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Goals for the lecture 
you should understand the following concepts 

•  the Bayesian network representation 
•  inference by enumeration 
•  variable elimination inference 
•  junction tree (clique tree) inference 
•  Markov chain Monte Carlo (MCMC) 
•  Gibbs sampling 
•  the parameter learning task for Bayes nets 
•  the structure learning task for Bayes nets 
•  maximum likelihood estimation 
•  Laplace estimates 
•  m-estimates 
 



Goals for the lecture 
you should understand the following concepts 

•  missing data in machine learning 
•  hidden variables 
•  missing at random 
•  missing systematically 

•  the EM approach to imputing missing values in Bayes net 
parameter learning 

•  K-means clustering algorithm as another example of EM 
•  the Chow-Liu algorithm for structure search 
•  structure learning as search 
•  Kullback-Leibler divergence 
•  the Sparse Candidate algorithm 
•  the naïve Bayes classifier 
•  the Tree Augmented Network (TAN) algorithm 



Bayesian network example 

•  Consider the following 5 binary random variables: 
B = a burglary occurs at your house 
E = an earthquake occurs at your house 
A = the alarm goes off 
J  = John calls to report the alarm 
M = Mary calls to report the alarm 

•  Suppose we want to answer queries like what is       
P(B | M, J) ?   



Bayesian network example 

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 

B E t f 

t t 0.95 0.05 

t f 0.94 0.06 

f t 0.29 0.71 

f f 0.001 0.999 

P ( A | B, E ) 

t f 

0.001 0.999 

P ( B ) 
t f 

0.001 0.999 

P ( E ) 

A t f 

t 0.9 0.1 

f 0.05 0.95 

P ( J | A) 
A t f 

t 0.7 0.3 

f 0.01 0.99 

P ( M | A) 



Bayesian networks 

•  a BN consists of a Directed Acyclic Graph (DAG) and 
a set of conditional probability distributions 

•  in the DAG 
–  each node  denotes random a variable 
–  each edge from X to Y represents that X directly 

influences Y	


–  formally: each variable X is independent of its non-

descendants given its parents 

•  each node X  has a conditional probability distribution 
(CPD) representing P(X | Parents(X) )	





Bayesian networks 

•  a BN provides a compact representation of a joint 
probability distribution 

 
P(X1,  …,  Xn ) =   P(Xi | Parents(Xi

i=1

n

∏ ))

 
P(X1,  …,  Xn ) =   P(X1) P(Xi | X1

i=2

n

∏ ,  …,  Xi−1))

•  using the chain rule, a joint probability distribution can be 
expressed as 



Bayesian networks 

P(B,E,A, J,M ) =   P(B)×
                             P(E)×
                             P(A | B,E)×
                             P(J | A)×
                             P(M | A)

•  a standard representation of the joint distribution  for the 
Alarm example has 25 = 32 parameters 

•  the BN representation of this distribution has 20 parameters 

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 



Bayesian networks 
•  consider a case with 10 binary random variables 

•  How many parameters does a BN with the following 
graph structure have? 

•  How many parameters does the standard table 
representation of the joint distribution have? 

= 42 

= 1024 

2 

4 4 

4 
4 4 

4 

4 8 4 



Advantages of the Bayesian  
network representation 

•  Captures independence and conditional independence 
where they exist 

•  Encodes the relevant portion of the full joint among 
variables where dependencies exist 

•  Uses a graphical representation which lends insight into 
the complexity of inference 



The inference task in Bayesian networks 

Given: values for some variables in the network (evidence), 
and a set of query variables 

Do:  compute the posterior distribution over the query 
variables 

•  variables that are neither evidence variables nor query 
variables are hidden variables 

•  the BN representation is flexible enough that any set can 
be the evidence variables and any set can be the query 
variables 



Inference by enumeration 

•  Fix the evidence variables (that is, ignore 
CPD entries inconsistent with the given 
setting for the evidence variables) 

 
•  For each setting of the query variable(s) sum 

out the remaining variables 

•  Normalize the resulting numbers 



Inference by enumeration example 

A	



B	

 E	



M	

J	



•  let a denote A=true, and ¬a denote A=false	


•  suppose we’re given the query: P(b | j, m)	


     “probability the house is being burglarized given that John 

and Mary both called” 
•  from the graph structure we can first compute: 

P(b, j,m) = P(b)P(e)P(a | b,e)P( j | a)P(m | a)
a
∑

e
∑

sum over possible 
values for E and A	


variables (e, ¬e, a, ¬a) 



Inference by enumeration 

B E P(A) 

t t 0.95 

t f 0.94 

f t 0.29 

f f 0.001 

P(B) 

0.001 

P(E) 

0.001 

A P(J) 

t 0.9 

f 0.05 

A P(M) 

t 0.7 

f 0.01 

P(b, j,m) = P(b)P(e)P(a | b,e)P( j | a)P(m | a)
a
∑

e
∑

              = P(b) P(e)P(a | b,e)P( j | a)P(m | a)
a
∑

e
∑

= 0.001× (0.001× 0.95 × 0.9 ×   0.7 +
                 0.001× 0.05 × 0.05 × 0.01+
                 0.999 × 0.94 × 0.9 ×  0.7 +
                 0.999 × 0.06 × 0.05 × 0.01)

e, a	



e, ¬a	



¬e, a	



¬ e, ¬ a	



B	

 E	

 A	

 J	

 M	



A	



B	

 E	



M	

J	





•  now do equivalent calculation for P(¬b,  j, m)	


•  and determine P(b | j, m) 

Inference by enumeration 

P(b | j,m) = P(b, j,m)
P( j,m)

=
P(b, j,m)

P(b, j,m)+ P(¬b, j,m)
                















Variable Elimination Procedure 

•  The initial potentials are the CPTs in BN. 
•  Repeat until only query variable remains: 

–  Choose another variable to eliminate. 
–  Multiply all potentials that contain the variable. 
–  If no evidence for the variable then sum the 

variable out and replace original potential by the 
new result. 

–  Else, remove variable based on evidence. 
•  Normalize remaining potential to get the final 

distribution over the query variable. 















This link between V.E. and J.T. due to d’Ambrosio.  



Junction Trees: Motivation 

•  Standard algorithms (e.g., variable elimination) 
are inefficient if the undirected graph underlying 
the Bayes Net contains cycles. 

•  We can avoid cycles if we turn highly-
interconnected subsets of the nodes into 
“supernodes.” 



A Running Example for the Steps in 
Constructing a Junction Tree 

Imagine we start with a Bayes Net having the following structure.



Step 1: Make the Graph Moral 
Add an edge between non-adjacent (unmarried)
parents of the same child.



Step 2: Remove Directionality 



Step 3: Triangulate the Graph 
Repeat while there exists a cycle of length > 3 with no chord:     

Add a chord (edge between two non-adjacent
vertices in such a cycle).



Step 3: Triangulate the Graph 
Repeat while there exists a cycle of length > 3 with no
chord joining vertices that are not adjacent in the cycle:

Add an edge (chord) between two non-adjacent
vertices in such a cycle.



Step 3: Triangulate the Graph 
Repeat while there exists a cycle of length > 3 with no
chord joining vertices that are not adjacent in the cycle:

Add an edge (chord) between two non-adjacent
vertices in such a cycle.



Is it Triangulated Yet? 

It appears to be triangulated, but how can we be sure?



Triangulation Checking 

The following  algorithm terminates with

success if and only if the graph is triangulated.  It processes each node,

and the time to process a node is quadratic in the number of adjacent nodes.

Choose any node in the graph and label it 1.

For i =  2 to n (total number of nodes in the graph):

          Choose the node with the most labeled neighbors and label it i.

          If any two labeled neighbors of i are not adjacent to each other,  FAIL.

SUCCEED.

MaximumCardinalitySearch



Is it Triangulated Yet? 

It appears to be triangulated, but how can we be sure?

1



Is it Triangulated Yet? 

It appears to be triangulated, but how can we be sure?

1 2



Is it Triangulated Yet? 

It appears to be triangulated, but how can we be sure?

1 2

3



Is it Triangulated Yet? 

It appears to be triangulated, but how can we be sure?

1 2

3 4



Is it Triangulated Yet? 

It appears to be triangulated, but how can we be sure?

1 2

3 4

5



Is it Triangulated Yet? 

It appears to be triangulated, but how can we be sure?

1 2

3 4

5

6



It is Not Triangulated 

No edge between nodes 5 and 6, both of which are parents of 7.

