Theoretical Approaches to Machine Learning

Early work (e.g., Gold) ignored efficiency
- Only considers computability
- "Learning in the limit"

Later work considers tractable inductive learning
- With high probability, approximately learn
- Polynomial runtime, polynomial # of examples needed
- Results (usually) independent of probability distribution for the examples
Identification in the Limit

Definition After some finite number of examples, learner will have learned the correct concept (though might not even know it!). Correct means agrees with target concept on labels for all data.

Example Consider noise-free learning from the class \(\{f \mid f(n) = a^n \mod b\} \) where \(a \) and \(b \) are natural numbers.

General Technique “Innocent Until Proven Guilty”

Enumerate all possible answers
Search for simplest answer consistent with training examples seen so far; sooner or later will hit solution
Some Results (Gold)

- Computable languages (Turing machines) can be learned in the limit using inference by enumeration.
- If data set is limited to positive examples only, then only finite languages can be learned in the limit.
Solution for \(\{ f \mid f(n) = a \cdot n \mod b \} \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here, \(a\) and \(b\) are the parameters for the function, and \(f(n)\) represents the output for a given input \(n\). The table shows how different values of \(a\) and \(b\) affect the output \(f(n)\) for \(n = 9\) and \(b = 17\) respectively.
The Mistake-Bound Model (Littlestone)

Framework

- Teacher shows input I
- ML algorithm guesses output O
- Teacher shows correct answer
- Can we upper bound the number of errors the learner will make?
The Mistake-Bound Model

Example Learn a conjunct from N predicates and their negations

- Initial $h = p_1 \land \neg p_1 \land \ldots \land p_n \land \neg p_n$
- For each $+$ ex, remove the remaining terms that do not match
The Mistake-Bound Model

Worst case # of mistakes?

$1 + N$

- First $+ ex$ will remove N terms from $h_{initial}$

- Each subsequent error on a $+ \text{ will remove at least one more term (never make a mistake on - ex’s)}$
Equivalence Query Model (Angluin)

Framework

- ML algorithm guesses concept: is target equivalent to this guess?
- Teacher either says “yes” or returns a counterexample (example labeled differently by target and guess)
- Can we upper bound the number of errors the learner will make?
- Time to compute next guess bounded by Poly(|data seen so far|)
Probably Approximately Correct (PAC) Learning

PAC learning (Valiant ‘84)

Given

\[X \] domain of possible examples
\[C \] class of possible concepts to label X
\[c \in C \] target concept
\[\delta, \varepsilon \] correctness bounds
Probably Approximately Correct (PAC) Learning

- For any target \(c \) in \(C \) and any distribution \(D \) on \(X \)
- Given at least \(N = \text{poly}(|c|, 1/\varepsilon, 1/\delta) \) examples drawn randomly, independently from \(X \)
- Do with probability \(1 - \delta \), return an \(h \) in \(C \) whose accuracy is at least \(1 - \varepsilon \)
- In other words

\[
\text{Prob}[\text{error}(h, c) > \varepsilon] < \delta
\]

- In time polynomial in \(|\text{data}| \)

Shaded regions are where errors occur:
Relationships Among Models of Tractable Learning

- Poly mistake-bounded with poly update time = EQ-learning
- EQ-learning implies PAC-learning
 - Simulate teacher by poly-sized random sample; if all labeled correctly, say “yes”; otherwise, return incorrect example
 - On each query, increase sample size based on Bonferoni correction
To Prove Concept Class is PAC-learnable

1. Show it’s EQ-learnable, OR
2. Show the following:
 • There exists an efficient algorithm for the consistency problem (find a hypothesis consistent with a data set in time poly in the size of the data set)
 • Poly-sized sample is sufficient to give us our accuracy guarantees

© Jude Shavlik 2006
David Page 2010
Useful Trick:

A Maclaurin series: for $-1 < x \leq 1$:

$$\ln(1+x) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \frac{1}{4} x^4 + ...$$

We only care about $-1 < x < 0$. Rewriting $-x$ as ϵ, we can derive that for $0 < \epsilon < 1$: $\ln(1-\epsilon) \leq -\epsilon$.

