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Goals for the lecture 
you should understand the following concepts 

•  perceptrons 
•  the perceptron training rule 
•  linear separability 
•  hidden units 
•  multilayer neural networks 
•  gradient descent 
•  stochastic (online) gradient descent 
•  sigmoid function 
•  gradient descent with a linear output unit 
•  gradient descent with a sigmoid output unit 
•  backpropagation 
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Goals for the lecture 
you should understand the following concepts 

•  weight initialization 
•  early stopping 
•  the role of hidden units 
•  input encodings for neural networks 
•  output encodings 
•  recurrent neural networks 
•  autoencoders 
•  stacked autoencoders 
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Neural networks 
•  a.k.a. artificial neural networks, connectionist models 
•  inspired by interconnected neurons in biological systems 

•  simple processing units 
•  each unit receives a number of real-valued inputs 
•  each unit produces a single real-valued output 
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Perceptrons 
[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960] 

o = 1  if  w0 + wi
i=1
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Learning a perceptron:  
the perceptron training rule 

Δwi =η y − o( )xi

1.  randomly initialize weights 

2.  iterate through training instances until convergence 

o = 1  if  w0 + wi
i=1

n

∑ xi > 0

0  otherwise             
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wi ←wi + Δwi

2a. calculate the output 
for the given instance 

2b. update each weight 

η is learning rate; 
set to value << 1 6 



Representational power of perceptrons 

o = 1  if  w0 + wi
i=1

n
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perceptrons can represent only linearly separable concepts 
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1  if  w0 +w1x1 +w2x2 > 0

decision boundary given by: 
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Representational power of perceptrons 

•  in previous example, feature space was 2D so decision 
boundary was a line  

•  in higher dimensions, decision boundary is a hyperplane 
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Some linearly separable functions 
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XOR is not linearly separable 
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a multilayer perceptron 
can represent XOR 

assume w0 = 0 for all nodes 10 



Example multilayer neural network 

input: two features from spectral analysis of a spoken sound 
 
output: vowel sound occurring in the context “h__d” 

figure from Huang  & Lippmann, NIPS 1988 

input units 

hidden units 

output units 
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Decision regions of a multilayer  
neural network 

input: two features from spectral analysis of a spoken sound 
 
output: vowel sound occurring in the context “h__d” 

figure from Huang  & Lippmann, NIPS 1988 
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Learning in multilayer networks 
•  work on neural nets fizzled in the 1960’s 

•  single layer networks had representational limitations 
(linear separability) 

•  no effective methods for training multilayer networks 

•  revived again with the invention of backpropagation method 
[Rumelhart & McClelland, 1986; also Werbos, 1975] 
•  key insight: require neural network to be differentiable; 

use gradient descent 

x1

x2

how to determine 
error signal for  
hidden units?  
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Gradient descent in weight space 

figure from Cho & Chow, Neurocomputing 1999 

E(w) = 1
2

y(d ) − o(d )( )2
d∈D
∑

Given a training set                                                      we can specify an 
error measure that is a function of our weight vector w	


This error measure defines a surface over the hypothesis (i.e. weight) space	


w1	
w2	


 D = (x(1),  y(1) )…(x(m ),  y(m ) ){ }
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Gradient descent in weight space 

w1	


w2        	


Error 

on each iteration 
•  current weights define a 

point in this space 
•  find direction in which 

error surface descends 
most steeply 

•  take a step (i.e. update 
weights) in that direction  

gradient descent is an iterative process aimed at finding a minimum in 
the error surface 
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Gradient descent in weight space 

w1	


w2        	


Error 

−
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−
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Δw = −η  ∇E w( )

