SVM by Sequential Minimal
Optimization (SMO)

www.cs.wisc.edu/~dpage

Quick Review

As last lecture showed us, we can
— Solve the dual more efficiently (fewer unknowns)
— Add parameter C to allow some misclassifications

— Replace xiij by more more general kernel term

mln ZZvyjK(A,,A o, 20(

=1 j=lI

O<0(<(,Vi,

Zy,

Intuitive Introduction to SMO

* Perceptron learning algorithm is essentially doing
same thing — find a linear separator by adjusting
weights on misclassified examples

* Unlike perceptron, SMO has to maintain sum over
examples of example weight times example label

* Therefore, when SMO adjusts weight of one
example, it must also adjust weight of another

Intuitive Introduction to SMO

e Can view weight vector for perceptron as weighted
sum of examples:

(W oW, ey W) = O (X)X ey X)+ 0 (X0, X7, X))+t (X X0 XN

* Learning: Repeat until convergence property met
— Randomly choose an example
— If mislabeled, add to its weight

« SMO does same, except must respect constraint:

iaiy(i) =0
i=1

Intuitive Intro (Continued)

 This constraint means whenever we add an amount
B to an a,, we have to either:

— subtract 3 from the o, for another example with
the same sign (class label), or

— add [to the a; for another example with the
opposite sign (class label)

 Therefore at each step we have to randomly choose
two examples whose weights to revise, and size of
revision depends on difference in their errors

* For soft margin SVM, we also have to “clip” size of
any change because of additional constraint that
every o must be between 0 and C

Recall Perceptron as Classifier

Output for example x is sign(w'x)
Candidate Hypotheses: real-valued weight vectors w
Training: Update w for each misclassified example x (target
class y, predicted o) by:

— W,e W, +1(y-0)x

— 1 is learning rate parameter

Let E be the error o-y. The above can be rewritten as

w< w —1nEx

So final weight vector is a sum of weighted contributions from

each example. Predictive model can be rewritten as weighted
combination of examples rather than features, where the
weight on an example is sum (over iterations) of terms —E.

Corresponding Use in Prediction

* To use perceptron, prediction is w'x - b. May treat -b
as one more coefficient in w (and omit it here), may
take sign of this value

* |n alternative view of last slide, prediction can be
written as Edj'(XjTX) -b or, revising the weight
appropriately: E yiai(Xi’ x) jvb

* Predictionin SVMis: u=> y o K(3,,5)—b

j=1

From Perceptron Rule to SMO Rule

* Recall that SVM optlmlzatlon problem has the added
requirement that: Z‘ a =0

» Therefore if we increase one o by an amount 1, in
either direction, then we have to change another o
by an equal amount in the opposite direction
(relative to class value). We can accomplish this by
changing: w< w-nNEx alsoviewed as:

a<oa-ynkE to:
o, <oy —yM(E,"E))
or equivalently: a, <o, +yn(E,~E,)
We then also adjust o, so that y,0, +y,0, stays same

First of Two Other Changes from Perceptron Rule

. 1 - .
* Instead of learning rate of 5; or some similar
constant, we use 1

X1° X1+ X2°X2—2X1° X2
1
or more generally K (x1,x1) + K(x2,x2) = 2K (x1,x2)

* For a given difference in error between two
examples, the step size is larger when the two
examples are more similar. When x, and x, are
similar, K(x,,x,) is larger (for typical kernels, including
dot product). Hence the denominator is smaller and
step size is larger.

Second of Two Other Changes

e Recall our formulation had an additional constraint:

O0<a <C,Vi
 Therefore, we “clip” any change we make to any o
to respect this constraint

e This yields the following SMO algorithm. (So far we
have motivated it intuitively. Afterward we will show
it really minimizes our objective.)