Because ϵ is positive, we can put both sides of this last inequality into an exponent to obtain:

$$1 - \epsilon \leq e^{-\epsilon}$$
Assume EQ Query Bound (or Mistake Bound) M

- On each equivalence query, draw: $\frac{1}{\epsilon} \ln(M/\delta)$ examples
- What is the probability that on any of the at most M rounds, we accept a "bad" hypothesis?
- At most $M (1-\epsilon)^{\frac{1}{\epsilon} \ln(M/\delta)} \leq M e^{-\ln(M/\delta)}$ (using the useful trick) $= \delta$
If Algorithm Doesn’t Know \(M \) in Advance (recall \(|c| \)):

- On \(i \)th equivalence query, draw:
 \[
 \frac{1}{\epsilon} \left(\ln \left(\frac{1}{\delta} \right) + i \ln(2) \right) \text{ examples}
 \]
- What is the probability that we accept a “bad” hypothesis at one query?
- \[
 (1-\epsilon)^{\frac{1}{\epsilon} \left(\ln \left(\frac{1}{\delta} \right) + i \ln(2) \right)} \leq e^{- \left(\ln \left(\frac{1}{\delta} \right) + i \ln(2) \right)}
 \]
 (using the useful trick) \(= \delta/2^i \)
- So probability we ever accept a “bad” hypothesis is at most \(\delta \).
Using First Method: kDNF

- Write down disjunction of all conjunctions of at most k literals (features or negated features)
- Any counterexample will be actual negative
- Repeat until correct:

 Given a counterexample, delete disjuncts that cover it (are consistent with it)
Using Second Method

- If hypothesis space is finite, can show a poly sample is sufficient
- If hypothesis space is parameterized by \(n \), and grows only exponentially in \(n \), can show a poly sample is sufficient
How Many Examples Needed to be PAC?

- Consider finite hypothesis spaces
- Let $H_{bad} \equiv \{h_1, \ldots, h_z\}$
 - The set of hypotheses whose (“testset”) error is $> \varepsilon$
 - Goal: Eliminate all items in H_{bad} via (noise-free) training examples
How Many Examples Needed to be PAC?

How can an h look bad, even though it is correct on all the training examples?

- If we never see any examples in the shaded regions
- We’ll compute an N s.t. the odds of this are sufficiently low (recall, N = number of examples)
Consider $H_1 \in H_{bad}$ and $ex \in N$

What is the probability that H_1 is consistent with ex?

$$\text{Prob}[\text{consistent}_A(ex,H_1)] \leq 1 - \varepsilon$$

(since H_1 is bad its error rate is at least ε)
What is the probability that H_1 is consistent with all N examples?

$$\text{Prob}[\text{consistent}_B(N,H_1)] \leq (1 - \varepsilon)^{|N|}$$

(by iid assumption)
What is the probability that some member of H_{bad} is consistent with the examples in N?

\[
\text{Prob}[\text{consistent}_C(N, H_{bad})] = \\
\text{Prob}[\text{consistent}_B(N, H_1) \lor \ldots \lor \text{consistent}_B(N, H_z)] \\
\leq |H_{bad}| \times (1-\varepsilon)^{|N|} \quad // \quad P(A \lor B) \leq P(A) + P(B) - P(A \land B) \\
\leq |H| \times (1-\varepsilon)^{|N|} \quad // \quad H_{bad} \subseteq H
\]
Solving for $|N|$

We have

$$\text{Prob}[\text{consistent}_C(N, H_{bad})] \leq |H| \times (1-\varepsilon)^{|N|} < \delta$$

Recall that we want the prob of a bad concept surviving to be less than δ, our bound on learning a poor concept.

Assume that if many consistent hypotheses survive, we get unlucky and choose a bad one (we’re doing a worst-case analysis)
Solving for $|N|$
(number of examples needed to be confident of getting a good model)

Solving

$$|N| > \left[\ln\left(\frac{1}{\delta}\right) + \ln(|H|) \right] / -\ln(1-\varepsilon)$$

Since $\varepsilon \leq -\ln(1-\varepsilon)$ over $[0,1)$ we get

$$|N| > \left[\ln\left(\frac{1}{\delta}\right) + \ln(|H|) \right] / \varepsilon$$

(Aside: notice that this calculation assumed we could always find a hypothesis that fits the training data)

Notice we made NO assumptions about the prob dist of the data (other than it does not change)
Example:

Number of Instances Needed

Assume

- $F = 100$ binary features
- $H = \text{all (pure) conjuncts}$

 $[3^F \text{ possibilities } (\forall i, \text{ use } f_i, \text{ use } \neg f_i, \text{ or ignore } f_i)]$

 so $\lg |H| = F \times \lg 3 \approx F$

- $\varepsilon = 0.01$
- $\delta = 0.01$

$$N = \left[\ln\left(\frac{1}{\delta} \right) + \ln(\lvert H \rvert) \right] / \varepsilon = 100 \times \left[\ln(100) + 100 \right] \approx 10^4$$

But how many real-world concepts are pure conjuncts with noise-free training data?
Two Senses of Complexity

Sample complexity
(number of examples needed)

VS.

