the restart that willcomplete the answer to the query.A cuto� parameter, �, is optimal if it minimizesthe value of the query cost function (Eq. (7)). Werestate the problem of optimizing a Top N query asthe problem of �nding the optimal cuto� parameter�opt and the associated execution plan. To �nd theminimum of the cost function (Eq. (7)) we can usea standard function minimization algorithm such asGolden Section Search [15]. The probability of restartis evaluated for every trial � using Eq. (6).By using the traditional approximations for ex-pected cost values (Eq. (7)), we are able to reuse thetraditional query optimizer for Top N query subtreeoptimization. The relationship between the equiva-lent selection (�) estimator, system statistics and anoptimizer are shown in Fig. 2. Equivalent selection(�) estimator uses Golden Search to �nd optimal �,and in the process calls the optimizer repeatedly toevaluate Init(�) and Rest(�) and consults the systemstatistics. For Golden search algorithm, one needs tobound the �. Initial bound would be the column min-imum for the low and the column maximum for thehigh. Golden search algorithm then successively splitsthe bound until it becomes su�ciently small.Init(�) and Rest(�) are expensive expressions toevaluate because they require optimization of thequery subtree. On the other hand, the best plan forInit(�) and Rest(�) are likely not to change for smallchanges in �. Consequently, a further approximationwould be to �nd the best plan for these two queriesonly once. Of course, Init(�) and Rest(�) shouldstill be re-evaluated for every trial � because the costwill change depending on � even if the plan does notchange.3.1 Probability Distribution MaintenanceIn this section we describe how to practically main-tain cardinality distributions; the ideas apply to main-taining selectivity distributions as well. In general,a cardinality distribution is completely speci�ed by(cardinality� value; probability) pairs, but maintain-ing all such pairs is not practical. A simple approxi-mation is to only store a certain number of cardinalityvalues whose associated probabilities are all the same.



For example, a selectivity vector of size � could berepresented as an array:� = f�1; �2; : : : ; ��gwhere �i are all equally probable selectivities. Bychoosing this alternative we don't have to store in-dividual probabilities, since they are all the same andequal to 1=�. The size of the probability vector (�)is system dependent. A selectivity distribution can berepresented in a similar manner.To �nd the result of multiplying a cardinality distri-bution with a selectivity distribution, we just multiplyevery possible selectivity with every possible cardinal-ity. However, the resulting distribution will have �2elements and must be reduced to only � elements; thisapproximation can be carried out by replacing � neigh-boring values with their average.4 Estimating Initial Probability Densi-tiesWe have discussed how to propagate cardinality den-sities through the plan tree, by multiplying the op-erator selectivity and the input cardinality densities.However, we have not yet addressed the problem of es-timating the initial cardinality density and the initialselectivity density for every predicate in the query; weturn to this next. Database systems usually maintainexact cardinalities for the base tables. Therefore, ini-tial cardinality densities are likely to be single valueswith probability one. Estimating selectivity densitiesis much more complex. Keeping in mind that our es-timates will be used for optimization purposes only,precision is not of crucial importance, so we choosesimplicity as our guiding principle.We will estimate initial selectivity distributionsfrom histograms. In order for the selectivity distribu-tion to be consistent with the traditional (single value)histogram estimate, we require that the expected valueof the selectivity distribution coincide with the tradi-tional selectivity estimate. 1 Therefore, we proposeto construct a selectivity distribution whose averageis equal to the traditional selectivity for a predicate,call it �. As described in Sec. 3.1, our distributionconsists of a set of equally probable cardinality values.Finally, we need to bound our distribution to the leftand to the right. Distribution spread re
ects the pre-cision of the histogram estimates; the more accuratethe histogram is the tighter the bounds.Summarizing these ideas, we arrive at the genericdistribution shown in Fig. 3. Notice that, in general,the left bound (BL) need not be equal to the rightbound (BR). For example, bounds for a predicate can1Given a predicate, say X < 100, its selectivity is estimatedfrom a histogram on the data distribution by adding counts inbuckets to the left of the point X = 100 and taking the ratio tothe total count over all buckets.
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Figure 3: Example of an initial selectivity density.be asymmetric because a predicate selectivity may notexceed one nor be less than zero. Given the averagevalue (traditional estimate � from a histogram) andbounds (BL and BR) one can easily construct a simpledistribution with a certain number of possible valueslocated equi-distantly to the left of the average andthe remaining values positioned equi-distantly to theright. Equi-distant positioning is chosen for simplicity,notice that the distance between the left-hand side val-ues may not be the same as the corresponding distanceon the right. The total number of values in a selectiv-ity distribution is a predetermined constant (we used32 in our experiment). Number of values to the leftof � is calculated so that the expected value of all thedistribution is equal to �. In the following sectionswe will discuss how to estimate the two distributionparameters BL and BR for common predicates.4.1 Estimating the Quality of a HistogramDistribution parameters BL and BR are dependent onthe quality of the histogram on the referenced col-umn. Research on histograms has mainly focused onimproving their precision [10]. The �rst paper to in-troduce the idea of augmenting a histogram with somemeasure of accuracy is [5]. They suggest maintainingthe largest equality selection error within each bucket.This error is determined by comparing histogram esti-mates to the actual result of an equality selection.Although the idea of maintaining some error esti-mates within a histogram is a good one, maintainingper bucket information has the following disadvan-tages: (1) Per bucket error information will increasethe size of the bucket and therefore use space thatcould otherwise be used to increase histogram pre-cision. (2) Selection errors for range queries will belargely overestimated if they are based on the largesterrors per bucket. This is because errors in single val-ues tend to cancel each other, and simply adding themup will greatly overestimate the error.We propose to maintain the worst-case error for anopen-ended range predicate. This has an advantage