1 2

3 4

5

6

7



Fixing the Faulty Cycle 

1 2

3 4

5

6

7



Continuing our Check... 

Must restart algorithm.  Ordering might change, or we might have.

1 2

3 4

5

6

7

introduced a new cycle.  Imagine repeating procedure with this graph.



Continuing our Check... 

Following our earlier change, 5 is now a neighbor of 6.  When we reach

1 2

3 4

5

6

7

6 we see that its neighbors 5 and 3 are not adjacent -- another fix...



Fixing this Problem 

Adding an edge between the non-adjacent parents 3 and 5     

1 2

3 4

5

6

7

of 6 provides a missing chord as below.      



Continuing our Check... 

We now have the graph below.  Restarting, everything is fine     

1 2

3 4

5

6

7

through node 7 as below.  As we continue, we end up adding      
two more edges and finally succeeding with ...



The Following is Triangulated 

1 2

3 4

5

6

7

8

9

10 11

12



Triangulation: Key Points 

•  Previous algorithm is an efficient checker, but not 
necessarily best way to triangulate. 

•  In general, many triangulations may exist.  The 
only efficient algorithms are heuristic. 

•  Jensen and Jensen (1994) showed that any scheme 
for exact inference (belief updating given 
evidence) must perform triangulation (perhaps 
hidden as in Draper 1995). 



Definitions 

•  Complete graph or node set: all nodes are 
adjacent. 

•  Clique: maximal complete subgraph. 
•  Simplicial node: node whose set of neighbors is a 

complete node set. 



Step 4: Build Clique Graph 

1 2

3 4

5

6

7

8

9

10 11

12

Find all cliques in the moralized, triangulated graph.  A clique
becomes a node in the clique graph.  If two cliques intersect      
below, they are joined in the clique graph by an edge
labeled with their intersection from below (shared nodes).



The Clique Graph 

C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3 3,4,5

5

4,5

4,5,6
5,7

9,10

9
5,7,9

5,7

6 6
8
5,6,7

6,8

5,7,8

The label of an edge between two cliques is called the separator.

5,6

5 5

5,7

5
5



Junction Trees 

•  A junction tree is a subgraph of the clique graph 
that (1) is a tree, (2) contains all the nodes of the 
clique graph, and (3) satisfies the junction tree 
property. 

•  Junction tree property: For each pair U, V of 
cliques with intersection S, all cliques on the path 
between U and V contain S. 



Clique Graph to Junction Tree 

•  We can perform exact inference efficiently on a 
junction tree (although CPTs may be large).  But 
can we always build a junction tree?  If so, how? 

•  Let the weight of an edge in the clique graph be 
the cardinality of the separator.  Than any 
maximum weight spanning tree is a junction tree 
(Jensen & Jensen 1994). 



Step 5: Build the Junction Tree 

C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3,4,5

4,5,6

9,10
5,7,9

5,6,7

6,8

5,7,8



Step 6: Choose a Root 

C7
5,7,9,10

C4
4,5,6,7

C8
9,10,11

C6
5,7,8,9

C1
1,2,3

C2
2,3,4,5

C3
3,4,5,6

3,4,5

2,3

C9
6,8,12

C5
5,6,7,8
6,8

5,6,7 5,7,8

4,5,6
5,7,9

9,10



Step 7: Populate Clique Nodes 

•  For each distribution (CPT) in the original Bayes 
Net, put this distribution into one of the clique 
nodes that contains all the variables referenced by 
the CPT.  (At least one such node must exist 
because of the moralization step). 

•  For each clique node, take the product of the 
distributions (as in variable elimination). 



Better Triangulation Algorithm 
Specifically for Bayes Nets, Based on 

Variable Elimination 

•  Repeat until no nodes remain: 
–  If the graph has a simplicial node, eliminate it (consider 

it “processed” and remove it together with all its 
edges). 

–  Otherwise, find the node whose elimination would give 
the smallest potential possible.  Eliminate that node, 
and note the need for a “fill-in” edge between any two 
non-adjacent nodes in the resulting potential. 

•  Add the “fill-in” edges to the original graph. 



Find Cliques while Triangulating 
(or in triangulated graph) 

•  While executing the previous algorithm: for each 
simplicial node, record that node with all its 
neighbors as a possible clique.  (Then remove that 
node and its edges as before.) 

•  After recording all possible cliques, throw out any 
one that is a subset of another. 

•  The remaining sets are the cliques in the 
triangulated graph. 

•  O(n3), guaranteed correct only if graph is 
triangulated. 



Choose Root, Assign CPTs 

DEFBCD.7 .3
.6.4

.5 .5

.4 .6

.1 .5
.5.9 .6 .2

.4 .8ABC

CDE

.007.003
.648.162 .018.072

.063.027

CD DE

BC

a
¬a

¬d B|d B|
b

¬b

e C| ¬e C|
c

¬c

de e ¬e¬e
¬d

f D E| ,
¬ f D E| ,

b ¬b
cc ¬c¬c

P( )A,B,C

P( )E C|

P( )D B|

P( )F D E| ,



Junction Tree Inference Algorithm 

•  Incorporate Evidence: For each evidence 
variable, go to one table that includes that 
variable.  Set to 0 all entries in that table that 
disagree with the evidence. 

•  Upward Step: For each leaf in the junction tree, 
send a message to its parent.  The message is the 
marginal of its table, ... 



J.T. Inference (Continued) 

•  (Upward Step continued)… summing out any 
variable not in the separator.  When a parent 
receives a message from a child, it multiplies its 
table by the message table to obtain its new table.  
When a parent receives messages from all its 
children, it repeats the process (acts as a leaf).  
This process continues until the root receives 
messages from all its children. 



J.T. Inference (Continued) 

•  Downward Step: (Roughly reverses the upward 
process, starting at the root.)  For each child, the 
root sends a message to that child.  More 
specifically, the root divides its current table by 
the message received from that child, marginalizes 
the resulting table to the separator, and sends the 
result of this marginalization to the child.  When 
a ... 



J.T. Inference (Continued) 

•  (Downward Step continued)… child receives a 
message from its parent, multiplying this message 
by the child’s current table will yield the joint 
distribution over the child’s variables (if the child 
does not already have it).  The process repeats (the 
child acts as root) and continues until all leaves 
receive messages from their parents. 









One Catch for Division 

•  At times we may find ourselves needing to divide 
by 0. 

•  We can verify that whenever this occurs, we are 
dividing 0 by 0. 

•  We simply adopt the convention that for this 
special case, the result will be 0 rather than 
undefined. 



Build Junction Tree for BN Below 

A

D E

F

CB

.1 .9

.9
.9
.1

.1

.7

.3 .8
.2

.7 .3

.4 .6

.5 .5

.4 .6

.1 .5
.5.9 .6 .2

.4 .8

a

a

¬a

¬a
b A|

¬b A|

a ¬a
c A|

¬c A|

¬d B|d B|
b

¬b

e C| ¬e C|
c

¬c

de e ¬e¬e
¬d

f D E| ,
¬ f D E| ,



Inference Example (assume no 
evidence): Going Up 

.081.099
.651.169

1.0 1.0
1.0 1.0

DEFBCD

ABC

CDE
CD DE

BC

.330

.124.126
.420

¬dd
c
¬c

|e |¬ e
|d
|¬ d

b
¬b

c ¬c
P( )B,C

P( D,E)|
P( )C D,



Status After Upward Pass 

.1 .5
.5.9 .6 .2

.4 .8

.007.003
.648.162 .018.072

.063.027

DEFBCD

ABC

CDE
CD DE

BC

.068.101
.024.057 .069.030

.260.391

.062.062
.198.132 .168.252

.063.063

b
¬b

c
¬d

e ¬e

P( )A,B,C

P( )C D E, ,P( )B C D, ,

P( )F D E| ,

e
d
¬c

¬e

¬dd
c

¬c

d ¬d



Going Back Down 

.194.260

.231.315

DEFBCD

ABC

CDE
CD DE

BC

1.0 1.0

Will have no
effect - ignore

¬dd
e

¬e
c ¬c .194  .231 

.260  .315 



Status After Downward Pass 

.019.130
.130.175 .139.063

.092.252

.007.003
.648.162 .018.072

.063.027

DEFBCD

ABC

CDE
CD DE

BC

.068.101
.024.057 .069.030

.260.391

.062.062
.198.132 .168.252

.063.063

b
¬b

c
¬d

e ¬e

P( )A,B,C

P( )C D E, ,P( )B C D, ,

P( , )D E,F

e
d
¬c

¬e

¬dd
c

¬c

d ¬d

d ¬dee ¬e ¬e
f

¬ f
b ¬b

c c¬c ¬c
a

¬a



Answering Queries: Final Step 

•  Having built the junction tree, we now can ask 
about any variable.  We find the clique node 
containing that variable and sum out the other 
variables to obtain our answer. 

