Application: Mammography

- Provide decision support for radiologists
- Variability due to differences in training and experience
- Experts have higher cancer detection and fewer benign biopsies
- Shortage of experts

Bayes Net for Mammography

- Kahn, Roberts, Wang, Jenks, Haddawy (1995)
- Kahn, Roberts, Shaffer, Haddawy (1997)
- Burnside, Rubin, Shachter (2000)
- Bayes Net can now outperform general radiologists and perform at level of expert mammographers: area under ROC curve of 0.94

ROC: Radiologist vs. BN (TAN)

Technical Issue for Rest of Talk

Q: Can learning improve the expert constructed Bayes Net?

- Learning Hierarchy
 - Level 1: Parameter
 - Level 2: Structure
 - Level 3: Aggregate
 - Level 4: View

Standard ML

New Capabilities

Mammography Database

Patient	Abnormality	Date	Calcification Fine/Linear	• • •	Mass Size	Loc	Benign/ Malignant
P1	1	5/02	No		0.03	RU4	В
P1	2	5/04	Yes		0.05	RU4	M
P1	3	5/04	No		0.04	LL3	В
P2	4	6/00	No		0.02	RL2	В
• • •	• • •	• • •	• • •		• • •	• • •	• • •

Level 1: Parameters

$$P(Yes | Benign) = .01$$

P(size
$$> 5$$
 | Benign) = .33

$$P(size > 5 | Malignant) = .42$$

Level 2: Structure + Parameters


```
P(Yes) Ber0gn) = .01
```

```
P(size > 5| Benign ^ Yes) = .4
P(size > 5|)Benign) = .33
P(size > 5| Malignant ^ Yes) = .6
P(size > 5| Malignant) = .42
P(size > 5| Benign ^ No) = .05
P(size > 5| Malignant ^ No) = .2
```

Data

- Structured data from actual practice
- National Mammography Database
 - Standard for reporting all abnormalities
- Our dataset contains
 - 435 malignancies
 - 65,365 benign abnormalities
- Link to biopsy results
 - Obtain disease diagnosis our ground truth

Hypotheses

Learn relationships that are useful to radiologist

Improve by moving up learning hierarchy

Results

- Trained (Level 2, TAN) Bayesian network model achieved an AUC of 0.966 which was significantly better than the radiologists' AUC of 0.940 (P = 0.005)
- Trained BN demonstrated significantly better sensitivity than the radiologist (89.5% vs. 82.3% —P = 0.009) at a specificity of 90%
- Trained BN demonstrated significantly better specificity than the radiologist (93.4% versus 86.5%—P = 0.007) at a sensitivity of 85%

ROC: Level 2 (TAN) vs. Level 1

Precision-Recall Curves

Mammography Database

Patient	Abnormality	Date	Calcification Fine/Linear	•••	Mass Size	Loc	Benign/ Malignant
P1	1	5/02	No		0.03	RU4	В
P1	2	5/04	Yes		0.05	RU4	M
P1	3	5/04	No		0.04	LL3	В
P2	4	6/00	No		0.02	RL2	В
• • •	• • •	• • •	• • •		• • •	• • •	• • •

Statistical Relational Learning

Learn probabilistic model, but don't assume iid data: there may be relevant data in other rows or even other tables

Database schema: defines set of features

Connecting Abnormalities

May 2002

Patient 1 May 2004

SRL Aggregates Information from Related Rows or Tables

- Extend probabilistic models to relational databases
- Probabilistic Relational Models (Friedman et al. 1999, Getoor et al. 2001)
 - Tricky issue: one to many relationships
 - Approach: use aggregation
- PRMs cannot capture all relevant concepts

Aggregation Function: Aggregatevil | Mastration | etc.