of requiring little space, independent of the numberof buckets, and it provides good bounds for queries oftype field � value. More speci�cally, let x denote thedomain values, Preal(x) denote the cumulative proba-bility distribution of the real data set and Phist(x) de-note the cumulative probability distribution deducedfrom a histogram. Then, we de�ne � as:� = max�1<x<1 j Preal(x)� Phist(x) j (8)In other words, � is the maximum deviation of the se-lectivity of the predicate field � value between thehistogram and the real data set. We propose to exper-imentally measure � for each histogram and maintainthis value as a part of the system statistics. Noticethat a table without a histogram is usually assumedto have uniform distribution that corresponds to thetrivial histogram, with only one bucket. Therefore,without the loss of generality, we consider every tableto have an associated histogram.The most precise (and the most expensive) way ofmeasuring � is by sorting the original table and per-forming the full scan. A much cheaper way is to takea random sample of the original table and measure �from the random sample. The crucial question hereis how big a sample is needed in order to estimate �correctly. In general, this depends on the precisionof the histogram: the more precise the histogram is,the larger the required sample. Histogram precision inturn depends on the type of the histogram and on thenumber of buckets �. The most commonly used his-togram in current database systems is the equi-depthhistogram, and so we present a short analysis for ithere. The value of � for an equi-depth histogram isbounded as: � � 1� (9)where � is the number of buckets. Also, by the theo-rem due to Kolmogorov [7] we have:D � �ps (10)where s is the size of the random sample, D is themaximal deviation between the real data set and itssample (Eq. (8)), and � is a number that depends onthe con�dence limit. For 80% con�dence, � � 1. So,the pessimistic estimate of D for 80% con�dence is:D � 1ps (11)To reliably estimate �, D should be much smaller than�, say D � �10 : (12)From formulas (9), (11), and (12) it follows that s canbe approximated by: s � 100�2 (13)

