Computational Learning Theory

www.cs.wisc.edu/~dpage/cs760/
Goals for the lecture

you should understand the following concepts

- PAC learnability
- consistent learners and version spaces
- sample complexity
- PAC learnability in the agnostic setting
- the VC dimension
- sample complexity using the VC dimension
- the on-line learning setting
- the mistake bound model of learnability
- the Halving algorithm
- the Weighted Majority algorithm
Learning setting #1

- set of instances X
- set of hypotheses (models) H
- set of possible target concepts C
- unknown probability distribution \mathcal{D} over instances
Learning setting #1

- learner is given a set D of training instances $\langle x, c(x) \rangle$ for some target concept c in C
 - each instance x is drawn from distribution D
 - class label $c(x)$ is provided for each x

- learner outputs hypothesis h modeling c
True error of a hypothesis

The true error of hypothesis \(h \) refers to how often \(h \) is wrong on future instances drawn from probability distribution \(\mathcal{D} \)

\[
error_{\mathcal{D}}(h) \equiv P_{x \in \mathcal{D}} \left[c(x) \neq h(x) \right]
\]
Training error of a hypothesis

the training error of hypothesis \(h \) refers to how often \(h \) is wrong on instances in the training set \(D \)

\[
\text{error}_D(h) \equiv P_{x \in D} \left[c(x) \neq h(x) \right] = \frac{\sum_{x \in D} \delta(c(x) \neq h(x))}{|D|}
\]

Can we bound \(\text{error}_\mathcal{D}(h) \) in terms of \(\text{error}_D(h) \) ?
Is approximately correct good enough?

To say that our learner L has learned a concept, should we require $\text{error}_D(h) = 0$?

this is not realistic:

• unless we’ve seen every possible instance, there may be multiple hypotheses that are consistent with the training set
• there is some chance our training sample will be unrepresentative
Probably approximately correct learning?

Instead, we’ll require that

- the error of a learned hypothesis h is bounded by some constant ε
- the probability of the learner failing to learn an accurate hypothesis is bounded by a constant δ
Probably Approximately Correct (PAC) learning [Valiant, CACM 1984]

• Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H

• C is PAC learnable by L using H if, for all $c \in C$
 distributions \mathcal{D} over X
 ε such that $0 < \varepsilon < 0.5$
 δ such that $0 < \delta < 0.5$

• learner L will, with probability at least $(1-\delta)$, output a hypothesis $h \in H$ such that $\text{error}_\mathcal{D}(h) \leq \varepsilon$, provided time and sample size (from \mathcal{D}) polynomial in
 $1/\varepsilon$
 $1/\delta$
 n
 $\text{size}(c)$
PAC learning and consistency

• Suppose we can find hypotheses that are consistent with m training instances.

• We can analyze PAC learnability by determining whether
 1. m grows polynomially in the relevant parameters
 2. the processing time per training example is polynomial
Version spaces

• A hypothesis h is \textit{consistent} with a set of training examples D of target concept c if and only if $h(x) = c(x)$ for each training example $\langle x, c(x) \rangle$ in D

\[
\text{consistent}(h,D) \equiv \left(\forall \langle x, c(x) \rangle \in D \right) h(x) = c(x)
\]

• The version space $VS_{H,D}$ with respect to hypothesis space H and training set D, is the subset of hypotheses from H consistent with all training examples in D

\[
VS_{H,D} \equiv \left\{ h \in H \mid \text{consistent}(h,D) \right\}
\]
Exhausting the version space

- The version space $V_{S_{H,D}}$ is ε-exhausted with respect to concept c and data set D if every hypothesis $h \in V_{S_{H,D}}$ has true error $< \varepsilon$

$$\left(\forall h \in V_{S_{H,D}} \right) error_D(h) < \varepsilon$$
Exhausting the version space

- Suppose that every \(h \) in our version space \(VS_{H,D} \) is consistent with \(m \) training examples.
- The probability that \(VS_{H,D} \) is not \(\epsilon \)-exhausted (i.e. that it contains some hypotheses that are not accurate enough)

\[
\leq |H| e^{-\epsilon m}
\]

Proof:

\[
(1 - \epsilon)^m \quad \text{probability a particular hypothesis with error} > \epsilon
\]

\[
k(1 - \epsilon)^m \quad \text{is consistent with} \ m \ \text{training instances}
\]

\[
|H|(1 - \epsilon)^m \quad \text{there might be} \ k \ \text{such hypotheses}
\]

\[
|H|(1 - \epsilon)^m \quad k \ \text{is bounded by} \ |H|
\]

\[
\leq |H| e^{-\epsilon m} \quad (1 - \epsilon) \leq e^{-\epsilon} \ \text{when} \ 0 \leq \epsilon \leq 1
\]
Sample complexity for finite hypothesis spaces
[Blumer et al., Information Processing Letters 1987]