Patient	Abnormality	Date	Calcification Fine/Linear	•••	Mass Size	Loc	Benign/ Malignant
P1	1	5/02	No		0.03	RU4	В
P1	2	5/04	Yes		0.05	RU4	M
P1	3	5/04	No		0.04	LL3	В
P2	4	6/00	No 		0.02	RL2	B

New Schema

Patient	Abnormality	Date	Calcification Fine/Linear	• • •	Mass Size	Avg Size this Date	Loc	Benign/ Malignant
P1	1	5/02	No		0.03	0.03	RU4	В
P1	2	5/04	Yes		0.05	0.045	RU4	M
P1	3	5/04	No		0.04	0.045	LL3	В
P2	4	6/00	No		0.02	0.02	RL2	В
• • •	• • •	• • •	• • •		• • •	•••	• • •	• • •

Level 3: Aggregates

Note: Learn parameters for each node

Database Notion of View

New tables or fields defined in terms of existing tables and fields known as views

 A view corresponds to alteration in database schema

Goal: automate the learning of views

Possible View

Patient	Abnormality	Date	Calcification Fine/Linear	•••	Mass Size	Loc	Benign/ Malignant
P1	1	5/02	No	_/	0.03	RU4	В
P1	2	5/04	Yes		0.05	RU4	M
P1	3	5/04	No		0.04	LL3	В
P2	4	6/00	No		0.02	RL2	В
• • •	• • •	• • •	• • •		• • •	• • •	• • •

New Schema

Patient	Abnormality	Date	Calcification Fine/Linear	• • •	Mass Size	Increase In Size	Loc	Benign/ Malignant
P1	1	5/02	No		0.03	No	RU4	В
P1	2	5/04	Yes		0.05	Yes	RU4	M
P1	3	5/04	No		0.04	No	LL3	В
P2	4	6/00	No		0.02	No	RL2	В
• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •

Level 4: View Learning

Note: Include aggregate features Learn parameters for each node

Level 4: View Learning

- Learn rules predictive of "malignant"
 - We used Aleph (Srinivasan)
- Treat each rule as a new field
 - 1 if abnormality matches rule
 - 0 otherwise
- New view consists of original table extended with new fields

Key New Predicate I

in_same_mammogram(A,B)

Key New Predicate II

prior_mammogram(A,B)

Experimental Methodology

- 10-fold cross validation
- Split at the patient level
- Roughly 40 malignant cases and 6000 benign cases in each fold
- Tree Augmented Naïve Bayes (TAN) as structure learner (Friedman, Geiger & Goldszmidt '97)

Approach

- Level 3: Aggregates
 - 27 features make sense to aggregate
 - Aggregated over patient and mammogram

- Level 4: View
 - 4 folds to learn rules
 - 5 folds for training set

Sample View

[Burnside et al. AMIA05]

```
malignant(A):-
  birads_category(A,b5),
  massPAO(A,present),
  massesDensity(A,high),
  ho_breastCA(A,hxDCorLC),
  in_same_mammogram(A,B),
  calc_pleomorphic(B,notPresent),
  calc_punctate(B,notPresent).
```


View Learning: First Approach

[Davis et al. IA05, Davis et al. IJCAI05]

Step 1

Step 2

Step 3

Rule Learner

Learn

Select

Build Model

Drawback to First Approach

- Mismatch between
 - Rule building
 - Model's use of rules

Should Score As You Use (SAYU)

SAYU [Davis et al. ECML05]

Build network as we learn rules [Landwehr et al. AAAI 2005]

Score rule on whether it improves network

 Results in tight coupling between rule generation, selection and usage

SAYU Details

- Based on Aleph algorithm
- Randomly pick positive example as seed
- Build 'bottom' clause
- Breadth first search

seec

Differences from Standard Rule Learner (Aleph)

Score rule by adding it to network

Switch seeds after incorporating a rule into the network

SAYU-NB

seed 2

Rule 1 Rule 3

SAYU-View

[Davis et al. Intro to SRL 06]

Parameter Settings

- Score using AUC-PR (recall >= .5)
- Keep a rule: 2% increase in AUC
- Switch seeds after adding a rule
- Train set to learn network structure and parameters
- Tune set to score structures

Relational Learning Algorithms

Average Area Under PR Curve For Recall >= 0.5

Acknowledgements

- Jesse Davis (his thesis work)
- Beth Burnside, MD, MPH, Chuck Kahn, MD
- Vitor Santos Costa, Jude Shavlik, Raghu Ramakrishnan
- Funding
 - NCI (R01, UWCCC core grant)
 - NLM (training grant in biomedical informatics)
 - NSF (relational learning)
 - DOD (Air Force relational learning)

Using Views

```
malignant(A) :-
   archDistortion(A,notPresent),
   prior_mammogram(A,B),
   ho_BreastCA(B,hxDCorLC),
   reasonForMammo(B,s).
```