We have veri�ed experimentally that the sample sizeof approximately 100�2 produces satisfactory results.(See Fig. 10).Notice that � can be calculated at the histogramconstruction time, using the single sample for both,building the histogram and estimating �. In fact, therequired sample size is, for the most cases, of the sameorder of magnitude. For example, a histogram with100 buckets (� = 100) would require a sample of sizeof 1 million (Eq. (13)). On the other hand, a recentpaper on equi-depth histogram construction [13] sug-gests that for the reasonable values of con�dence, datasize and deviations from true equi-depth histogram,0.8 million is the recommended sample size.4.2 Estimating Selectivity Probability Den-sity for Open Range SelectionFrom the de�nition of � (Eq. (8)) and the de�nition ofthe cumulative probability density it is clear that themaximal error in the open range selection is �. There-fore, we construct a selectivity density shown in Fig. 3with the average equal to the selectivity estimate fromthe histogram and BL = BR = �.4.3 Estimating Selectivity Probability Den-sity for Equality and Closed Range Selec-tionBy knowing �, one can bound the error in an equalityselection as well. If one denotes the histogram errorin the frequency of a domain value i by �fi then thefollowing condition must hold:�� � jXi=�1�fi � � (14)for any j element of the value domain. One can expressthe error in frequency �fj as:�fj = jXi=�1�fi � j�1Xi=�1�fifrom which it is seen than �fj is bounded as:�2� � �fj � 2� (15)Following the same argument, it can be shown thatthe error in the cardinality result R of the closed rangequery (like a � x � b) is bounded by:�2� � �R � 2� (16)i.e., it is independent of the range. Similar to theopen range selection, we construct a selectivity densityshown in Fig. 3 with the average equal to the selectiv-ity estimate from the histogram and BL = BR = 2�.



4.4 Estimating Selectivity Probability Den-sity for Equi-join SelectionThe resulting cardinality of an equi-join (R) can beexpressed as: R =Xi figi (17)where f and g stands for the frequency vectors of thetwo tables to be joined and i ranges over all domainvalues in the join columns. Error in R can be obtainedby di�erentiating Eq. (17):�R =Xi �fi gi +Xi fi�gi (18)where we have ignored the termPi�fi�fj because itis small compared to the other terms. This expressioncan be further simpli�ed by rewriting:fi = ~fi +�fi (19)gi = ~gi +�gi (20)where ~fi and ~gi stand for the histogram estimate offi and gi respectively. After substituting the aboveexpressions into Eq. (18) and ignoring the terms withtwo di�erentials we get:�R �Xi �fi ~gi +Xi ~fi�gi (21)or by noticing that ~f (and ~g) is constant within abucket b:�R �Xb ~gbXj2b �fj +Xb ~fbXj2b �gi (22)Finally, using the bounds from Eq. (16) we obtain:�R � 2�fXb ~gb + 2�gXb ~fb (23)From these bounds, we construct a selectivity densityshown in Fig. 3 with the average equal to the selectiv-ity estimate from the histogram and BL = BR = �R.4.5 Estimating Selectivity Probability Den-sity for Selections on UnionWe examine the issues related to Top N queries overunions motivated by the following observations:1. Many database integration systems, which are ex-pected to have signi�cant presence on the Web,are built as unions over the base tables (see forexample [8] and [11]).2. Top N queries are one of the most common queriesin the Web environment. We will then especiallybe concerned with running a Top N query on adistributed union.