- choose m big enough to reduce this probability below δ

$$|H| e^{-\varepsilon m} \leq \delta$$

- solving for m we get desired result as long as:

$$m \geq \frac{1}{\varepsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)$$

log dependence on H
ε has stronger influence than δ
PAC analysis example:
learning conjunctions of Boolean literals

- each instance has n Boolean features
- learned hypotheses are of the form $Y = X_1 \land X_2 \land \neg X_5$

How many training examples suffice to ensure that with $\text{prob} \geq 0.99$, a consistent learner will return a hypothesis with error ≤ 0.05?

there are 3^n hypotheses (each variable can be present and unnegated, present and negated, or absent) in H

$$m \geq \frac{1}{.05} \left(\ln(3^n) + \ln\left(\frac{1}{.01}\right) \right)$$

for $n=10$, $m \geq 312$
for $n=100$, $m \geq 2290$
PAC analysis example: learning conjunctions of Boolean literals

• we’ve shown that the sample complexity is polynomial in relevant parameters: $1/\varepsilon, 1/\delta, n$

• to prove that Boolean conjunctions are PAC learnable, need to also show that we can find a consistent hypothesis in polynomial time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:

initialize h to the most specific hypothesis $l_1 \land \neg l_1 \land l_2 \land \neg l_2 \ldots \land l_n \land \neg l_n$

for each positive training instance x

remove from h any literal that is not satisfied by x

output hypothesis h
PAC analysis example: learning decision trees of depth 2

- each instance has n Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

$$|H| = \binom{n}{2} \times 16 = \frac{n(n-1)}{2} \times 16 = 8n(n-1)$$

possible split choices

possible leaf labelings
PAC analysis example:
learning decision trees of depth 2

- each instance has n Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

How many training examples suffice to ensure that with prob ≥ 0.99, a consistent learner will return a hypothesis with error ≤ 0.05?

$$m \geq \frac{1}{.05} \left(\ln \left(8n^2 - 8n \right) + \ln \left(\frac{1}{.01} \right) \right)$$

for $n=10$, $m \geq 224$
for $n=100$, $m \geq 318$
PAC analysis example: \(K \)-term DNF is not PAC learnable

- each instance has \(n \) Boolean features
- learned hypotheses are of the form \(Y = T_1 \lor T_2 \lor \ldots \lor T_k \) where each \(T_i \) is a conjunction of \(n \) Boolean features or their negations

\(|H| \leq 3^{nk}\), so sample complexity is polynomial in the relevant parameters

\[
m \geq \frac{1}{\varepsilon} \left(nk \ln(3) + \ln \left(\frac{1}{\delta} \right) \right)
\]

however, the computational complexity (time to find consistent \(h \)) is not polynomial in \(m \) (e.g. graph 3-coloring, an NP-complete problem, can be reduced to learning 3-term DNF)
Extensions, Results, Questions

- k-term DNF not properly PAC-learnable, but \textit{PAC-predictable}, or PAC learnable in terms of kCNF

- negative results for PAC-predictability more robust

- results not based on NP-hardness of consistency problem, but on hard cryptographic problems (Kearns & Valiant, 1994)
 - can’t PAC-learn Boolean formulae (unless can crack RSA)
 - can’t PAC-learn deterministic finite state machines (same)

- open PAC-learning questions include
 - DNF formulae
 - decision trees
What if the target concept is not in our hypothesis space?

- so far, we’ve been assuming that the target concept \(c \) is in our hypothesis space; this is not a very realistic assumption
- even if it is, might want to learn using another class (e.g., kCNF)
- **agnostic learning** setting
 - don’t assume \(c \in H \)
 - learner returns hypothesis \(h \) that makes fewest errors on training data

- how many training instances suffice to ensure that \(\text{error}_D(h) \leq \text{error}_D(h) + \varepsilon \)?

\[
m \geq \frac{1}{2\varepsilon^2} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)
\]
What if the hypothesis space is not finite?

• **Q:** If H is infinite (e.g. the class of intervals on the real line), what measure of hypothesis-space complexity can we use in place of $|H|$?

