Resolution

Logic Lecture 3

Proof by Refutation

Let A be a set of sentences, and let α be a sentence.

$$A \vdash \alpha$$

iff

$A \cup \{\neg \alpha\}$ is unsatisfiable

i.e.

$$A \cup \{\neg \alpha\} \vdash \square$$

\square is the empty clause, or "false."

(To make a clause true, must satisfy at least 1 literal, and \square has no literals.)

Proof by refutation: add $\neg \alpha$ to A, and try to prove \square (contradiction).
Propositional Resolution

Complementary pair: \(P \lor q \quad \neg p \lor r \)
\[q \lor r \]

Example

Given a finite set of clauses, repeatedly choose any two with complementary literals and resolve—add resulting clause.

If \(A \) is set of clauses and resolution derives \(\alpha \), we write \(A \vdash \alpha \), or simply \(A \vdash \alpha \).

Propositional Resolution (Full)

\[\phi_1 \lor \ldots \lor \phi \lor \ldots \lor \phi_m \]
\[\psi_1 \lor \ldots \lor \psi \lor \ldots \lor \psi_n \]
\[\phi_1 \lor \ldots \lor \phi_m \lor \psi_1 \lor \ldots \lor \psi_n \]
Soundness: if $A \vdash \alpha$ then $A \models \alpha$.

Refutation Completeness: if $A \models \alpha$ then $A \cup \{\neg \alpha\} \vdash 0$.

In reality, for propositional logic we would use DPLL. But it does not scale to predicate logic. This does...

Resolution for First-Order Logic

Would like to resolve as follows:

- Recall we assume X is universally quantified outside the entire clause
- $\rho(X) \lor q(X)$
- $\neg \rho(a) \lor r(a)$
- $q(a) \lor r(a)$

But $\rho(X)$ and $\rho(a)$ are not the same, so $\rho(X)$ and $\neg \rho(a)$ cannot be resolved upon as we defined propositional resolution.
Unification (Informal)

Given two (or more) atomic formulas, find a substitution Θ that will make them all identical.

\[p(f(X), X) \Theta = p(f(a), a) \]
\[p(Y, a) \Theta = p(f(a), a) \]

if $\Theta = \{ X \mapsto a, Y \mapsto f(a) \}$

Unifier

Let E be a set of expressions and Θ be a substitution. If $E\Theta$ is a singleton then Θ is a unifier of E, and we say Θ unifies E.
More General: Substitution θ_1 is more general than substitution θ_2 (written $\theta_1 \triangleright= \theta_2$) iff:

$$\theta_1 \delta = \theta_2$$

for some substitution δ.

Substitutions ordered by $\triangleright=$ form a "quasi-ordered set" — $\triangleright=$ is reflexive ($\theta \triangleright= \theta$ so $\theta \triangleright= \theta$) and transitive (if $\theta_1 \triangleright= \theta_2$ and $\theta_2 \triangleright= \theta_3$ then $\theta_1 \triangleright= \theta_3$ — $\theta_1 \delta_1 = \theta_2$ and $\theta_2 \delta_2 = \theta_3$ for some δ_1 and δ_2 so $\theta_1 (\delta_1 \delta_2) = \theta_3$).

But not antisymmetric: $\theta_1 \triangleright= \theta_2$ and $\theta_2 \triangleright= \theta_1$ if both are renamings; e.g. $\theta_1 = \{X \leftrightarrow Y\}$ and $\theta_2 = \{Y \leftrightarrow X\}$.

Think of $\triangleright=$ as a partially ordered set on equivalence classes of substitutions.
Examples of \geq over substitutions:

Let $\theta = \{x \mapsto f(x)\}$. Let $d = \{x \mapsto f(f(x))\}$.
Then $\theta \geq d$ since $\theta \theta = d$.

Let $\theta = \{x \mapsto A\}$. Let $d = \{x \mapsto a, A \mapsto a\}$.
Then $\theta \geq d$ since $\theta \theta' = d$ where $\theta' = \{A \mapsto a\}$.