Δwi = −η  ∂E
∂wi

calculate the gradient of E: 

take a step in the opposite direction 

16 



The sigmoid function 
•  to be able to differentiate E with respect to wi , our network 

must represent a continuous function 
•  to do this, we use sigmoid functions instead of threshold 

functions in our hidden and output units 

f (x) = 1
1+ e− x

x 17 



The sigmoid function 
for the case of a single-layer network 

f (x) = 1

1+ e
− w0+ wixi

i=1

n

∑
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w0 + wixi
i=1

n

∑
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Batch neural network training 

given: network structure and a training set 

initialize all weights in w to small random numbers 

until stopping criteria met do 

  initialize the error 

  for each (x(d), y(d)) in the training set 

   input x(d)
  to the network and compute output o(d) 

   increment the error 

  calculate the gradient 

 

 

  update the weights 	


  

 D = (x(1),  y(1) )…(x(m ),  y(m ) ){ }

E(w) = E(w)+ 1
2
y(d ) − o(d )( )2
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Δw = −η  ∇E w( )

E(w) = 0
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Online vs. batch training  

•  Standard gradient descent (batch training): calculates 
error gradient for the entire training set, before taking a 
step in weight space 

•  Stochastic gradient descent (online training): calculates 
error gradient for a single instance, then takes a step in 
weight space 
–  much faster convergence 
–  less susceptible to local minima 
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Online neural network training 
(stochastic gradient descent) 

given: network structure and a training set 

initialize all weights in w to small random numbers 

until stopping criteria met do 

  for each (x(d), y(d)) in the training set 

   input x(d)
  to the network and compute output o(d) 

   calculate the error 

   calculate the gradient 

 

 

   update the weights 	


  

 D = (x(1),  y(1) )…(x(m ),  y(m ) ){ }
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Convergence of gradient descent 
•  gradient descent will converge to a minimum in the error function 

•  for a multi-layer network, this may be a local minimum (i.e. there 
may be a “better” solution elsewhere in weight space) 

•  for a single-layer network, this will be a global minimum (i.e. 
gradient descent will find the “best” solution) 
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Taking derivatives in neural nets 

y = f (u)
u = g(x)

∂y
∂x

=
∂y
∂u

∂u
∂x

recall the chain rule from calculus 

∂E
∂wi

 =  ∂E
∂o

∂o
∂net

∂net
∂wi

we’ll make use of this as follows 

net = w0 + wi
i=1

n

∑ xi
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Gradient descent: simple case 
Consider a simple case of a network with one linear output unit 
and no hidden units: 
 

o(d ) = w0 + wi
i=1

n

∑ x(d )i

E(w) = 1
2

y(d ) − o(d )( )2
d∈D
∑

let’s learn wi’s that minimize squared error 
 

∂E
∂wi

=
∂
∂wi

1
2

y(d ) − o(d )( )2
d∈D
∑

batch case 

∂E (d )
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=
∂
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1
2
y(d ) − o(d )( )2

online case 
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Stochastic gradient descent: simple case 

∂E (d )

∂wi

 =  ∂
∂wi

1
2
y(d ) − o(d )( )2

= y(d ) − o(d )( ) ∂
∂wi

y(d ) − o(d )( )

= − y(d ) −o(d )( ) xi

(d )( )

let’s focus on the online case (stochastic gradient descent): 
 

= y(d ) − o(d )( ) −
∂o(d )

∂wi
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= − y(d ) − o(d )( ) ∂o
(d )

∂net (d )
∂net (d )

∂wi

= − y(d ) − o(d )( ) ∂net
(d )

∂wi
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Gradient descent with a sigmoid 
Now let’s consider the case in which we have a sigmoid output 
unit and no hidden units: 
 

net (d ) = w0 + wi
i=1

n

∑ x(d )i
x1

x2

xn

w1

w2

wn

w01

o(d ) = 1
1+ e−net

(d )

∂o(d )

∂net (d )
= o(d )(1− o(d ) )

useful property: 
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Stochastic GD with sigmoid output unit 
∂E (d )

∂wi

 =  ∂
∂wi

1
2
y(d ) − o(d )( )2

= y(d ) − o(d )( ) ∂
∂wi

y(d ) − o(d )( )
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∂wi
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(d )

∂net (d )
∂net (d )

∂wi

= − y(d ) − o(d )( )o(d )(1− o(d ) ) ∂net
(d )

∂wi

= − y(d ) − o(d )( )o(d )(1− o(d ) )xi(d ) 27 



Backpropagation 

∂E
∂wi

•  now we’ve covered how to do gradient descent for single-layer 
networks with 
•  linear output units 
•  sigmoid output units 

•  how can we calculate           for every weight in a multilayer network? 