Maximum error in the resulting cardinality �R of aselection on union is just the sum of all the componenterrors �Ri.�R = j�R1j+ j�R2j+ : : :+ j�Rnj (24)From this bounds, we construct a selectivity densityshown in Fig. 3 with the average equal to the selectiv-ity estimate from the histogram and BL = BR = �R.5 ExampleAssume that we want the salaries of top 50 paid em-ployees whose age is less than 40. Selectivities pre-sented in the following table were determined from thesystem statistics using standard estimation techniques.Predicate Selectivity Max Errorage < 40 0.4 0.2salary > 100K 0.1 0.3Maximal errors for the open range selections was mea-sured and stored with other system statistics. Sup-pose that the Golden Search technique is currently try-ing to evaluate the cost function (Eq. (7)) for cuto�� = 100K. Assuming that the system is con�guredwith � = 4, we construct the initial distribution forage predicate, as shown in Fig. 4. Similarly, initialdistribution for salary > 100K is shown in Fig. 5. Ingeneral, the number of columns to the left of the aver-age �L and to the right of the average �R is determinedby the following equations:�LBL = �RBR�L + �R = �Result of multiplying these two selectivity distribution,multiplied by the total number of input tuples (1,000),is shown in Fig. 6. From Fig. 6 we conclude that theprobability of restart for � = 100K is 75% because 3out of 4 columns are less than 50. In a similar man-ner, one would continue with the next iteration of �and stop when the minimum is bounded with su�cientprecision (e.g., 1/10 of the bucket width).6 Performance Evaluation for Selec-tion and Join QueriesIn the following sections, we have applied the ideasdeveloped so far to the optimization of Top N querieson a single table or a join. We compare executiontimes for the following three algorithms, using averageexecution time for 15 randomly generated input datasets:Traditional: Compute all answers, sort, and returnthe top N.Naive: Estimate the cuto� parameter for top 1:2N(20% safety margin) using available system statis-tics.
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final cardinalityFigure 6: Output cardinality dis-tribution.Probabilistic: Determine the cuto� parameter prob-abilistically, using available system statistics (in-cluding the measured �).We varied several parameters: (1) Skew of the underly-ing data distribution (Zipf parameter[16] Z, by defaultone). (2) Number of buckets in the histogram. (3)N , the number of tuples selected, by default 1,000.(4) s, the size of the random sample used to estimate�. We �xed the total number of tuples in the data�le (100,000), and the total spread of the data, whichis approximately equal to the number of distinct val-ues (5,000). We estimated execution times by usingstandard analytical formulas for cost estimation [12],estimating the cost of a disk I/O as 10ms and theCPU cost of a tuple swap (in sorting) as 10�s. Ourresults show the performance gains to be su�cientlylarge that the relative merits of our probabilistic ap-proach hold regardless of the approximations inherentin this simple estimation of execution time.6.1 Top N on a Single Table Selection QueryConsider the query that asks for the Top N employeesby salary. Assume that the Employees table is neithersorted nor indexed on salary �eld. As suggested by [1],the best plan for this query is probably to use range-partitioning sort. However, the crucial question is howmany partitions to materialize. In order to simplifyour presentation, we consider only two partitions, onewhich is materialized and sorted and the other withthe rest of the data. (In the terminology of the paper[1] these two partitions are called the winner and theloser, respectively.) In the case of multiple (memory-sized) partitions, there will still be two large groups,one that contains materialized partitions and the otherthat contains unmaterialized ones. Therefore, our sim-pli�ed analysis and conclusions would still hold in themore complex multi-partition case. We discuss the pa-rameters varied and the corresponding �gures next.Data Skew: Fig. 7 has the number of histogrambuckets �xed to one, implying the uniformity assump-tion. When data is really uniform (Z = 0), the naive