For expressions e_1 and e_2, $e_1 \geq e_2$ $(e_1$ is more general than e_2, e_2 is an instance of e_1) iff $e_1 \theta = e_2$ for some substitution θ.
\(\geq \) is a quasi-ordering on expressions.

Reflexive: \(e \geq e \) for any expression \(e \).

Transitive: If \(e_1 \geq e_2 \) and \(e_2 \geq e_3 \), then by definition \(e_1 \theta \geq e_2 \) and \(e_2 \theta \geq e_3 \) for some \(\theta \), \(d \). Then \(e_1 \theta d = e_3 \), so \(e_1 \geq e_3 \).

Not Antisymmetric: If \(e_1 \theta = e_2 \) for some renaming substitution \(\theta \), then \(e_2 \theta'' = e_1 \), where the substitution \(\theta'' \) is the inverse of \(\theta \). We say \(e_1 \) and \(e_2 \) are variants.

\[
p(f(X), X) \theta = p(f(Y), Y) \quad \text{where} \quad \theta = \{X \rightarrow Y\}
\]

\[
p(f(Y), Y) \theta'' = p(f(X), X) \quad \theta'' = \{Y \rightarrow X\}
\]

We say variants are "the same modulo renaming" and view any expression in a set of variants as representative of the equivalence class under \(\geq \). Treating variants as the same lets us view \(\geq \) as a partial order.
Let \bot be a new object such that $e \geq \bot$ for any expression e. For any two expressions e_1 and e_2, let e be \bot if e_1 and e_2 have no unifier and otherwise let e be $e_1\theta$ where θ is an mgu of e_1 and e_2.

Then e is a greatest lower bound (glb) of e_1 and e_2:

1. $e_1 \geq e$ and $e_2 \geq e$

2. if $e_1 \geq e'$ and $e_2 \geq e'$ then $e \geq e'$

To see (2) note $e_1 \geq e'$ and $e_2 \geq e'$ for unifier δ. Then $\delta\theta = \delta$ for some θ' since θ is mgu. Then $e \theta' \geq e'$ so $e \geq e'$.

Most General Unifier: For a set of expressions E a substitution θ is a **most general unifier (mgu)** if:

1. θ is a unifier of E

2. for every other unifier θ' of E, $\theta \geq \theta'$

Because \geq is a quasi-ordering, there are many mgus, all equivalent.
Unification Algorithm

Input: Two expressions s & s'.
Output: success with mgu or failure.
Let S be s & s'. Repeat until nothing applies:

- Select any $t = \bar{x}$ where \bar{x} not a variable, change to $X = \bar{x}$.
- Erase any $X = \bar{x}$.
- Select any $t = t'$ where neither is a variable.
 - If t and t' are constants:
 - If t and t' differ erase the equation.
 - Else FAIL.
 - Else if t is $p(\bar{a}_1, \ldots, \bar{a}_n)$ and t' is $p(\bar{a}_1', \ldots, \bar{a}_n')$ (p is function symbol or predicate symbol):
 - Replace $t = t'$ by $\bar{a}_i = \bar{a}_i'$, $\bar{a}_j = \bar{a}_j'$.
 - Else FAIL.
 - Else select any $X = \bar{x}$ where X occurs elsewhere and \bar{x} not identical.
 - If X occurs in t then FAIL. (Not done in Alg)
 - Else apply substitution $\{X = \bar{x}\}$ to all other equations (without erasing $X = \bar{x}$).

SUCCEED with output $\{X_1 = \bar{a}_1, \ldots, X_n = \bar{a}_n\}$ where $X_1 = \bar{a}_1, \ldots, X_n = \bar{a}_n$ are the equations left in S.

Unification Theorem

Suppose the Unification Algorithm is executed with inputs e and e'. If e and e' are not unifiable the algorithm halts with failure. Otherwise the algorithm halts with success, and its output substitution is an mgu of e and e'.