•  If given new evidence, we must repeat the 
Upward-Downward process. 

•  A junction tree can be thought of as storing the 
subjoints computed during elimination. 





Significance of Junction Trees 

•  “…only well-understood, efficient, provably 
correct method for concurrently computing 
multiple queries (AI Mag’99).” 

•  As a result, they are the most widely-used and 
well-known method of inference in Bayes Nets, 
although… 

•  Junction trees soon may be overtaken by 
approximate inference using MCMC. 



The Link Between Junction Trees and 
Variable Elimination 

•  To eliminate a variable at any step, we combine all 
remaining distributions (tables) indexed on 
(involving) that variable. 

•  A node in the junction tree corresponds to the 
variables in one of the tables created during 
variable elimination (the other variables required 
to remove a variable). 

•  An arc in the junction tree shows the flow of data 
in the elimination computation. 



Junction Trees/Variable Elim. 

•  We can use different orderings in variable 
elimination -- affects efficiency. 

•  Each ordering corresponds to a junction tree. 
•  Just as some  elimination orderings are more 

efficient than others, some junction trees are better 
than others.  (Recall our mention of heuristics for 
triangulation.) 



Recall Variable Elimination Example 

A

D E

F

CB

.1 .9

.9
.9
.1

.1

.7

.3 .8
.2

.7 .3

.4 .6

.5 .5

.4 .6

.1 .5
.5.9 .6 .2

.4 .8

a

a

¬a

¬a
b A|

¬b A|

a ¬a
c A|

¬c A|

¬d B|d B|
b

¬b

e C| ¬e C|
c

¬c

de e ¬e¬e
¬d

f D E| ,
¬ f D E| ,



First Eliminated Variable A 

A

D E

F

CB
.007.003

.648.162 .018.072
.063.027

.169.651

.081.099

a
¬a

b ¬b
c ¬c c ¬c

b
¬b

c ¬c
A∑

P P P P( ) =  ( ) ( ) ( )A,B,C B|A C|A A

P( )B,C



Next Eliminated Variable B 

D E

F

CB
.068.101

.024.057 .069.030
.260.391

.124.126

.330.420

b
¬b

c
¬dd

¬c

d ¬d
B∑

¬dd

c
¬c

P P P( ) =  ( ) ( )B,C,D D|B B,C

P( )C,D



Next Eliminated Variable C 

D E

F

C
.062.062

.198.132 .168.252
.063.063

.194.260

.231.315

c
¬c

d
¬ee

¬d

e ¬e
C∑

¬ee

d
¬d

P P P( ) =  ( ) ( )C,D,E E|C C,D

P( )D E,



Left us with P(D,E,F) 

D E

F

.019.130
.130.175 .139.063

.092.252f
¬ f

d
¬ee

¬d
¬ee

P P P( ) =  ( | ) ( )D,E F F D,E D E, ,



Corresponding Moralized, Triangulated 
Graph... 

A

D E

F

CB

Notice how the cliques correspond to the 3-variable joint tables    
we created during the variable elimination steps.  We could
replace the CD arc by a BE arc; we could eliminate C before B.



Approximate (Monte Carlo) Inference 
in Bayes Nets 

•  Basic idea: Let’s repeatedly sample 
according to the distribution represented by 
the Bayes Net.  If in 400/1000 draws, the 
variable X is true, then we estimate that the 
probability X is true is 0.4. 

•  To sample according to Bayes Net, just set 
the variables one at a time using a total 
ordering consistent with the partial... 



Monte Carlo (continued) 

•  (Samping continued)… ordering represented 
by the underlying DAG of the Net.  In this 
way, when we wish to draw the value for X 
we already have the values of its parents, so 
we can find the probabilities to use from the 
CPT for X. 

•  This approach is simple to implement using a 
pseudorandom  number generator. 



So it seems we’re done, right? 

•  Wrong: what if we take into account evidence 
(observed values for variables)? 

•  If the evidence happens to be in the “top” 
nodes of the network (nodes with no parents), 
we’re still fine.  Otherwise... 

•  No efficient general method exists for 
sampling according to the new distribution 
based on the evidence.  (There are inefficient 
ways, e.g., compute full joint.) 



Rejection Sampling 

•  One natural option for sampling with evidence 
is to use our original sampling approach, and 
just throw out (reject) any setting that does 
not agree with the evidence.  This is rejection 
sampling. 

•  Problem: if evidence involves many variables, 
most of our draws will be rejected (few will 
agree with the evidence). 



Likelihood Weighting 

•  Another approach is to set the evidence 
variables, sample the others with the original 
Monte Carlo approach, and then correct for 
improbable combinations by weighting each 
setting by its probability. 

•  Disadvantage: with many evidence variables, 
probabilities become vanishingly small.  We 
don’t sample the more probable events very 
thoroughly. 



Markov Chain Monte Carlo 

•  Key idea: give up on independence in 
sampling. 

•  Generate next setting probabilistically based 
on current setting (Markov chain). 

•  Metropolis-Hastings Algorithm for the general 
case, Gibbs Sampler for Bayes Nets in 
particular.  Key property: detailed balance 
yields stationary distribution. 



Gibbs Sampling by Example 

Smoking

Heart
Disease

Lung
Disease

Shortness
of Breath

P(s)

0.2
S       P(h)

T

F

0.6

0.1

S       P(l)

T

F

0.8

0.1
H        L           P(b)
T        T

F        T
T        F

F        F

0.9
0.8
0.7
0.1



Gibbs Sampling Example 
(Continued) 

•  Let our query be P(HeartDisease | smoking, 
shortnessOfBreath).  That is, we know we’ve 
been smoking (Smoking=True) and we know 
we’re experiencing shortness of breath 
(ShortnessOfBreath=True), and we wish the 
know the probability that we have heart 
disease. 

•  Might as well keep a tally for LungDisease 
while we’re at it. 



Other Decisions 

•  Let’s assume we use an off-the-shelf 
pseudorandom number generator for the 
range [0..1]. 

•  We can loop through the non-evidence 
variables in a pre-established order or 
randomly, uniformly.  Let’s go with the latter.  
Tally at each step.  (If the former, we could 
tally at each step or each iteration.) 



Other Decisions (Continued) 

•  One chain or many: let’s go with one. 
•  Length or burn-in: ordinarily 500-1000, but 

let’s go with 2 (don’t tally for original setting 
or setting after first step). 

•  Initial values: let’s say all True.  Note that 
Smoking and ShortnessOfBreath must be 
initialized to True, since this is our evidence.  
The initial settings for non-evidence variables 
are arbitrary. 



Other Decisions (Continued) 

•  Use of random numbers in selecting a 
variable to draw.  We have only two non-
evidence variables: HeartDisease and 
LungDisease.  Let’s adopt a policy that a 
random number greater than 0.5 leads us to 
draw a value for LungDisease, and a random 
number of 0.5 or less leads us to draw for 
HeartDisease. 



Other Decisions (Continued) 

•  Use of random numbers in selecting values of 
variables.  Since all our variables are 
Boolean, our distributions will be over the 
values <True,False> and will have the form 
<P(True),1-P(True)>.  If our random number 
is less than or equal to  P(True), then we will 
set the variable to True, and otherwise we will 
set it to False. 



A Final Supposition for our Example 

•  Having made all our choices, the only other 
factor that will affect the activity of the Gibbs 
Sampling algorithm is the sequence of 
random numbers that we draw. 

•  Let’s suppose our sequence of random 
numbers begins 0.154, 0.383, 0.938, 0.813, 
0.273, 0.739, 0.049, 0.233, 0.743, 0.932, 
0.478, 0.832, … 



Round 1 

•  Our first random number is 0.154, so we will 
draw a value for HeartDisease. 

•  To draw the value, we must first determine 
the distribution for HeartDisease given its 
Markov Blanket. 