Time complexity
(time needed to find $h \in H$ that is consistent with the training examples)
Complexity (cont.)

- Some concepts require a polynomial number of examples but an exponential amount of time (in the worst case)

- Eg, training neural networks is NP-hard (recall BP is a “greedy” algorithm that finds a local min)
Dealing with Infinite Hypothesis Spaces

- Can use the Vapnik-Chervonenkis (‘71) dimension (VC-dim)
- Provides a measure of the capacity of a hypothesis space

\[
VC\text{-dim} = \text{given a hypothesis space } H, \text{ the VC-dim is the size of the largest set of examples that can be completely fit by } H, \text{ no matter how the examples are labeled}
\]
VC-dim Impact

- If the number of examples \ll VC-dim, then memorizing training is trivial and generalization likely to be poor.

- If the number of examples \gg VC-dim, then the algorithm must generalize to do well on the training set and will likely do well in the future.
Samples of VC-dim

Finite H

$\text{VC-Dim} \leq \log_2 |H|$

(if d examples, 2^d different labelings possible, and must have $2^d \leq |H|$ if all functions are to be in H)
An Infinite Hypothesis
Space with a Finite VC Dim

H is set of lines in 2D

Can cover 1 ex no matter how labeled
Example 2 (cont.)

Can cover 2 ex’s no matter how labeled
Example 2 (cont.)

Can cover 3 ex’s no matter how labeled
Example 2 (cont.)

Cannot cover/separate if 1 and 4 are +,
But 2 and 3 are – (our old friend, ex-or)

\[
\begin{align*}
|H| &= \infty \\
\text{but VC-dim} &= 3
\end{align*}
\]

For N-dimensions and N-1 dim hyperplanes,
\[
\text{VC-dim} = N + 1
\]
More on “Shattering”

What about collinear points?

If there exists some set of d examples that H can fully fit all labellings of these d examples then $\text{VC}(H) \geq d$
Some VC-Dim Theorems

Theorem H is PAC-learnable iff its VC-dim is finite

Theorem Sufficient to be PAC to have # of examples

\[> \frac{1}{\varepsilon} \max[4\ln(2/\delta), 8\ln(13/\varepsilon)\text{VC-dim}(H)]\]

Theorem Any PAC algorithm needs at least

\[\Omega(\frac{1}{\varepsilon}[\ln(1/\delta) + \text{VC-dim}(H))]\] examples

[No need to memorize these for the exam]
To Show a Concept is NOT PAC-learnable

- Show the consistency problem is NP-hard (hardness assumes \(P \neq NP \)), OR
- Show the VC-dimension grows at a rate not bounded by any polynomial
Be Careful

- It can be the case that consistency is hard for a concept class, but not for a larger class
 - Consistency NP-hard for k-term DNF
 - Consistency easy for DNF (PAC still open ques.)
- More robust negative results are for PAC-prediction
 - Hypothesis space not constrained to equal concept class
 - Hardness results based on cryptographic assumptions, such as assuming efficient factoring is impossible
Some Variations in Definitions

- Original definition of PAC-learning required:
 - Run-time to be polynomial
 - Hypothesis to be within concept class (otherwise, called PAC-prediction)
- Now this version is often called *polynomial-time, proper* PAC-learning
- *Membership queries*: can ask for labels of specific examples
Some Results...

- Can PAC-learn k-DNF (exponential in k, but k is now a constant)
- Can *not* properly PAC-learn k-term DNF, but can PAC-learn it by k-CNF
- Can *not* PAC-learn Boolean Formulae unless can crack RSA (can factor fast)
- Can PAC-learn decision-trees with the addition of membership queries
- Unknown whether can PAC-learn DNF or DTs (“holly grail” questions of COLT)
Some Other COLT Topics

COLT
+ clustering
+ k-NN
+ RL
+ EBL (ch. 11 of Mitchell)
+ SVMs
+ ILP
+ ANNs, etc.

• Average case analysis (vs. worst case)
• Learnability of natural languages (language innate?)
• Learnability in parallel
Summary of COLT

Strengths

- Formalizes learning task
- Allows for imperfections (e.g. \(\epsilon \) and \(\delta \) in PAC)
- Work on *boosting* (later) is excellent case of ML theory influencing ML practice
- Shows what concepts are intrinsically hard to learn (e.g. k-term DNF)
Summary of COLT

Weaknesses

- Most analyses are worst case
- Use of “prior knowledge” not captured very well yet