è backpropagate errors from the output units to the hidden units 
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Backpropagation notation 
let’s consider the online case, but drop the (d) superscripts for simplicity 
 
we’ll use  

•  subscripts on y, o, net  to indicate which unit they refer to 
•  subscripts to indicate the unit a weight emanates from and goes to 

wjii	


j	
 oj
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Backpropagation 

=η  δ j  oi

 
each weight is changed by 
 
 

Δwji = −η  ∂E
∂wji

= −η  ∂E
∂net j

∂net j
∂wji

δ j = −
∂E
∂net j

where xi if i is an input unit 
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Backpropagation 

Δwji =η  δ j  oi

δ j = −
∂E
∂net j

δ j = oj (1− oj )(yj − oj )

δ j = oj (1− oj ) δ kwkj
k
∑

 
each weight is changed by 
 
 

where 
 
 
 if j is an output unit 

if j is a hidden unit 

same as 
single-layer net 
with sigmoid 
output 

31 

sum of backpropagated 
contributions to error 



Backpropagation illustrated 

j	


1.  calculate error of output units 
δ j = oj (1− oj )(yj − oj )

2.  determine updates for 
weights going to output units 
Δwji =η  δ j  oi
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Backpropagation illustrated 

j	


4.  determine updates for  
weights to hidden units using 
hidden-unit errors  
Δwji =η  δ j  oi

j	


3.  calculate error for hidden units 

δ j = oj (1− oj ) δ kwkj
k
∑
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Neural network jargon 

•  activation: the output value of a hidden or output unit 

•  epoch: one pass through the training instances during gradient descent 

•  transfer function:  the function used to compute the output of a hidden/
output unit from the net input 

•  Minibatch: in practice, randomly partition data into many parts (e.g., 10 
examples each), and compute SGD gradient for one step with one of 
these parts (minibatches) instead of just one example 
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Initializing weights 

•  Weights should be initialized to 
•  small values so that the sigmoid activations are in the range 

where the derivative is large (learning will be quicker) 

•  random values to ensure symmetry breaking (i.e. if all weights 
are the same, the hidden units will all represent the same thing) 

•  typical initial weight range [-0.01, 0.01] 
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Setting the learning rate 

η too large (error goes up) 

η too small (error goes down 
                    a little) 

−
∂E
∂wij

wij

E
rr

or
 

convergence depends on having an appropriate learning rate  
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Stopping criteria 
•  conventional gradient descent: train until local minimum reached 

•  empirically better approach:  early stopping 
•  use a validation set to monitor accuracy during training iterations 
•  return the weights that result in minimum validation-set error 

error 

training iterations 

stop training here 

37 



Input (feature) encoding for neural networks 
nominal features are usually represented using a 1-of-k encoding 
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ordinal features can be represented using a thermometer encoding 
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 precipitation = 0.68[ ]

real-valued features can be represented using individual input units (we 
may want to scale/normalize them first though) 
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Output encoding for neural networks 
regression tasks usually use output units with linear transfer functions 

binary classification tasks usually use one sigmoid  output unit 

k-ary classification tasks usually use k sigmoid or softmax output units 

oi =
eneti

enet j
j∈outputs
∑
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Recurrent neural networks 

recurrent networks are sometimes used for tasks that involve making 
sequences of predictions 
•  Elman networks: recurrent connections go from hidden units to inputs 
•  Jordan networks: recurrent connections go from output units to inputs 
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Alternative approach to  
training deep networks 