• **A:** the largest subset of X for which H can guarantee zero training error, regardless of the target function.

 this is known as the *Vapnik-Chervonenkis dimension* (VC-dimension)
Shattering and the VC dimension

• a set of instances D is **shattered** by a hypothesis space H iff for every dichotomy of D there is a hypothesis in H consistent with this dichotomy

• the **VC dimension** of H defined over instance space X is the size of the largest finite subset of X shattered by H
An infinite hypothesis space with a finite VC dimension

consider: H is set of lines (linear separators) in 2D

can find an h consistent with 1 instance no matter how it’s labeled

can find an h consistent with 2 instances no matter labeling
An infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D

can find an h consistent with 3 instances no matter labeling (assuming they’re not colinear)

cannot find an h consistent with 4 instances for some labelings

can shatter 3 instances, but not 4 \Rightarrow the VC-dim(H) = 3

more generally, the VC-dim of hyperplanes in n dimensions = $n+1$
Interesting aside

• VC-dim of hyperplane in n dimension is $n+1$

• Let R be radius of smallest hypersphere circumscribing the data, and let γ (margin) be smallest distance of any data point to hyperplane

• Can replace n in VC-dim with $(R/\gamma)^2$ if smaller
VC dimension for finite hypothesis spaces

for finite H, $\text{VC-dim}(H) \leq \log_2|H|$

Proof:

suppose $\text{VC-dim}(H) = d$
for d instances, 2^d different labelings possible
therefore H must be able to represent 2^d hypotheses

$2^d \leq |H|$

$d = \text{VC-dim}(H) \leq \log_2|H|$
Sample complexity and the VC dimension

- using VC-dim(H) as a measure of complexity of H, we can derive the following bound [Blumer et al., JACM 1989]

\[
m \geq \frac{1}{\varepsilon} \left(4 \log_2 \left(\frac{2}{\delta} \right) + 8 \text{VC-dim}(H) \log_2 \left(\frac{13}{\varepsilon} \right) \right)
\]

\(m \) grows log \times linear in \(\varepsilon \)

can be used for both finite and infinite hypothesis spaces
Lower bound on sample complexity

[Ehrenfeucht et al., Information & Computation 1989]

- There exists a distribution \mathcal{D} and target concept in C such that if the number of training instances given to L is

$$m < \max \left[\frac{1}{\epsilon} \log \left(\frac{1}{\delta} \right), \frac{\text{VC-dim}(C) - 1}{32 \epsilon} \right]$$

then with probability at least δ, L outputs h such that $\text{error}_D(h) > \epsilon$
Comments on PAC learning

• PAC analysis formalizes the learning task and allows for non-perfect learning (indicated by ε and δ)

• finding a consistent hypothesis is sometimes easier for larger concept classes (PAC-prediction)
 • e.g. although k-term DNF is not PAC learnable, the more general class k-CNF is

• PAC analysis has been extended to explore a wide range of cases
 • noisy training data
 • learner allowed to ask queries (active learning)
 • restricted distributions (e.g. uniform) \mathcal{D}

• most analyses are worst case -> negative results, very restricted concept classes for positive results

• sample complexity bounds are generally not tight

• contributed major insights to ensembles, active learning, SVMs, …
Learning setting #2: on-line learning

Now let’s consider learning in the on-line learning setting:

for $t = 1$ …

- learner receives instance x_t
- learner predicts $h(x_t)$
- learner receives label $c(x_t)$ and updates model h
The *mistake bound* model of learning

How many mistakes will an on-line learner make in its predictions before it learns the target concept?

the *mistake bound model* of learning addresses this question
Mistake bound example: learning conjunctions with FIND-S

consider the learning task

• training instances are represented by \(n \) Boolean features
• target concept is conjunction of up to \(n \) Boolean literals (variable or its negation)

FIND-S:

initialize \(h \) to the most specific hypothesis \(l_1 \land \neg l_1 \land l_2 \land \neg l_2 \ldots \land l_n \land \neg l_n \)

for each positive training instance \(x \)

remove from \(h \) any literal that is not satisfied by \(x \)

output hypothesis \(h \)
Example: using FIND-S to learn conjunctions

• suppose we’re learning a concept representing the sports someone likes

• instances are represented using Boolean feature that characterize the sport

 \begin{itemize}
 \item \textit{Snow} (is it done on snow?)
 \item \textit{Water}
 \item \textit{Road}
 \item \textit{Mountain}
 \item \textit{Skis}
 \item \textit{Board}
 \item \textit{Ball} (does it involve a ball?)
 \end{itemize}
Example: using FIND-S to learn conjunctions

\[t = 0 \quad h: \quad \text{snow} \land \neg\text{snow} \land \text{water} \land \neg\text{water} \land \text{road} \land \neg\text{road} \land \text{mountain} \land \neg\text{mountain} \land \text{skis} \land \neg\text{skis} \land \text{board} \land \neg\text{board} \land \text{ball} \land \neg\text{ball} \]

\[t = 1 \quad x: \quad \text{snow}, \neg\text{water}, \neg\text{road}, \text{mountain}, \text{skis}, \neg\text{board}, \neg\text{ball} \]
\[h(x) = \text{false} \quad c(x) = \text{true} \]
\[h: \quad \text{snow} \land \neg\text{water} \land \neg\text{road} \land \text{mountain} \land \text{skis} \land \neg\text{board} \land \neg\text{ball} \]