•  First, we compute a value for True.  We 
multiply P(heartDisease|smoking) by 
P(shortnessOfBreath | heartDisease, 
lungDisease).  Notice we take LungDisease 



Round 1 (Continued) 

•  (Continued)… to be True because that is its 
current setting.  (We use the current settings 
of all variables in the Markov Blanket.)  This 
product is (0.6)(0.9) = 0.54. 

•  Next we repeat the process for 
HeartDisease=False.  We multiply the 
probability that HeartDisease is False given 
smoking by the probability of 
shortnessOfBreath given HeartDisease is 



Round 1 (Continued) 

•  (Continued)… False and LungDisease is 
True.  The resulting product is (0.4)(0.7) = 
0.28. 

•  We now normalize <0.54,0.28> to get the 
probability distribution <0.66,0.34>.  Hence 
we will set HeartDisease to True if and only if 
our random number is at most 0.66.  It is 
0.383, so HeartDisease remains True. 



Round 2 

•  Our next random number is 0.938, so we next 
will draw a value for LungDisease given the 
current settings for the other variables. 

•  To obtain a value for LungDisease=True, we 
multiply P(lungDisease | smoking) by 
P(shortnessOfBreath | heartDisease, 
lungDisease).  (Recall that True is our current 
setting for HeartDisease and True 



Round 2 (Continued) 

•  (Continued)… is our candidate setting for 
LungDisease.  This product is (0.8)(0.9) = 
0.72. 

•  Similarly, for LungDisease=False, we multiply 
P(LungDisease=False | smoking) by 
P(shortnessOfBreath | heartDisease, 
LungDisease=False).  This product is (0.2)
(0.8) = 0.16. 



Round 2 (Continued) 

•  Normalizing <0.72, 0.16> we get the 
distribution <0.82, 0.18>. 

•  Our next random number is 0.813, so we 
(barely) keep LungDisease set to True. 

•  This is the first round after our burn-in, so we 
record the frequencies.  We now have counts 
of 0 for HeartDisease and LungDisease set to 
False, and counts of 1 for each of these set to 
True. 



Round 3 

•  Our next random number is 0.273, so we 
draw a value for HeartDisease next. 

•  Because all the variables have the same 
value as the last time we drew for 
HeartDisease, the distribution is the same: 
<0.66, 0.34>.  Our next random number is 
0.739, so we set HeartDisease to False.  



Round 3 (Continued) 

•  Updating our tallies, we have counts of: 1 for 
HeartDisease=False, 1 for 
HeartDisease=True, 0 for 
LungDisease=False, and 2 for 
LungDisease=True. 



Round 4 

•  The next random number is 0.049.  Therefore 
we draw a value for HeartDisease again.  
Because all other variables are unchanged, 
and we consider both values of 
HeartDisease, once again the distribution is 
<0.66, 0.34>.  Our next random number is 
0.233, so we reset HeartDisease to True. 



Round 4 (Continued) 

•  Our new counts are as follows: 2 for 
HeartDisease=True, 1 for 
HeartDisease=False, 3 for 
LungDisease=True, and 0 for 
LungDisease=False. 



Round 5 

•  Our next random number is 0.743, so we next 
draw a value for LungDisease. 

•  The values for all other variables are as they 
were the first time we drew a value for 
LungDisease, so the distribution remains 
<0.82,0.18>.  Our next random number is 
0.932, so we set LungDisease to False. 



Round 5 (Continued) 

•  Our new tallies are as follows: 3 each for 
HeartDisease=True and LungDisease=True, 
and 1 each for HeartDisease=False and 
LungDisease=False.  



Round 6 

•  The next random number is 0.478, so again 
we sample HeartDisease.  But since the 
setting for LungDisease has changed, we 
must recompute the distribution over 
HeartDisease. 

•  To get a value for HeartDisease=True, we 
multiply P(heartDisease | smoking) by 
P(shortnessOfBreath | HeartDisease=True, 



Round 6 (Continued) 

•  (Continued)… LungDisease=False).  This 
results in the product (0.6)(0.8) = 0.48. 

•  For HeartDisease=False, we multiply 
P(HeartDisease=False | smoking) by 
P(shortnessOfBreath | HeartDisease=False, 
LungDisease=False).  The result is (0.4)(0.1) 
= 0.04. 

•  Normalizing these values to obtain a 



Round 6 (Continued) 

•  (Continued)… probability distribution, we get 
<0.92, 0.08>.  Our next random number is 
0.832 so we choose HeartDisease=True. 

•  Our tallies now stand at 1 for 
HeartDisease=False, 4 for 
HeartDisease=True, 2 for 
LungDisease=False, and 3 for 
LungDisease=True. 



Final Results 

•  Of course, we have not run the Markov chain 
nearly long enough to expect an accurate 
estimate.  Nevertheless, let’s ask what the 
answer is to our query at this point. 

•  We assign a probability of 4/5 or 0.8 to 
heartDisease. 

•  We also might ask about lungDisease, to 
which we assign 3/5 or 0.6. 



Markov Chain 

•  A Markov chain includes 
– A set of states 
– A set of associated transition probabilities 

•  For every pair of states s and s’ (not 
necessarily distinct) we have an associated 
transition probability T(sès’) of moving from 
state s to state s’ 

•  For any time t, T(sès’) is the probability of the 
Markov process being in state s’ at time t+1 
given that it is in state s at time t 

 
 



Some Properties of Markov Chains 
 

•  Irreducible chain: can get from any state to 
any other eventually (non-zero probability) 

•  Periodic state: state i is periodic with period k 
if all returns to i must occur in multiples of k 

•  Ergodic chain: irreducible and has an 
aperiodic state. Implies all states are 
aperiodic, so chain is aperiodic. 

•  Finite state space: can represent chain as 
matrix of transition probabilities… then 
ergodic = regular… 

•  Regular chain: some power of chain has only 
positive elements 

•  Reversible chain: satisfies detailed balance 
(later) 



Sufficient Condition for Regularity 

•  A Markov chain is regular if the following 
properties both hold: 
  1. For any pair of states s, s’ that each 
have nonzero probability there exists some 
path from s to s’ with nonzero probability 
  2. For all s with nonzero probability, the 
“self loop” probability T(sès) is nonzero 

 
•  Gibbs sampling is regular if no zeroes in 

CPTs 



Notation: Probabilities 

•   πt(y) = probability of being in state y at time t 

•  Transition function T(yèy’) = probability of 
moving from state y to state y’ 



Bayesian Network Probabilities 

•  We use P to denote probabilities according to 
our Bayesian network, conditioned on the 
evidence 
– For example, P(yi’|ui) is the probability that 

random variable Yi has value yi’ given that 
Yj=yj for all j not equal to i    



Assumption: CPTs nonzero 

•  We will assume that all probabilities in all 
conditional probability tables are nonzero 

•  So, for any y, 

•  So, for any event S,   

•  So, for any events S1 and S2,  
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How π Changes with Time in a 
Markov Chain 

  
•   πt+1(y’) =  

•  A distribution πt is stationary if πt = πt+1, that is, 
for all y, πt(y) = πt+1(y) 

∑ →
y

yyy ))T((t 'π



Detailed Balance 

•  A Markov chain satisfies detailed balance if 
there exists a unique distribution π such that 
for all states y, y’, 

π(y)T(yèy’) =  π(y’)T(y’èy) 
•  If a regular Markov chain satisfies detailed 

balance with distribution π, then there exists t 
such that for any initial distribution π0, πt = π  

•  Detailed balance with regularity implies 
convergence to unique stationary distribution 



Gibbs Sampler satisfies Detailed 
Balance 

 
Claim: A Gibbs sampler Markov chain defined by a 

Bayesian network with all CPT entries nonzero 
satisfies detailed balance with probability distribution 
π(y)=P(y) for all states y 

 
Proof: First we will show that P(y)T(yèy’) = 

P(y’)T(y’èy).  Then we will show that no other 
probability distribution π satisfies π(y)T(yèy’) = 
π(y’)T(y’èy) 



Using Other Samplers 

•  The Gibbs sampler only changes one random 
variable at a time 
– Slow convergence 
– High-probability states may not be reached 

because reaching them requires going 
through low-probability states 



Metropolis Sampler 

•  Propose a transition with probability 
TQ(yèy’) 

•  Accept with probability A=min(1, P(y’)/P(y)) 
•  If for all y, y’ TQ(yèy’)=TQ(y’èy) then the 

resulting Markov chain satisfies detailed 
balance 



Metropolis-Hastings Sampler 

•  Propose a transition with probability 
TQ(yèy’) 