•  use unsupervised learning to to find useful hidden unit 
representations 
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Learning representations 

•  the feature representation provided is often the most 
significant factor in how well a learning system works 

•  an appealing aspect of multilayer neural networks is 
that they are able to change the feature representation 

•  can think of the nodes in the hidden layer as new 
features constructed from the original features in the 
input layer 

•  consider having more levels of constructed features, 
e.g., pixels -> edges -> shapes -> faces or other objects 
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Competing intuitions 
•  Only need a 2-layer network (input, hidden layer, output) 

–  Representation Theorem (1989): Using sigmoid activation 
functions (more recently generalized to others as well), can 
represent any continuous function with a single hidden layer 

–  Empirically, adding more hidden layers does not improve 
accuracy, and it often degrades accuracy, when training by 
standard backpropagation 

 
•  Deeper networks are better 

–  More efficient representationally, e.g., can represent n-variable 
parity function with polynomially many (in n) nodes using multiple 
hidden layers, but need exponentially many (in n) nodes when 
limited to a single hidden layer 

–  More structure, should be able to construct more interesting 
derived features 
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The role of hidden units 
•  Hidden units transform the input space into a new space where 

perceptrons suffice 
•  They numerically represent “constructed” features 
•  Consider learning the target function using the network structure below: 
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The role of hidden units 

•  In this task, hidden units learn a compressed numerical coding of the 
inputs/outputs 
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How many hidden units should be used? 
•  conventional wisdom in the early days of neural nets: prefer small 

networks because fewer parameters (i.e. weights & biases) will be 
less likely to overfit 

•  somewhat more recent wisdom: if early stopping is used, larger 
networks often behave as if they have fewer “effective” hidden 
units, and find better solutions 

test set 
error 

training epochs 

4 HUs 

15 HUs 

Figure from Weigend, Proc. of the CMSS 1993 46 



Another way to avoid overfitting 
•  Allow many hidden units but force each hidden unit to 

output mostly zeroes: tend to meaningful concepts 
 
•  Gradient descent solves an optimization problem—

add a “regularizing” term to the objective function 
 
•  Let X be vector of random variables, one for each 

hidden unit, giving average output of unit over data 
set.  Let target distribution s have variables 
independent with low probability of outputting one 
(say 0.1), and let ŝ be empirical distribution in the 
data set.  Add to the backpropagation target function 
(that minimizes δ’s) a penalty of KL(s(X)||ŝ(X)) 
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Backpropagation with  
multiple hidden layers 

•  in principle, backpropagation can be used to train arbitrarily deep 
networks (i.e. with multiple hidden layers) 

•  in practice, this doesn’t usually work well 
 

•  there are likely to be lots of local minima 

•  diffusion of gradients leads to slow training in lower layers 

•  gradients are smaller, less pronounced at deeper levels 

•  errors in credit assignment propagate as you go back 
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Autoencoders 
•  one approach: use autoencoders to learn hidden-unit representations 
•  in an autoencoder, the network is trained to reconstruct the inputs 
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Autoencoder variants 

•  how to encourage the autoencoder to generalize 

•  bottleneck: use fewer hidden units than inputs 

•  sparsity: use a penalty function that encourages most 
hidden unit activations to be near 0                  
[Goodfellow et al. 2009] 

•  denoising: train to predict true input from corrupted input 
[Vincent et al. 2008] 

•  contractive: force encoder to have small derivatives (of 
hidden unit output as input varies)  [Rifai et al. 2011] 
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Stacking Autoencoders 
•  can be stacked to form highly nonlinear representations 

[Bengio et al. NIPS 2006] 

train autoencoder 
to represent x	


Discard output layer; 
train autoencoder 
to represent h1 
 
Repeat for k layers 

discard output layer; train 
weights on last layer for 
supervised task 

each Wi here represents the matrix of weights between layers 51 



Fine-Tuning 

•  After completion, run backpropagation on the entire 
network to fine-tune weights for the supervised task	


•  Because this backpropagation starts with good 
structure and weights, its credit assignment is 
better and so its final results are better than if we 
just ran backpropagation initially 
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Why does the unsupervised training 
step work well? 