10

Updating Two o’ s: One SMO Step

 Given examples el and e2, set

new

»(E —LE))

o) =, +

Uy,

wheren = K(x1,x1)+ K(x2,x2)-2K(x1,x2)

e Clip this value in the natural way:

H if o >H,
a;ew.clipped — { agew lf L < a;ew < H,
L 1if o, < L.

new.clipped

=a,+s(a, —a,

new

* Set ¢

if y1 =y2 then:
L=max(0,o, +a,-C)
H=mmn(C,o,+a,)

otherwise:
L=max(0,, —,)
H=mm(C,C+a,—-a,)

) wheres=y,y,

11

Karush-Kuhn-Tucker (KKT) Conditions

It is necessary and sufficient for a solution to our objective that all o’ s
satisfy the following:

o, =0 yu 21,
O<a, <CoSyu =1,
o, =C& yu <1

i
An o is O iff that example is correctly labeled with room to spare
An o is Ciff that example is incorrectly labeled or in the margin

An a.is properly between 0 and C (is “unbound”) iff that example is
barely” correctly labeled (is a support vector)

We just check KKT to within some small epsilon, typically 10-3

12

SMO Algorithm

* |Input: C, kernel, kernel parameters, epsilon
* Initialize bandalla’ sto 0

e Repeat until KKT satisfied (to within epsilon):

— Find an example el that violates KKT (prefer unbound
examples here, choose randomly among those)

— Choose a second example e2. Prefer one to maximize step
size (in practice, faster to just maximize |E, —E,|). If that
fails to result in change, randomly choose unbound
example. If that fails, randomly choose example. If that
fails, re-choose el.

— Update a, and o, in one step
— Compute new threshold b

13

At End of Each Step, Need to Update b

* Compute b, and b, as follows
b =E, +y(0 —0a,)K(3,,%) + v, (@3 — 0) K(¥,,%,) +b
b, =E, +y(a" —a)K(x,,%,)+ y, (05" —a)K(X,,%,) +b

* Chooseb=(b,+b,)/2

* Once KKT conditions are satisfied, if a, and a, were
not clipped, it is in fact guaranteed that b =b, = b,

14

Appendix

Proof that the update rule optimizes the functions with
respect to the two selected examples, to the extent
possible under the constraint both weights must stay
between O and C

15

Derivation of SMO Update Rule

e Recall objective function we want to optimize:

mln EZJ’I%K(\%X oo ZO{

i=1 j=l1

0< o, < C,Vi, _
a, with
Zy =0 everybody else
a, with all the
. . . everybody else other
e Can write ObJECtIVE das. a's S
Y=_K o +:K,0; +sK,a0, + —a,—a,

where: K, = K(x,,X,),

N
v, —Zyja K =1, +b -y, K yza;Kz,.

j=3

Starred values are from end of previous round 16

Expressing Objective in Terms of One Lagrange
Multiplier Only

N
* Because of the constraint Y y,;, =0, each update
has to obey: =

O, +50, =0, +50, =W
where wis a constantand sis y,y,

* This lets us express the objective function in terms of
a, alone:

Y = éKH(W—S(Xz)Z +__;K220(‘§ +sK,(w—sao,) o,

+y,(w=sa,)v,—w+so, +v,oL,v, —o, +¥

constant

17

Find Minimum of this Objective

* Find extremum by first derivative wrt a,:

d¥

o =—sK, (w—sa,)+K,,a, — K, o, +sK,(w—so,))—y,v, +s+y,v, = 1=0

* If second derivative positive (usual case), then the
minimum is where (by simple Algebra, remembering ss
=1):

a,(K,,+K,,—2K,)=s(K, —K,)w+y,(v,—v,)+1-s

18

Finishing Up

Recall that w = @, +sa, = a, + s, and

N
vV = Zyjaj'Kij = U; +b _J’1a>1kK1i _yZaZKZi
j=3
So we can rewrite
o,(K,,+K,-2K,)=s(K,,—K,)w+y,(v,=v,)+1-s

as: (K, +K,,-2K,) = 5(K11'K12)(5a2*+a1*) +
yz(U1'U2+y1011*(K12'K11) + yzaz*(Kzz-KZI)) +Y,¥> VY5

We can rewrite this as: &, (K, +K,, —2K,) =
a*z(Kll + K, —2K,)+y,(u,—u, +y, —)

19

Finishing Up
* Based on values of w and v, we rewrote
a,(K,,+K,,—2K,)=s(K, —K,)w+y,(v,—v,)+1-s
2 a,(K, +K,,-2K),)=
a;(Ku + Ky, =2K,) + v, (u, —uy +y, —)

* From this, get update rule/ U =Y
here
Vv (E R E,)

Ki1 + Ky = 2K,

20