•  Accept with probability 
 A=min(1, P(y’)TQ(y’èy)/P(y)TQ(yèy’)) 

•  Detailed balance satisfied 
•  Acceptance probability often easy to compute 

even though sampling according to P difficult 



Gibbs Sampler as Instance of 
Metropolis-Hastings 

•  Proposal distribution TQ(ui,yièui,yi’) = P(yi’|ui)  
•  Acceptance probability: 

  
 
 

1

)
)|'()()|(
)|()()|'(,1min(

)
)',,(),(
),',()',(,1min(

=

=

→

→
=

iiiii

iiiii

iiii
Q

ii

iiii
Q

ii

uyPuPuyP
uyPuPuyP

yuyuTyuP
yuyuTyuPA



Comments on BN inference 
•  inference by enumeration is an exact method (i.e. it computes the 

exact answer to a given query) 

•  it requires summing over a joint distribution whose size is exponential 
in the number of variables 

•  in many cases we can do exact inference efficiently in large networks 

–  variable elimination: save computation by pushing sums inward 

–  junction trees: re-use work if same evidence in many queries 

•  in general, the Bayes net inference problem is NP-hard 

•  there are also methods for approximate inference –   these get an 
answer which is “close”: belief propagation (not covered), MCMC 

•  in general, the approximate inference problem is NP-hard also, but 
approximate methods work well for many real-world problems 

•  Gibbs sampling and other MCMC methods have many ML 
applications outside of Bayes nets also 



The parameter learning task 

•  Given: a set of training instances, the graph structure of a BN 

•  Do: infer the parameters of the CPDs 

B E A J M 

f f f t f 
f t f f f 
f f t f t 

… 

Burglary Earthquake 

Alarm 

JohnCalls MaryCalls 



The structure learning task 

•  Given: a set of training instances 

•  Do: infer the graph structure (and perhaps the 
parameters of the CPDs too) 

B E A J M 

f f f t f 
f t f f f 
f f t f t 

… 



Parameter learning and maximum 
likelihood estimation 

•  maximum likelihood estimation (MLE) 
–  given a model structure (e.g. a Bayes net graph) 

and a set of data D	


–  set the model parameters θ to maximize P(D | θ) 

•  i.e. make the data D look as likely as possible under 
the model P(D | θ)	





Maximum likelihood estimation 

x = 1,1,1,0,1,0,0,1,0,1{ }

consider trying to estimate the parameter θ (probability of heads) of 
a biased coin from a sequence of flips	


 

for h heads in n flips 
the MLE is h/n	



 

L(θ | x1,…, xn ) = θ x1 (1−θ )1−x1θ xn (1−θ )1−xn

                      = θ xi∑ (1−θ )n− xi∑

the likelihood function for θ is given by:	


 



Maximum likelihood estimation 

P( j | a) = 3
4
= 0.75

P(¬j | a) = 1
4
= 0.25

P( j |¬a) = 2
4
= 0.5

P(¬j |¬a) = 2
4
= 0.5

P(b) = 1
8
= 0.125

P(¬b) = 7
8
= 0.875

B E A J M 
f f f t f 
f t f f f 
f f f t t 
t f f f t 
f f t t f 
f f t f t 
f f t t t 
f f t t t 
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B	

 E	



M	

J	



consider estimating the CPD parameters for B and J in the alarm 
network given the following data set 



Learning structure + parameters 

•  number of structures is super-exponential in the number 
of variables 

•  finding optimal structure is NP-complete problem 
•  two common options: 

–  search very restricted space of possible structures  
(e.g. networks with tree DAGs) 

–  use heuristic search (e.g. sparse candidate) 



The Chow-Liu algorithm 

•  learns a BN with a tree structure that maximizes the 
likelihood of the training data 

•  algorithm 
1.  compute weight I(Xi, Xj) of each possible edge (Xi, Xj)	


2.  find maximum weight spanning tree (MST) 
3.  assign edge directions in MST 



The Chow-Liu algorithm 

1.  use mutual information to calculate edge weights 

I(X,Y ) = P(x, y)log2
y∈ values(Y )
∑ P(x, y)

P(x)P(y)x∈ values(X )
∑



The Chow-Liu algorithm 

2.  find maximum weight spanning tree: a maximal-weight 
tree that connects all vertices in a graph 
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Prim’s algorithm for finding an MST 

given: graph with vertices V and edges E	


 
Vnew  ← { v }  where v is an arbitrary vertex from V	


Enew  ← { } 	


repeat until Vnew = V 
{ 

 choose an edge (u, v) in E with max weight where u is in Vnew and v is not 
 add v to Vnew and (u, v) to  Enew	



} 
return Vnew and Enew which represent an MST 

    



Kruskal’s algorithm for finding an MST 

given: graph with vertices V and edges E	


 
Enew  ← { } 	


for each (u, v) in E ordered by weight (from high to low) 
{ 

 remove (u, v) from E 	


 if adding (u, v) to Enew does not create a cycle 
  add (u, v) to  Enew	



} 
return V and Enew which represent an MST 

    



Finding MST in Chow-Liu 
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Finding MST in Chow-Liu 
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Returning directed graph in Chow-Liu 
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3.  pick a node for the root, and assign edge directions 



The Chow-Liu algorithm 

•  How do we know that Chow-Liu will find a tree that 
maximizes the data likelihood? 

•  Two key questions: 
–  Why can we represent data likelihood as sum of I(X;Y) 

over edges? 
–  Why can we pick any direction for edges in the tree? 



Why Chow-Liu maximizes likelihood (for a tree) 

logP(D |G,θG ) = log2 P(xi
(d ) | Pa(Xi ))

i
∑

d∈D
∑

data likelihood given directed edges of G, best fit parameters   

= D I(Xi,Pa(Xi ))−H (Xi )( )
i
∑

= D P(Xi,Pa(Xi ))log2 P(Xi,Pa(Xi )) / Pa(Xi )( )
values(Xi ,Pa(Xi ))
∑

i
∑

= D P(Xi,Pa(Xi ))log2 P(Xi | Pa(Xi ))( )
values(Xi ,Pa(Xi ))
∑

i
∑

= D P(Xi,Pa(Xi ))log2 P(Xi,Pa(Xi )) / P(Xi )(Pa(Xi ))( )
values(Xi ,Pa(Xi ))
∑

i
∑ +

P(Xi,Pa(Xi ))log2 P(Xi )

θG

(since summing over all examples is equivalent to computing average 
over all examples and then multiplying by total number of examples |D|) 



Why Chow-Liu maximizes likelihood (for a tree) 

logP(D |G,θG ) = log2 P(xi
(d ) | Parents(Xi ))

i
∑

d∈D
∑

= D I(Xi ,Parents(Xi ))− H (Xi )( )
i
∑

data likelihood given directed edges 

argmaxG logP(D |G,θG ) = argmaxG I(Xi ,Parents(Xi ))
i
∑

we’re interested in finding the graph G that maximizes this 

argmaxG logP(D |G,θG ) = argmaxG I(Xi ,Xj )
(Xi ,X j )∈edges
∑

if we assume a tree, one node has no parents, all others have exactly one 

I(Xi ,Xj ) = I(Xj ,Xi )
edge directions don’t matter for likelihood, because MI is symmetric 



Heuristic search for structure learning 

•  each state in the search space represents a DAG Bayes 
net structure 

•  to instantiate a search approach, we need to specify 
–  state transition operators 
–  scoring function for states 
–  search algorithm (how to move through state space) 



The typical structure search operators 

A 

B C 

D 

A 

B C 

D 

add an edge 

A 

B C 

D 

reverse an edge 

given the current network 
at some stage of the search,  
we can… 

A 

B C 

D 

delete an edge 



Scoring function decomposability 

•  If score is likelihood, and all instances in D are complete, 
then score can be decomposed as follows (and so can 
some other scores we’ll see later) 

 
score(G,  D) = score(Xi

i
∑ ,Parents(Xi ) :D)

•  thus we can 
–  score a network by summing terms over the nodes in 

the network 

–  efficiently score changes in a local search procedure 



Bayesian network search:  
hill-climbing 

given: data set D, initial network B0	


 
i = 0	


Bbest ←B0	


while stopping criteria not met 
{ 

 for each possible operator application a	


 { 
  Bnew ← apply(a, Bi) 
  if score(Bnew) > score(Bbest) 

              Bbest ← Bnew	


 } 
 ++i	


	

Bi ← Bbest	



} 
return Bi	



    



Bayesian network search:  
the Sparse Candidate algorithm 

[Friedman et al., UAI 1999] 

given: data set D, initial network B0, parameter k	


 
i = 0	


repeat 
{ 

 ++i	


 

 // restrict step 
 select for each variable Xj a set Cj

i (|Cj
i| ≤ k) of candidate parents 

 
 // maximize step 
 find network Bi maximizing score among networks where           
∀Xj, Parents(Xj) ⊆Cj

i 
} until convergence 
return Bi 	



    



•  to identify candidate parents in the first iteration, can compute 
the  mutual information between pairs of variables 

 

 

The restrict step in Sparse Candidate 

I(X,Y ) = P(
x,y
∑ x, y)log P(x, y)

P(x)P(y)



•  suppose true network structure is: 

•  we’re selecting two candidate parents for A, 
and   I(A, C) > I(A, D) > I(A, B)	



•  the candidate parents for A would then be C 
and D ; the maximize step would select C	



•  how could we get B as a candidate parent 
on the next iteration? 