and the probabilistic algorithm have the same per-formance. With a large data skew, uniformity as-sumption becomes signi�cantly violated and the naivealgorithm frequently runs into restarts. Notice thatrestarts are more expensive that the traditional scan+ sort approach. The probabilistic algorithm handlesskew gracefully by just becoming more pessimistic inchoosing the cuto�.Number of Buckets: Fig. 8 shows that as thenumber of buckets increases, the di�erence betweenthe probabilistic and the naive algorithm becomes lesspronounced. This is due to the fact that with a largernumber of buckets, the histogram error falls below 20%in which case the naive algorithm will not restart.Top N selected: Fig. 9 shows that the naive andthe probabilistic algorithm converge as N increases.This is because of the fact that eventually the 20%overestimate becomes adequate (conservative), pro-vided that N is large enough. For small N, 20% obvi-ously does not provide enough safety margin.Sample Size: Fig. 10 shows that the sample sizeof 100 or more (as predicted by Eq. (13)) is satis-factory for this experiment, and that the performanceof the probabilistic algorithm is not sensitive to smallvariations in the sample size.6.2 Top N on Equi-Join QueriesConsider an equi-join query of two identical tables thathave on average 20 duplicates for each value in the joincolumn, augmented by Top N operator on an indepen-dently distributed column. In this section, we comparethe performance of naive and probabilistic algorithmson equi-join queries such as this. We used the samedata generator as for the selection queries, which im-plies that the average number of duplicates for a cer-tain attribute value is 20. We discuss the parametersvaried and the corresponding �gures next.Data Skew: Fig. 11 shows the increased gap inperformance as the data skew increases initially, dueto the fact that the naive algorithm runs into restarts.Restarts for the Naive algorithm become more com-mon for increasing skew because the histogram esti-



0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

E
xe

cu
tio

n 
tim

e 
[s

ec
]

Skew in the data frequencies (Z parameter)

Fixed N = 1K, buckets = 1, sample = 100

20% Overestimate heuristics
Probabilistic optimization

traditional

Figure 7: Execution time vs. data skew, using trivial(1 bucket) histogram. 0
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Figure 8: Execution time vs. number of buckets inhistogram.
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Figure 9: Execution time for di�erent values of Top Nselected (in percents of relation size). 0
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Figure 10: Execution time vs. sample size used to cal-culate �.mates become increasingly unreliable. However, al-gorithms converge for the extreme skews because theresult of the equi-join query goes to zero (no matches)and both algorithms select the whole result (N is largerthan the result size).Size of Histogram: Fig. 12 shows that the naivealgorithm improves as the histograms become larger,as expected. The probabilistic algorithm improves toobut the trend is too small to be visible.Top N Selected: Fig. 13 shows that the di�er-ences between algorithms are less pronounced whenlarger N is selected, because the 20% overestimate be-comes adequate for larger N. The reasoning here is thesame as in single table case.Number of Joins: Fig. 14 shows that the naivealgorithm does not work for more than 2 way joins onthe test data. The reason for this is twofold. First, thequality of the estimates deteriorates rapidly with thenumber of joins, thus making the restarts more likely.Second, the punishment for restart skyrockets due tothe large join size (100,000 * 20 * 20 tuples for the3-way join).

In general, join experiments re
ect the fact that es-timating join selectivity is much more di�cult thanestimating selectivity of range predicates [4], and con-sequently, the probabilistic approach is of greater valuein this case.7 Improvements on Some CommonTop N Query EvaluationsIn this section we consider two cases in which signif-icant additional improvements over the standard TopN query processing are possible: Top N on aggregatequeries and Top N over distributed unions.7.1 E�cient Evaluation of Top N Queries onAggregatesConsider a Top N aggregate query such as this oneasking for the N most common ages among employees:select age, count(age) from Employees empgroup by age order by count(age)stop after N
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Figure 11: Execution time vs. data skew. 0
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Figure 12: Execution time vs. number of buckets in thehistogram.
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Figure 13: Execution time for di�erent values of Top Nselected (in thousand of tuples). 0
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Figure 14: Execution time dependency on the numberof joins.Given a small candidate set of \frequent" ages,we can scan the data to compute accurate frequencycounts, maintaining one main memory counter percandidate age, and then select the top N by frequency.The main problem is to identify a small set of frequentage values that includes the top N ages by frequency.We discuss two alternative evaluation strategies.(I) Reduction to an Iceberg Query: The ideais to replace the Top N operator by the equivalent se-lection. We need to estimate the cuto� value � forcount(age), then group employees by age and com-pute the counts above the cuto�. Given the cuto� �,we can turn the above Top N query into an Icebergquery, allowing us to use the algorithms proposed in[3], as follows: just replace the stop after clause withhaving count(age)> �. Using this approach, the algo-rithms of [3] require two full scans of the dataset (oneto identify the \frequent" ages, and one to computetheir counts), and there is the possibility of additionalscans in the case of restart (due to the Top N natureof our main query).