•  regularization hypothesis: representations that are 
good for P(x) are good for P(y | x)	


•  optimization hypothesis: unsupervised 
initializations start near better local minima of 
supervised training error 

53 



Deep learning not limited to 
neural networks 

•  First developed by Geoff Hinton and colleagues for 
belief networks, a kind of hybrid between neural 
nets and Bayes nets	


•  Hinton motivates the unsupervised deep learning 
training process by the credit assignment problem, 
which appears in belief nets, Bayes nets, neural 
nets, restricted Boltzmann machines, etc. 
•  d-separation: the problem of evidence at a converging 

connection creating competing explanations 
•  backpropagation: can’t choose which neighbors get the 

blame for an error at this node  
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Room for Debate 

•  many now arguing that unsupervised pre-training 
phase not really needed… 

•  backprop is sufficient if done better 
–  wider diversity in initial weights, try with many initial settings 

until you get learning 
–  don’t worry much about exact learning rate, but add 

momentum: if moving fast in a given direction, keep it up for 
awhile 

–  Need a lot of data for deep net backprop 
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Problems with Backprop for Deep 
Neural Networks 

•  Overfits both training data and the particular starting 
point 

•  Converges too quickly to a suboptimal solution, even 
with SGD (gradient from one example or “minibatch” 
of examples at one time) 

•  Need more training data and/or fewer weights to 
estimate, or other regularizer 
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Trick 1: Data Augmentation 

•  Deep learning depends critically on “Big Data” – need 
many more training examples than features 

•  Turn one positive (negative) example into many 
positive (negative) examples 

•  Image data: rotate, re-scale, or shift image, or flip 
image about axis; image still contains the same 
objects, exhibits the same event or action 
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Trick 2: Parameter (Weight) Tying 

•  Normally all neurons at one layer are connected to 
next layer 

•  Instead, have only n features feed to one specific 
neuron at next level (e.g., 4 or 9 pixels of image go to 
one hidden unit summarizing this “super-pixel”) 

•  Tie the 4 (or 9) input weights across all super-
pixels… more data per weight 
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Weight Tying Example: Convolution 

•  Have a sliding window (e.g., square of 4 pixels, set of 
5 consecutive items in a sequence, etc), and only the 
neurons for these inputs feed into one neuron, N1, at 
the next layer. 

•  Slide this window over by some amount and repeat, 
feeding into another neuron, N2, etc. 

•  Tie the input weights for N1, N2, etc., so they will all 
learn the same concept (e.g., diagonal edge). 

•  Repeat into new neurons N1’, N2’, etc., to learn other 
concepts. 

59 



Alternate Convolutional Layer with 
Pooling Layer 

•  Mean pooling: k nodes (e.g., corresponding to 4 
pixels constituting a square in an image) are 
averaged to create one node (e.g., corresponding to 
one pixel) at the next layer. 

•  Max pooling: replace average with maximum 
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Used in Convolutional Neural Networks 
for Vision Applications 
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Trick 3: Alternative Activation 

•  Tanh: (e2x-1)/(e2x+1)                  hyperbolic tangent 

•  ReLU: max(0,x) or 1/(1+e-x)     rectified linear unit or 
      softplus 
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By way of analogy with the usual tangent

(1)

the hyperbolic tangent is defined as

(2)

(3)

(4)

where  is the hyperbolic sine and  is the hyperbolic cosine. The notation  is sometimes also used
(Gradshteyn and Ryzhik 2000, p. xxix).

 is implemented in the Wolfram Language as Tanh[z].

Special values include

(5)
(6)

where  is the golden ratio.