A	



B	

 C	



D	



A	



D	

 C	



The restrict step in Sparse Candidate 



•  to identify candidate parents in the first iteration, can compute 
the  mutual information between pairs of variables 

 

 

The restrict step in Sparse Candidate 

I(X,Y ) = P(
x,y
∑ x, y)log P(x, y)

P(x)P(y)



•  to identify candidate parents in the first iteration, can compute 
the  mutual information between pairs of variables 

 

•  subsequent iterations keep current parents in candidate set 
and condition on parents with conditional mutual information: 

The restrict step in Sparse Candidate 

I(X,Y ) = P(
x,y
∑ x, y)log P(x, y)

P(x)P(y)

I(X,Y | Z ) = P(
x,y
∑ x, y, z)log P(x, y | z)

P(x | z)P(y | z)



)(
)(

log)())(||)((
xQ
xP

xPXQXPD
x

KL ∑=

•  mutual information can be thought of as the KL 
divergence between  the distributions 

•  Kullback-Leibler (KL) divergence provides a distance 
measure between two distributions, P and Q	



P(X,Y )

P(X)P(Y ) (assumes X and Y are independent) 

Another view of the restrict step 



•  we can use KL to assess the discrepancy between the 
network’s estimate Pnet(X, Y) and the empirical estimate  

M (X,Y ) = DKL (P(X,Y )) || Pnet (X,Y ))

A	
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D	

 C	

B	



true distribution current Bayes net 

DKL (P(A,B)) || Pnet (A,B))

The restrict step in Sparse Candidate 

•  Can estimate Pnet(X, Y) by sampling from the network (i.e. 
using it to generate instances). 



The restrict step in Sparse Candidate  
 

given: data set D, current network Bi, parameter k	


 
for each variable Xj	


{ 

 calculate CMI(Xj , Xl |Parents(Xj) for all Xj ≠ Xl  such that 
        Xl ∉ Parents(Xj) 
 

 choose highest ranking  X1 ... Xk-s where s= | Parents(Xj) | 
 

 // include current parents in candidate set to ensure monotonic 
 // improvement in scoring function 
 Cj

i =Parents(Xj) ∪ X1 ... Xk-s  
}  
return { Cj

i  } for all Xj   



The maximize step in Sparse Candidate 

•  hill-climbing search with add-edge, delete-edge,  
reverse-edge operators  

•  test to ensure that cycles aren’t introduced into the graph 



Scoring functions for structure learning 
•  Can we find a good structure just by trying to maximize the 

likelihood of the data? 

argmaxG , θG
 logP(D |G,θG )

•  If we have a strong restriction on the the structures allowed 
(e.g. a tree), then maybe. 

•  Otherwise, no!  Adding an edge will never decrease 
likelihood.  Overfitting likely. 



Scoring functions for structure learning 
•  there are many different scoring functions for BN structure 

search 
•  one general approach where n is number of data points 

argminG, θG
 f (n)θG − logP(D |G,θG )

complexity penalty 

Akaike Information Criterion (AIC): f (n) = 1

Bayesian Information Criterion (BIC): f (n) =
1
2
log(n)



Bayes nets for classification 

•  the learning methods for BNs we’ve discussed so far can 
be thought of as being unsupervised 
•  the learned models are not constructed to predict the 

value of a special class variable 
•  instead, they can predict values for arbitrarily selected 

query variables 

•  now let’s consider BN learning for a standard supervised 
task (learn a model to predict Y given X1 … Xn )	





Naïve Bayes 

•  one very simple BN approach for supervised tasks is 
naïve Bayes 

•  in naïve Bayes, we assume that all features Xi are 
conditionally independent given the class Y	



Xn	

Xn-1	

X2	

X1	



Y	



 
P(X1,  …,  Xn ,  Y ) = P(Y ) P(Xi

i=1

n

∏ |Y )



Naïve Bayes 

Learning 
•  estimate P(Y = y) for each value of the class variable Y	


•  estimate P(Xi =x | Y = y) for each Xi  

Xn	

Xn-1	

X2	

X1	



Y	



 

P(Y = y | x) = P(y)P(x | y)
P(y ')P(x | y ')

y '  ∈ values(Y )
∑

 

=
P(y) P(xi | y)

i=1

n

∏

P(y ') P(xi | y ')
i=1

n

∏
"
#$

%
&'y '  ∈ values(Y )

∑

Classification: use Bayes’ Rule	





Comments about Naïve Bayes 

•  Can extend to numeric features 
– Assume P(X|Y) is normal with unknown mean 

and variance 
– Estimate these by sample mean and variance 
– During inference, just plug X into pdf of normal 

•  Given n features, just n-1 free parameters in 
discrete case 

•  Very robust against overfitting, but sensitive to 
duplicate features (strong correlations) 



Naïve Bayes vs. BNs learned with 
an unsupervised structure search 

test-set error on 25 
data sets from the 
UC-Irvine Repository 

Figure from Friedman et al., Machine Learning 1997 



The Tree Augmented Network  
(TAN) algorithm 

[Friedman et al., Machine Learning 1997] 

•  learns a tree structure  to augment the edges of a naïve 
Bayes network 

 
•  algorithm 

1.  compute weight I(Xi, Xj | Y) for each possible edge 
(Xi, Xj) between features	



2.  find maximum weight spanning tree (MST) for graph 
over X1 … Xn 

3.  assign edge directions in MST 
4.  construct a TAN model by adding node for Y and an 

edge from Y to each Xi	





Conditional mutual information in the 
TAN algorithm 

I(Xi ,Xj |Y ) =

     P(xi ,  x j ,  y)log2
y∈ values(Y )
∑

P(xi ,  x j |  y)
P(xi | y)P(x j | y)x j∈ values(X j )

∑
xi∈ values(Xi )
∑

conditional mutual information is used to calculate edge weights 
 

“how much information Xi provides about Xj when the value of Y is known” 



Example TAN network 
class variable 

naïve Bayes edges 

tree augmented edges 



TAN vs. Chow-Liu 
•  TAN is mostly* focused on learning a Bayes net 

specifically for classification problems 

•  the MST includes only the feature variables (the class 
variable is used only for calculating edge weights) 

•  conditional mutual information is used instead of mutual 
information in determining edge weights in the 
undirected graph 

•  the directed graph determined from the MST is added to 
the Y → Xi edges that are in a naïve Bayes network 

 

*TAN is still generative in maximizing P(x,y), not P(y|x) 



TAN vs. Naïve Bayes 

test-set error on 25 
data sets from the 
UC-Irvine Repository 

Figure from Friedman et al., Machine Learning 1997 



Back to maximum likelihood estimation 

P( j | a) = 3
4
= 0.75

P(¬j | a) = 1
4
= 0.25

P( j |¬a) = 2
4
= 0.5

P(¬j |¬a) = 2
4
= 0.5

P(b) = 1
8
= 0.125

P(¬b) = 7
8
= 0.875

B E A J M 
f f f t f 
f t f f f 
f f f t t 
t f f f t 
f f t t f 
f f t f t 
f f t t t 
f f t t t 

A	



B	

 E	



M	

J	



consider estimating the CPD parameters for B and J in the alarm 
network given the following data set 



Maximum likelihood estimation 

P(b) = 0
8
= 0

P(¬b) = 8
8
= 1

B E A J M 
f f f t f 
f t f f f 
f f f t t 
f f f f t 
f f t t f 
f f t f t 
f f t t t 
f f t t t 

A	



B	

 E	



M	

J	



suppose instead, our data set was this… 

do we really want to  
set this to 0? 