Other Results:
- e & e' are unifiable iff $e \varnothing \cap e' \varnothing \neq \emptyset$.
- If e and e' are unifiable with $mgu \neq \emptyset$ then $(e \varnothing)_{\varnothing} = (e' \varnothing)_{\varnothing} = e \varnothing \cap e' \varnothing$.
Example

\[S: \{ p(f(X), Y, X) = p(A, A, f(f(c))) \} \]

\[\{ f(X) = A, Y = A, X = f(f(c)) \} \]

\[\{ A = f(X), Y = A, X = f(f(c)) \} \]

\[\{ A = f(X), Y = f(X), X = f(f(c)) \} \]

\[\{ A = f(f(f(c))), Y = f(f(f(c))), X = f(f(c)) \} \]

Done—nothing applies.

\[\emptyset = \{ A \mapsto f(f(f(c))), Y \mapsto f(f(f(c))), X \mapsto f(f(c)) \} \]

Exercise:

On CS machines, at prompt type

\>` prolog

\>` f(X \ Kleene-bar f(X, a)) \equiv f(b, Y).

\>` unify

\>` loves(mary, X) = loves(Y, Y).

\>` p(X) = p(f(X)).

For this last one, be prepared to kill your Prolog process.
First-order Resolution

If two clauses can be written as:
\[\alpha_1 \lor \cdots \lor \alpha_k \lor \beta_1 \lor \cdots \lor \beta_j \]
and
\[\gamma_1 \lor \cdots \lor \gamma_k \lor \delta_1 \lor \cdots \lor \delta_j \]
where all \(\alpha_i \) and \(\beta_i \) are atomic formulas and all \(\gamma_i \) and \(\delta_i \) are literals, such that
\(\{\alpha_{i_1}, \ldots, \alpha_{i_k}, \beta_{j_1}, \ldots, \beta_{j_k}\} \) can be unified with no \(\emptyset \),
then their resolution is defined as
\[\alpha_{i_1} \lor \cdots \lor \alpha_{i_k} \lor \lor \beta_{j_1} \lor \cdots \lor \beta_{j_k} \]
when resolved on \(\alpha_{i_1}, \ldots, \alpha_{i_k}, \beta_{j_1}, \ldots, \beta_{j_k} \).

Resolution Procedure

Repeatedly draw two clauses, “standardize them apart” (apply a renaming substitution to one so they share no variables), and resolve them if possible. Repeat until derive the empty clause. Note: may resolve a clause with itself.
Example

\[p(X, X) \lor p(f(Y), Z) \lor \neg q(X, Z) \]
\[\neg p(w, f(a)) \lor q(w, v) \lor \neg r(w, w) \]
\[\neg q(f(a), f(a)) \lor q(f(a), v) \lor \neg r(f(a), f(a)) \]

Resolution Given Definite Clauses

It is sufficient to resolve one body literal of a clause with the head literal of another clause.

\[\text{loves}(X, Y) \leftarrow \text{mother}(X), \text{child-of}(Y, X). \]

\[\text{mother}(\text{mary}). \]

\[\text{loves}(X, Y) \leftarrow \text{child-of}(Y, X). \]
Goals in Logic Programming

Always an existentially closed conjunction.

$$\exists X (\text{loves}(X, \text{tom}) \land \text{mother}(X))$$

When negated, becomes a universally closed disjunction — a clause. All literals are negative.

$$\forall X (\neg \text{loves}(X, \text{tom}) \lor \neg \text{mother}(X))$$

We add to our program as

$$\neg \text{loves}(X, \text{tom}) \lor \neg \text{mother}(X)$$

Sufficient to resolve goal with a program clause to get a new goal, and repeat with new goal — linear derivation.

Example

$$\neg \text{loves}(X, \text{tom}), \neg \text{mother}(X)$$

III

$\leftarrow \text{loves}(X, \text{tom}), \text{mother}(X)$

$\neg \text{loves}(X, Y) \leftarrow \text{mother}(X), \text{child}\text{-}of(Y, X)$

$\Theta = \{X = X, Y = \text{tom}\}$

$\leftarrow \text{mother}(X), \text{child}\text{-}of(\text{tom}, X)$

$\Theta = \{X = \text{mary}\}$

$\leftarrow \text{child}\text{-}of(\text{tom}, \text{mary})$

$\Theta = \{\}$