(II) Direct Use of a Histogram: This approachrequires a histogram on the Top N attribute (age inthis example). Let the largest error in equality selec-tion on this histogram be E. Using the histogram,choose an attribute value V that has the smallestfrequency F among the N attribute values with thelargest frequencies. The actual dataset may have a fre-quency for value V that is as low as F�E. Also, otherfrequencies in the histogram may be underestimated,and so the candidate set (for inclusion in the Top N) isany value whose histogram frequency is above F �2E.The existence of a histogram therefore allows us toidentify a candidate set of frequent attribute valuesthat is conservative: the top N values by frequency areguaranteed to be here (provided that the error boundsstored with the histogram are accurate!). This elim-inates the problem of restart, and further, the candi-date set generation is based purely on the histogram.The database is scanned once to count frequencies foreach candidate \frequent" attribute value. In Fig. 15we present experimentally measured number of candi-dates for the example Top N query on a synthetically
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Figure 15: Number of candidates generated by the direct histogram usage as a function of data skew, histogramsize, and number of tuples requested.generated data set. The three graphs in Fig. 15 showexpected trends in the e�ectiveness of the direct his-togram alternative, which can be summarized as fol-lows:1. Number of candidates decreases as the data skewincreases. This is expected behavior since it iseasier to identify the Top N candidates when thereare large di�erences among frequencies.2. Number of candidates decreases as the histogramprecision (size) increases. This is because the er-ror decreases when the size is increased, makingthe candidate threshold frequency F �2E higher.3. Number of candidates exponentially increaseswith N (number of tuples requested). This ismainly an artifact of the Zipf distribution, whichis exponential.The conclusion of this section is that the direct his-togram method of �nding the candidate set is an ex-cellent way to answering Top N queries on aggregatesunder the circumstances of high skew, large histograms(> 1KB), and small N.7.2 Lazy Evaluation of Top N Over Dis-tributed UnionsIn a distributed environment, a Top N query could berun in parallel, ensuring the shortest response time.However, this may unnecessarily waste the comput-ing resources of remote sites. We can reduce resourceconsumption by waiting to access a new site until it isnecessary to do so, at the cost of slowing the execution.If the user chooses to conserve the resources, whatis the proper order of accessing the sites so that thenumber of accessed sites is minimal? We propose toaccess the sites in the order of estimated probabilitiesthat they will be useful in answering the query. Sup-pose that at a certain site S the maximum value forthe �eld of interest isMS. IfMS is less than the cuto�parameter �, we will certainly not access the site S.However, even if � � MS there is still a chance thatthe site S will not be accessed because the � might be