Maximum a posteriori (MAP) estimation 

•  instead of estimating parameters strictly from the 
data, we could start with some prior belief for each 

•  for example, we could use Laplace estimates 

•  where nv represents the number of occurrences of 
value v	



P(X = x) = nx +1
(nv +1)

v∈ Values(X )
∑ pseudocounts 



Maximum a posteriori estimation 

a more general form: m-estimates 

P(X = x) = nx + pxm

nv
v∈ Values(X )
∑

#

$%
&

'(
+m number of  “virtual” instances 

prior probability of value x	





M-estimates example 

B E A J M 
f f f t f 
f t f f f 
f f f t t 
f f f f t 
f f t t f 
f f t f t 
f f t t t 
f f t t t 

A	



B	

 E	



M	

J	



now let’s estimate parameters for B using m=4 and pb=0.25	



P(b) = 0 + 0.25 × 4
8 + 4

=
1
12

= 0.08 P(¬b) = 8 + 0.75 × 4
8 + 4

=
11
12

= 0.92



Pseudocounts are really 
parameters of a Beta distribution 

a,b 



Any intuition for this? 
•  For any positive integer y, Γ(y) = (y-1)!. 
•  Suppose we use this, and we also replace 

–  x with p 
–  a with x 
–  a+b with n 

•  Then we get: 

•  The beta(a,b) is just the binomial(n,p) where 
n=a+p, and p becomes the variable.  With 
change of variable, we need a different 
normalizing constant so the sum (integral) is 
one.  Hence (n+1)! replaces n!. 
 

(n+1)!
x!(n− x)!

px (1− p)n−x





Incorporating a Prior 

•  We assume a beta distribution as our prior 
distribution over the parameter p. 

•  Nice properties: unimodal, we can choose the 
mode to reflect the most probable value, we 
can choose the variance to reflect our 
confidence in this value. 

•  Best property: a beta distribution is 
parameterized by two positive numbers: a … 



Beta Distribution (Continued) 

•  (Continued)… and b.  Higher values of a 
relative to b cause the mode of the 
distribution to be more to the left, and higher 
values of both a and b cause the distribution 
to be more peaked (lower variance).  We 
might for example take a to be the number of 
heads, and b to be the number of tails.  At 
any time, the mode of 



Beta Distribution (Continued) 

•  (Continued)… the beta distribution (the 
expectation for p) is a/(a+b), and as we get 
more data, the distribution becomes more 
peaked reflecting higher confidence in our 
expectation.  So we can specify our prior 
belief for p by choosing initial values for a 
and b such that a/(a+b)=p, and we can 
specify confidence in this belief with high 



Beta Distribution (Continued) 

•  (Continued)… initial values for a and b.  
Updating our prior belief based on data to 
obtain a posterior belief simply requires 
incrementing a for every heads outcome and 
incrementing b for every tails outcome. 

•  So after h heads out of n flips, our posterior 
distribution says P(heads)=(a+h)/(a+b+n). 



Dirichlet Distributions 

•  What if our variable is not Boolean but can 
take on more values?  (Let’s still assume our 
variables are discrete.) 

•  Dirichlet distributions are an extension of beta 
distributions for the multi-valued case 
(corresponding to the extension from 
binomial to multinomial distributions). 

•  A Dirichlet distribution over a variable with n 
values has n parameters rather than 2. 



Missing data 
•  Commonly in machine learning tasks, some feature values are 

missing 

•  some variables may not be observable (i.e. hidden) even for training 
instances 

•  values for some variables may be missing at random: what caused the 
data to be missing does not depend on the missing data itself 
•  e.g. someone accidentally skips a question on an questionnaire 
•  e.g. a sensor fails to record a value due to a power blip 

•  values for some variables may be missing systematically: the 
probability of value being missing depends on the value 
•  e.g. a medical test result is missing because a doctor was fairly 

sure of a diagnosis given earlier test results 
•  e.g. the graded exams that go missing on the way home from 

school are those with poor scores 



Missing data 

•  hidden variables; values missing at random 
•  these are the cases we’ll focus on 
•  one solution: try impute the values 

•  values  missing systematically 
•  may be sensible to represent “missing” as an explicit feature value 
•  might build predictive models for features and use them to impute 



Imputing missing data with EM 

Given: 
•  data set with some missing values 
•  model structure, initial model parameters 

Repeat until convergence 
•  Expectation (E) step: using current model, compute 

expectation over missing values 
•  Maximization (M) step: given the expectations, compute 

maximum likelihood (MLE) or maximum posterior 
probability (MAP, maximum a posteriori) parameters  



example: EM for parameter learning 

B E A J M 
f f ? f f 
f f ? t f 
t f ? t t 
f f ? f t 
f t ? t f 
f f ? f t 
t t ? t t 
f f ? f f 
f f ? t f 
f f ? f t 

A	



B	

 E	



M	

J	



B E P(A) 

t t 0.9 

t f 0.6 

f t 0.3 

f f 0.2 

P(B) 

0.1 

P(E) 

0.2  

A P(J) 

t 0.9 

f 0.2 

A P(M) 

t 0.8 

f 0.1 

suppose we’re given the following initial BN and training set 



example: E-step 
B E A J M 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f:0.8 t f 

t f t:0.98 
f: 0.02 t t 

f f t: 0.2 
f: 0.8 f t 

f t t: 0.3 
f: 0.7 t f 

f f t:0.2 
f: 0.8 f t 

t t t: 0.997 
f: 0.003 t t 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f: 0.8 t f 

f f t: 0.2 
f: 0.8 f t 

A	



B	

 E	



M	

J	



B E P(A) 

t t 0.9 

t f 0.6 

f t 0.3 

f f 0.2 

P(B) 

0.1 

P(E) 

0.2  

A P(J) 

t 0.9 

f 0.2 

A P(M) 

t 0.8 

f 0.1 

P(¬a |¬b,¬e,¬j,¬m)

P(a |¬b,¬e,¬j,¬m)



example: E-step 
P(a |¬b,¬e,¬j,¬m) = P(¬b,¬e,a,¬j,¬m)

P(¬b,¬e,a,¬j,¬m)+ P(¬b,¬e,¬a,¬j,¬m)

                               = 0.9 × 0.8 × 0.2 × 0.1× 0.2
0.9 × 0.8 × 0.2 × 0.1× 0.2 +  0.9 × 0.8 × 0.8 × 0.8 × 0.9

                               = 0.00288
.4176

= 0.0069

P(a |¬b,¬e, j,¬m) = P(¬b,¬e,a, j,¬m)
P(¬b,¬e,a, j,¬m)+ P(¬b,¬e,¬a, j,¬m)

                             = 0.9 × 0.8 × 0.2 × 0.9 × 0.2
0.9 × 0.8 × 0.2 × 0.9 × 0.2 +  0.9 × 0.8 × 0.8 × 0.2 × 0.9

                             = 0.02592
.1296

= 0.2

P(a | b,¬e, j,m)     = P(b,¬e,a, j,m)
P(b,¬e,a, j,m)+ P(b,¬e,¬a, j,m)

                             = 0.1× 0.8 × 0.6 × 0.9 × 0.8
0.1× 0.8 × 0.6 × 0.9 × 0.8 +  0.1× 0.8 × 0.4 × 0.2 × 0.1

                             = 0.03456
.0352

= 0.98



example: M-step 
B E A J M 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f:0.8 t f 

t f t:0.98 
f: 0.02 t t 

f f t: 0.2 
f: 0.8 f t 

f t t: 0.3 
f: 0.7 t f 

f f t:0.2 
f: 0.8 f t 

t t t: 0.997 
f: 0.003 t t 

f f t: 0.0069 
f: 0.9931 f f 

f f t:0.2 
f: 0.8 t f 

f f t: 0.2 
f: 0.8 f t 

A	



B	

 E	



M	

J	



P(a | b,e) = 0.997
1

P(a | b,¬e) = 0.98
1

P(a |¬b,e) = 0.3
1

P(a |¬b,¬e) = 0.0069 + 0.2 + 0.2 + 0.2 + 0.0069 + 0.2 + 0.2
7

P(a | b,e) = E #(a∧ b∧ e)
E #(b∧ e)

re-estimate probabilities 
using expected counts 

B E P(A) 

t	

 t	

 0.997	



t	

 f	

 0.98	



f	

 t	

 0.3	



f	

 f	

 0.145	



re-estimate probabilities for  
P(J | A) and P(M | A) in same way 



Convergence of EM 

•  E and M steps are iterated until probabilities 
converge 

•  will converge to a maximum in the data likelihood 
(MLE or MAP) 

•  the maximum may be a local optimum, however 
•  the optimum found depends on starting conditions 

(initial estimated probability parameters) 



(“Soft”) EM vs. “Hard” EM 

•  Standard (soft) EM: expectation is a 
probability distribution. 