\[t = 2 \quad x: \quad \text{snow}, \neg\text{water}, \neg\text{road}, \neg\text{mountain}, \text{skis}, \neg\text{board}, \neg\text{ball} \]
\[h(x) = \text{false} \quad c(x) = \text{false} \]

\[t = 3 \quad x: \quad \text{snow}, \neg\text{water}, \neg\text{road}, \text{mountain}, \neg\text{skis}, \text{board}, \neg\text{ball} \]
\[h(x) = \text{false} \quad c(x) = \text{true} \]
\[h: \quad \text{snow} \land \neg\text{water} \land \neg\text{road} \land \text{mountain} \land \neg\text{ball} \]
Mistake bound example: learning conjunctions with FIND-S

the maximum # of mistakes FIND-S will make = $n + 1$

Proof:

• FIND-S will never mistakenly classify a negative (h is always at least as specific as the target concept).
• initial h has $2n$ literals
• the first mistake on a positive instance will reduce the initial hypothesis to n literals
• each successive mistake will remove at least one literal from h
Halving algorithm

// initialize the version space to contain all \(h \in H \)
\(VS_1 \leftarrow H \)

for \(t \leftarrow 1 \) to \(T \) do
 given training instance \(\langle x_t, c(x_t) \rangle \)
 \(h'(x_t) = \text{MajorityVote}(VS_t, x_t) \)

 // eliminate all wrong \(h \) from version space (reduce the
 // size of the VS by at least half on mistakes)
 \(VS_{t+1} \leftarrow \{ h \in VS_t : h(x_t) = c(x_t) \} \)

return \(VS_{t+1} \)
Mistake bound for the Halving algorithm

the maximum # of mistakes the Halving algorithm will make = \left\lfloor \log_2 |H| \right\rfloor

Proof:

- initial version space contains $|H|$ hypotheses
- each mistake reduces version space by at least half

$\lfloor a \rfloor$ is the largest integer not greater than a
let C be an arbitrary concept class

$$VC(C) \leq M_{opt}(C) \leq M_{Halving}(C) \leq \log_2(|C|)$$

mistakes by best algorithm
(for hardest $c \in C$, and hardest training sequence)

mistakes by Halving algorithm
The Weighted Majority algorithm

given: a set of predictors \(A = \{a_1 \ldots a_n\} \), learning rate \(0 \leq \beta < 1 \)

for all \(i \) initialize \(w_i \leftarrow 1 \)

for each training instance \(\langle x, c(x) \rangle \)

initialize \(q_0 \) and \(q_1 \) to 0

for each predictor \(a_i \)

\[
\begin{align*}
\text{if } a_i(x) &= 0 \text{ then } q_0 &\leftarrow q_0 + w_i \\
\text{if } a_i(x) &= 1 \text{ then } q_1 &\leftarrow q_1 + w_i
\end{align*}
\]

if \(q_1 > q_0 \) then \(h(x) = 1 \)
else if \(q_0 > q_1 \) then \(h(x) = 0 \)
else if \(q_0 = q_1 \) then \(h(x) = 0 \) or \(1 \) randomly chosen

for each predictor \(a_i \) do

\[
\text{if } a_i(x) \neq c(x) \text{ then } w_i \leftarrow \beta w_i
\]
The Weighted Majority algorithm

- predictors can be individual features or hypotheses or learning algorithms
- if the predictors are all of the $h \in H$, then WM is like a weighted voting version of the Halving algorithm
- WM learns a linear separator, like a perceptron
- weight updates are multiplicative instead of additive (as in perceptron/neural net training)
 - multiplicative is better when there are many features (predictors) but few are relevant
 - additive is better when many features are relevant
- approach can handle noisy training data
Notes

• Halving algorithm eliminates inconsistent predictors on every round
• Two versions of weighted majority
 – Original only down-weights predictors on rounds where overall prediction is wrong
 – Also a version that down-weights wrong predictors on every round
 – Following bound applies to both versions
Relative mistake bound for Weighted Majority

Let

- \(D \) be any sequence of training instances
- \(A \) be any set of \(n \) predictors
- \(k \) be minimum number of mistakes made by best predictor in \(A \) for training sequence \(D \)
- the number of mistakes over \(D \) made by Weighted Majority using \(\beta = 1/2 \) is at most

\[
2.4(k + \log_2 n)
\]
Comments on mistake bound learning

- we’ve considered mistake bounds for learning the target concept exactly
- Learning with polynomial mistake bound and polynomial update time implies PAC learning (can turn any such mistake bounded learner into a PAC learner)
- some of the algorithms developed in this line of research have had practical impact (e.g. Weighted Majority, Winnow)