underestimated. The probability of accessing the siteS is the probability of restart when � = MS. (TheTop N query is translated to selection above the cuto�parameter.) In other words, if � =MS and no restartoccurs than the site S need not be accessed. So, thesites should be accessed in the order of the decreasingprobability of being needed. Because the probabilityof restart is a monotonically decreasing function of thecuto� parameter, this order coincides with the orderof decreasing MS. The bene�ts of the lazy approachcan be potentially large, as shown in Fig. 16. Thereduction of the resource usage for certain values of Nis due to the fact that one connection to the remotesource was saved. In this experiment, we used a unionwith 20 members whose data are identically but inde-pendently distributed.8 Useful Variants of Top N Queries8.1 Online Top N with Con�dence EstimatesMotivated by the ideas of Online Aggregation [6], weconsider an online version of the Top N operator. On-line operators are characterized by providing (1) ap-proximate answers that are periodically updated, and(2) some probabilistic guarantees about the (degree of)correctness of the current answers. An online Top Noperator should therefore provide a set of N or feweranswers that are likely to be in the Top N list, alongwith associated probabilities indicating the likelihoodthat a given answer will be in the �nal Top N list.Our probabilistic framework provides the infras-tructure to implement such an operator. Consider,for example, a Top N query on a single table. The sys-tem will periodically display the current set of tuplesthat satisfy the cuto� predicate. The probability of avalue x not being in the Top N results is the probabil-ity of no restart happening when � = x. Equivalently,the probability of a selected value x being in the �nalTop N values is the probability of restart when � = x,where the probability of restart is calculated using Eq.(6). These probabilities do not depend on the order inwhich the data is read.In the event of restart, while getting all N results
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Figure 16: Total resource usage for a union consistingof 20 members with trivial histograms. 0
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Figure 17: Execution time dependency on user-speci�ed restart probability for single table scanswill take longer, the user at least has a subset of Kresults which, as of the time restart is initiated, areguaranteed to be the top K. If K is su�ciently closeto N, the user may well terminate computation at thispoint (after all, the choice of N is likely to be ratherad hoc in the �rst place).8.2 Fuzzy Top N: An Alternative Formulationof Top NTop N queries require exactly N answers, and the sys-tem has to guarantee N results by restarting the queryif necessary. We observe that many times, users maynot insist on exactly N answers but may be ready toaccept less. We formalize this intuition by allowing auser to specify a bound on the likelihood of restarts.So if a user is willing to accept a small likelihood ofrestart, the system can compute the cuto� � more ag-gressively, and �nd answers in less time. Of course,as � is set more and more aggressively, the likelihoodof restart increases, and intuitively, the number of an-swers computed as of the time of restart decreases. Sothe user indirectly also controls the number of answersthat are likely to be computed at the time of restartby directly controlling the bound on the likelihood ofrestart.In this formulation of the problem, the cuto� � isdetermined solely by p and N (and of course data dis-tribution) but not by the estimated execution time.The desired cuto� is such that it minimizes jr � pjwhere r is the probability of restart (de�ned in Eq.(6)) and p is the probability of calculating N or moreanswers (given by the user). For minimization one canagain use the Golden Search technique. After this cut-o� is determined, we could just use a traditional op-timizer to optimize the query augmented with equiv-alent selection. This makes it very easy to supportFuzzy Top N in an existing system; all that is neededis a thin layer (using the probabilistic estimation tech-

niques presented here) to augment a query with a cut-o� selection predicate.We have experimentally measured the query exe-cution times (not including restart) for various restartprobabilities requested and the skew of the input data.In Fig. 17 we show the results for the single table TopN query for input data �les of 100,000 tuples spreadover attribute range of 5,000 distinct values. The top10,000 answers were requested and the histogram sizewas �xed to 0.25 KB. For comparison, we also includethe time for the Traditional alternative which wouldsort all the data and return �rst N tuples only. Fig.17 indicates that for low skews the execution time isnot very dependent on the probability of restart. Thisis due to the fact that a 0.25KB compressed histogramcan bound the possible cuto� values well within a smallrange of attribute values. On the other hand, datasetswith high skew require much longer execution time forlow values of the probability of restart. This can beexplained by the fact that with high skew there arecertain attribute values that make up the bulk of thedistribution. Selecting such a value ensures no restartwith certainty and not selecting it ensures a restartwith certainty. When choosing between zero and one,the system chooses zero for small restart probabilities,e�ectively selecting and sorting large chunks of inputdata.9 Future WorkWe plan to examine the bene�ts of the probabilisticoptimization for traditional select-project-join queries.Probabilistic query optimization should reduce the av-erage execution time in cases when plan's cost is not alinear function of resources that vary within the non-linear region. Example of such cases are the join costformula non-linear dependency on the available mem-ory. Another example is the problem of executingqueries that refer to relations scattered over a wide-
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