The derivative of  is

(7)

and higher-order derivatives are given by

(8)

Derivatives of Trig and
Hyperbolic Functions
Itsaso Aranzabal

Search MathWorld

inverse hyperbolic tangent of x
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inverse hyperbolic tangent of x

inverse hyperbolic tangent of .99

d/dx hyperbolic tangent(x)

Hyperbolic Tangent -- from Wolfram MathWorld http://mathworld.wolfram.com/HyperbolicTangent.html
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Plot of the rectifier (blue) and softplus
(green) functions near x = 0

Rectifier (neural networks)
From Wikipedia, the free encyclopedia

In the context of artificial neural networks, the rectifier is an
activation function defined as

where x is the input to a neuron. This is also known as a ramp
function and is analogous to half-wave rectification in electrical
engineering. This activation function was first introduced to a
dynamical network by Hahnloser et al. in a 2000 paper in Nature[1]

with strong biological motivations and mathematical justifications.[2]

It has been used in convolutional networks[3] more effectively than
the widely used logistic sigmoid (which is inspired by probability
theory; see logistic regression) and its more practical[4] counterpart,
the hyperbolic tangent. The rectifier is, as of 2015, the most popular activation function for deep neural
networks.[5]

A unit employing the rectifier is also called a rectified linear unit (ReLU).[6]

A smooth approximation to the rectifier is the analytic function

which is called the softplus function.[7] The derivative of softplus is 
, i.e. the logistic function.

Rectified linear units find applications in computer vision[3] and speech recognition[8][9] using deep neural
nets.
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Trick 4: Alternative Error Function 

•  Example: Cross-entropy 

63 

We can see from this graph that when the neuron's output is close
to , the curve gets very flat, and so  gets very small. Equations
(55) and (56) then tell us that  and  get very small. This
is the origin of the learning slowdown. What's more, as we shall see
a little later, the learning slowdown occurs for essentially the same
reason in more general neural networks, not just the toy example
we've been playing with.

Introducing the cross-entropy cost function

How can we address the learning slowdown? It turns out that we
can solve the problem by replacing the quadratic cost with a
different cost function, known as the cross-entropy. To understand
the cross-entropy, let's move a little away from our super-simple toy
model. We'll suppose instead that we're trying to train a neuron
with several input variables, , corresponding weights

, and a bias, :

The output from the neuron is, of course, , where
 is the weighted sum of the inputs. We define the

cross-entropy cost function for this neuron by

1 (z)σ ′

∂C/∂w ∂C/∂b

, , …x1 x2

, , …w1 w2 b

a = σ(z)
z = + b∑j wjxj

C = − [y ln a + (1 − y) ln(1 − a)] ,1
n ∑

x
(57)
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sigmoid function

Neural networks and deep learning http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-en...
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Trick 5: Momentum 

64 

to as momentum (its typical value is about 0.9), but its physical meaning is more consistent
with the coefUcient of friction. Effectively, this variable damps the velocity and reduces the
kinetic energy of the system, or otherwise the particle would never come to a stop at the
bottom of a hill. When cross-validated, this parameter is usually set to values such as [0.5,
0.9, 0.95, 0.99]. Similar to annealing schedules for learning rates (discussed later, below),
optimization  can  sometimes  beneUt  a  little  from  momentum  schedules,  where  the
momentum  is  increased  in  later  stages  of  learning.  A  typical  setting  is  to  start  with
momentum of about 0.5 and anneal it to 0.99 or so over multiple epochs.

Nesterov Momentum is a slightly different version of the momentum update has recently
been  gaining  popularity.  It  enjoys  stronger  theoretical  converge  guarantees  for  convex
functions and in practice it also consistenly works slightly better than standard momentum.