•  Hard EM: expectation is “all or nothing”… 
most likely/probable value. 

•  Advantage of hard EM is computational 
efficiency when expectation is over state 
consisting of values for multiple variables 



EM for Parameter Learning: E Step 

•  For each data point with missing values, 
compute the probability of each possible 
completion of that data point.  Replace the 
original data point with all these completions, 
weighted by probabilities. 

•  Computing the probability of each completion 
(expectation) is just answering query over 
missing variables given others. 



EM for Parameter Learning: M Step 

•  Use the completed data set to update our 
Dirichlet distributions as we would use any 
complete data set, except that our counts 
(tallies) may be fractional now. 

•  Update CPTs based on new Dirichlet 
distributions, as we would with any complete 
data set. 



EM for Parameter Learning 

•  Iterate E and M steps until no changes occur.  
We will not necessarily get the global MAP (or 
ML given uniform priors) setting of all the CPT 
entries, but under a  natural set of conditions 
we are guaranteed convergence to a local 
MAP solution. 

•  EM algorithm is used for a wide variety of 
tasks outside of BN learning as well. 



K-Means as EM 



K-Means as EM 



K-Means as EM 



K-Means as EM 



K-Means as EM 



K-Means as EM 



Subtlety for BN Parameter Learning 
via EM 

•  Overcounting based on number of interations 
required to converge to settings for the 
missing values. 

•  After each repetition of E step, reset all 
Dirichlet distributions before repeating M step. 



EM for Parameter Learning 

A B 

C 

D E 

P(A) 
0.1 (1,9) 

A B  P(C) 
T T  0.9 (9,1) 
T F  0.6 (3,2) 
F T  0.3 (3,7) 
F F  0.2 (1,4) 

P(B) 
0.2 (1,4) 

 C   P(D) 
 T   0.9 (9,1) 
 F   0.2 (1,4) 
 

 C   P(E) 
 T   0.8 (4,1) 
 F   0.1 (1,9) 

A   B   C   D   E 
0    0    ?    0    0 
0    0    ?    1    0 
1  0    ?    1    1 
0    0    ?    0    1 
0    1    ?    1    0 
0    0    ?    0    1 
1  1    ?    1    1 
0    0    ?    0    0 
0    0    ?    1    0 
0    0    ?    0    1 

Data 



EM for Parameter Learning 

A B 

C 

D E 

P(A) 
0.1 (1,9) 

A B  P(C) 
T T  0.9 (9,1) 
T F  0.6 (3,2) 
F T  0.3 (3,7) 
F F  0.2 (1,4) 

P(B) 
0.2 (1,4) 

 C   P(D) 
 T   0.9 (9,1) 
 F   0.2 (1,4) 
 

 C   P(E) 
 T   0.8 (4,1) 
 F   0.1 (1,9) 

A   B   C   D   E 
0    0          0    0 
0    0          1    0 
1  0          1    1 
0    0          0    1 
0    1          1    0 
0    0          0    1 
1  1          1    1 
0    0          0    0 
0    0          1    0 
0    0          0    1 

Data 

0: 0.99 
1: 0.01 

0: 0.99 
1: 0.01 

0: 0.02 
1: 0.98 

0: 0.80 
1: 0.20 

0: 0.80 
1: 0.20 

0: 0.80 
1: 0.20 

0: 0.80 
1: 0.20 

0: 0.80 
1: 0.20 

0: 0.70 
1: 0.30 

0: 0.003 
1: 0.997 



Multiple Missing Values 

A B 

C 

D E 

P(A) 
0.1 (1,9) 

A B  P(C) 
T T  0.9 (9,1) 
T F  0.6 (3,2) 
F T  0.3 (3,7) 
F F  0.2 (1,4) 

P(B) 
0.2 (1,4) 

 C   P(D) 
 T   0.9 (9,1) 
 F   0.2 (1,4) 
 

 C   P(E) 
 T   0.8 (4,1) 
 F   0.1 (1,9) 

A   B   C   D   E 
?    0    ?    0    1 

Data 



Multiple Missing Values 

A B 

C 

D E 

P(A) 
0.1 (1,9) 

A B  P(C) 
T T  0.9 (9,1) 
T F  0.6 (3,2) 
F T  0.3 (3,7) 
F F  0.2 (1,4) 

P(B) 
0.2 (1,4) 

 C   P(E) 
 T   0.8 (4,1) 
 F   0.1 (1,9) 

 C   P(D) 
 T   0.9 (9,1) 
 F   0.2 (1,4) 
 

A   B   C   D   E 
0    0    0    0    1 
0    0    1    0    1 
1    0    0    0    1 
1    0    1    0    1 

Data 

0.72 
0.18 
0.04 
0.06 



Multiple Missing Values 

A B 

C 

D E 

P(A) 
0.1 (1.1,9.9) 

A B  P(C) 
T T  0.9 (9,1) 
T F  0.6 (3.06,2.04) 
F T  0.3 (3,7) 
F F  0.2 (1.18,4.72) 

P(B) 
0.17 (1,5) 

 C   P(D) 
 T   0.88 (9,1.24) 
 F   0.17 (1,4.76) 
 

 C   P(E) 
 T   0.81 (4.24,1) 
 F   0.16 (1.76,9) 

A   B   C   D   E 
0    0    0    0    1 
0    0    1    0    1 
1    0    0    0    1 
1    0    1    0    1 

Data 

0.72 
0.18 
0.04 
0.06 



Problems with EM 

•  Only local optimum (not much way around 
that, though). 

•  Deterministic … if priors are uniform, may be 
impossible to make any progress… 

•  … next figure illustrates the need for some 
randomization to move us off an 
uninformative prior… 



What will EM do here? 

A 

B 

C 

Data 

A     B     C 
0      ?      0 
1    ?      1 
0      ?      0 
1    ?      1 
0      ?      0 
1      ?      1 

P(A) 
0.5 (1,1) 

 B   P(C) 
 T   0.5 (1,1) 
 F   0.5 (1,1) 
 

 A   P(B) 
 T   0.5 (1,1) 
 F   0.5 (1,1) 
 



EM Dependent on Initial Beliefs 

A 

B 

C 

Data 

A     B     C 
0      ?      0 
1    ?      1 
0      ?      0 
1    ?      1 
0      ?      0 
1      ?      1 

P(A) 
0.5 (1,1) 

 B   P(C) 
 T   0.5 (1,1) 
 F   0.5 (1,1) 
 

 A   P(B) 
 T   0.6 (6,4) 
 F   0.4 (4,6) 
 



EM Dependent on Initial Beliefs 

A 

B 

C 

Data 

A     B     C 
0      ?      0 
1    ?      1 
0      ?      0 
1    ?      1 
0      ?      0 
1      ?      1 

P(A) 
0.5 (1,1) 

 B   P(C) 
 T   0.5 (1,1) 
 F   0.5 (1,1) 
 

 A   P(B) 
 T   0.6 (6,4) 
 F   0.4 (4,6) 
 

B is more likely T 
than F when A is T. 
Filling this in makes 
C more likely T than 
F when B is T.  This 
makes B still more 
likely T than F when 
A is T.  Etc.  Small 
change in CPT for 
B (swap 0.6 and 0.4) 
would have opposite 
effect. 
 



Comments on Bayesian networks 

•  the BN representation has many advantages 

•  easy to encode domain knowledge (direct dependencies, 
causality) 

•  can represent uncertainty 

•  principled methods for dealing with missing values 

•  can answer arbitrary queries (in theory; in practice may be 
intractable) 

•  for supervised tasks, it may be advantageous to use a learning 
approach (e.g. TAN) that focuses on the dependencies that are 
most important 

•  although very simplistic, naïve Bayes often learns highly accurate 
models 

•  BNs are one instance of a more general class of probabilistic 
graphical models 