The core idea behind Nesterov momentum is that when the current parameter vector is at
some  position  x ,  then  looking  at  the  momentum  update  above,  we  know  that  the
momentum term alone (i.e. ignoring the second term with the gradient) is about to nudge
the parameter vector by mu * v . Therefore, if we are about to compute the gradient, we
can treat the future approximate position x + mu * v  as a “lookahead” - this is a point in
the vicinity of where we are soon going to end up. Hence, it makes sense to compute the
gradient at x + mu * v  instead of at the “old/stale” position x .

Nesterov momentum. Instead of evaluating gradient at the current position (red circle), we know that
our momentum is about to carry us to the tip of the green arrow. With Nesterov momentum we
therefore instead evaluate the gradient at this "looked-ahead" position.

CS231n Convolutional Neural Networks for Visual Recognition http://cs231n.github.io/neural-networks-3/
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Trick 6: Dropout Training 

•  Build some redundancy into the hidden units 

•  Essentially create an “ensemble” of neural networks, 
but without high cost of training many deep networks 

•  Dropout training… 
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Dropout training 
•  On each training iteration, drop out (ignore) 50% of the 

units (or other 90%, or other) by forcing output to 0 during 
forward pass 

•  Ignore for forward & backprop (all training) 
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Dropout 

On each training iteration 
–  randomly “drop out” a subset of the units and their weights 
–  do forward and backprop on remaining network 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 

Dropout 

At test time 
–  use all units and weights in the network 
–  adjust weights according to the probability that the source unit 

was dropped out 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 



At Test Time 
•  Final model uses all nodes 
•  Multiply each weight from a node by fraction of times node 

was used during training 
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Dropout 

On each training iteration 
–  randomly “drop out” a subset of the units and their weights 
–  do forward and backprop on remaining network 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 

Dropout 

At test time 
–  use all units and weights in the network 
–  adjust weights according to the probability that the source unit 

was dropped out 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 



Trick 7: Batch Normalization 

•  If outputs of earlier layers are uniform or change 
greatly on one round for one mini-batch, then 
neurons at next levels can’t keep up: they output all 
high (or all low) values  

•  Next layer doesn’t have ability to change its outputs 
with learning-rate-sized changes to its input weights 

•  We say the layer has “saturated” 
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Another View of Problem 

•  In ML, we assume future data will be drawn from 
same probability distribution as training data 

•  For a hidden unit, after training, the earlier layers 
have new weights and hence generate input data for 
this hidden unit from a new distribution 

•  Want to reduce this internal covariate shift for the 
benefit of later layers 
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Batch Normalization

Input: Values of x over a mini-batch: B = {x
1...m

};
Parameters to be learned: �, �

Output: {y
i

= BN
�,�

(x

i

)}

µB  
1

m

mX

i=1

x

i

// mini-batch mean

�

2

B  
1

m

mX

i=1

(x

i

� µB)
2 // mini-batch variance

bx
i

 x

i

� µBp
�

2

B + ✏

// normalize

y

i

 �bx
i

+ � ⌘ BN
�,�

(x

i

) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

shifted values y are passed to other network layers. The
normalized activations bx are internal to our transformation,
but their presence is crucial. The distributions of values
of any bx has the expected value of 0 and the variance of
1, as long as the elements of each mini-batch are sampled
from the same distribution, and if we neglect ✏. This can be
seen by observing that

P
m

i=1

bx
i

= 0 and 1

m

P
m

i=1

bx2

i

= 1,
and taking expectations. Each normalized activation bx(k)

can be viewed as an input to a sub-network composed of
the linear transform y

(k)

= �

(k)bx(k)

+ �

(k), followed by
the other processing done by the original network. These
sub-network inputs all have fixed means and variances, and
although the joint distribution of these normalized bx(k) can
change over the course of training, we expect that the intro-
duction of normalized inputs accelerates the training of the
sub-network and, consequently, the network as a whole.

During training we need to backpropagate the gradient of
loss ` through this transformation, as well as compute the
gradients with respect to the parameters of the BN trans-
form. We use chain rule, as follows:

@`
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=
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=
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Thus, BN transform is a differentiable transformation that
introduces normalized activations into the network. This
ensures that as the model is training, layers can continue
learning on input distributions that exhibit less internal co-
variate shift, thus accelerating the training. Furthermore,

the learned affine transform applied to these normalized ac-
tivations allows the BN transform to represent the identity
transformation and preserves the network capacity.

3.1. Training and Inference with Batch-Normalized
Networks

To Batch-Normalize a network, we specify a subset of ac-
tivations and insert the BN transform for each of them, ac-
cording to Alg. 1. Any layer that previously received x

as the input, now receives BN(x). A model employing
Batch Normalization can be trained using batch gradient
descent, or Stochastic Gradient Descent with a mini-batch
size m > 1, or with any of its variants such as Adagrad
(Duchi et al., 2011). The normalization of activations that
depends on the mini-batch allows efficient training, but is
neither necessary nor desirable during inference; we want
the output to depend only on the input, deterministically.
For this, once the network has been trained, we use the
normalization

bx =

x� E[x]p
Var[x] + ✏

using the population, rather than mini-batch, statistics. Ne-
glecting ✏, these normalized activations have the same
mean 0 and variance 1 as during training. We use the unbi-
ased variance estimate Var[x] = m

m�1

· EB[�
2

B], where the
expectation is over training mini-batches of size m and �

2

B
are their sample variances. Using moving averages instead,
we can track the accuracy of a model as it trains. Since the
means and variances are fixed during inference, the nor-
malization is simply a linear transform applied to each ac-
tivation. It may further be composed with the scaling by
� and shift by �, to yield a single linear transform that re-
places BN(x). Algorithm 2 summarizes the procedure for
training batch-normalized networks.

3.2. Batch-Normalized Convolutional Networks

Batch Normalization can be applied to any set of activa-
tions in the network. Here, we focus on transforms that
consist of an affine transformation followed by an element-
wise nonlinearity:

z = g(Wu + b)

where W and b are learned parameters of the model, and
g(·) is the nonlinearity such as sigmoid or ReLU. This
formulation covers both fully-connected and convolutional
layers. We add the BN transform immediately before the
nonlinearity, by normalizing x = Wu + b. We could have
also normalized the layer inputs u, but since u is likely
the output of another nonlinearity, the shape of its distri-
bution is likely to change during training, and constraining
its first and second moments would not eliminate the co-
variate shift. In contrast, Wu + b is more likely to have
a symmetric, non-sparse distribution, that is “more Gaus-



Comments on Batch Normalization 

•  First three steps are just like standardization of input 
data, but with respect to only the data in mini-batch.  
Can take derivative and incorporate the learning of 
last step parameters into backpropagation. 

•  Note last step can completely un-do previous 3 steps 

•  But if so this un-doing is driven by the later layers, not  
the earlier layers; later layers get to “choose” whether 
they want standard normal inputs or not 
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Some Deep Learning Resources 

•  Nature, Jan 8, 2014: 
http://www.nature.com/news/computer-science-the-
learning-machines-1.14481 

 
•  Ng Tutorial: 

http://deeplearning.stanford.edu/wiki/index.php/
UFLDL_Tutorial 

 
•  Hinton Tutorial: 

http://videolectures.net/jul09_hinton_deeplearn/ 
 
•  LeCun & Ranzato Tutorial: http://www.cs.nyu.edu/

~yann/talks/lecun-ranzato-icml2013.pdf 72 



Comments on neural networks 
•  stochastic gradient descent often works well for very large data sets 

•  backpropagation generalizes to 
•  arbitrary numbers of output and hidden units 
•  arbitrary layers of hidden units (in theory) 
•  arbitrary connection patterns 
•  other transfer (i.e. output) functions 
•  other error measures 
 

•  backprop doesn’t usually work well for networks with multiple layers of 
hidden units; recent work in deep networks addresses this limitation 
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