
Decision Tree Learning

Goals for the lecture
you should understand the following concepts

•  the decision tree representation
•  the standard top-down approach to learning a tree
•  Occam’s razor
•  entropy and information gain
•  types of decision-tree splits
•  test sets and unbiased estimates of accuracy
•  overfitting
•  early stopping and pruning
•  tuning (validation) sets
•  regression trees
•  m-of-n splits
•  using lookahead in decision tree search

A decision tree to predict heart disease
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absent absent absent present

3 4

Each internal node tests one feature xi	

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)	

Decision tree exercise
Suppose x1 … x5 are Boolean features, and y is also Boolean

How would you represent the following with decision trees?

 y = x2x5 (i.e. y = x2 ∧ x5)

y = x2 ∨ x5

y = x2x5 ∨ x3¬x1

History of decision tree learning

dates of seminal publications: work on these
2 was contemporaneous

many DT variants have been
developed since CART and ID3

1963 1973 1980 1984 1986

A
ID

C
H

A
ID

TH
A

ID

C
A

R
T

ID
3

CART developed by Leo Breiman, Jerome
Friedman, Charles Olshen, R.A. Stone

ID3, C4.5, C5.0 developed by Ross Quinlan

An Example: Genetic Data

A Supervised Learning Task
•  Given: a set of SNP profiles, each from a different

patient.

Details: unordered pair of DNA bases at each SNP
position constitute the features, and patient’s
disease constitutes the class

•  Do: Learn a model that accurately predicts
 class based on features

Decision Trees in One Picture

 Diseased Not Diseased

SNP502 has A

No Yes

Top-down decision tree learning

MakeSubtree(set of training instances D)

 C = DetermineCandidateSplits(D)

 if stopping criteria met

 make a leaf node N	

 determine class label/probabilities for N

 else

 make an internal node N

 S = FindBestSplit(D, C)

 for each outcome k of S

 Dk = subset of instances that have outcome k	

 kth child of N = MakeSubtree(Dk)

 return subtree rooted at N

Candidate splits in ID3, C4.5
•  splits on nominal features have one branch per value

•  splits on continuous features use a threshold

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

Candidate splits on continuous features

weight ≤ 35

true false

weight

17 35

given a set of training instances D and a specific feature F	

•  sort the values of F in D	

•  evaluate split thresholds in intervals between instances of

different classes

•  could use midpoint of each considered interval as the threshold
•  C4.5 instead picks the largest value of F in the entire training set that

does not exceed the midpoint

Candidate splits
•  instead of using k-way splits for k-valued features, could

require binary splits on all discrete features (CART does this)

•  Breiman et al. proved for the 2-class case, the optimal binary
partition can be found considered only O(k) possibilities
instead of O(2k) 	

thal

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow

Finding the best split

•  How should we select the best feature to split on at each step?

•  Key hypothesis: the simplest tree that classifies the training
examples accurately will work well on previously unseen examples

Occam’s razor

•  attributed to 14th century William of Ockham

•  “Nunquam ponenda est pluralitis sin necesitate”

•  “Entities should not be multiplied beyond necessity”

•  “should proceed to simpler theories until simplicity can be traded for
greater explanatory power”

•  “when you have two competing theories that make exactly the same
predictions, the simpler one is the better”

But a thousand years earlier,
I said, “We consider it a good
principle to explain the
phenomena by the simplest
hypothesis possible.”

Occam’s razor and decision trees

•  there are fewer short models (i.e. small trees) than
long ones

•  a short model is unlikely to fit the training data well
by chance

•  a long model is more likely to fit the training data
well coincidentally

Why is Occam’s razor a reasonable heuristic for decision
tree learning?

Finding the best splits

•  Can we return the smallest possible decision tree that
accurately classifies the training set?

•  Instead, we’ll use an information-theoretic heuristic to
greedily choose splits

NO! This is an NP-hard problem
[Hyafil & Rivest, Information Processing Letters, 1976]

Information theory background

•  consider a problem in which you are using a code to communicate
information to a receiver

•  example: as bikes go past, you are communicating the
manufacturer of each bike

Information theory background

•  suppose there are only four types of bikes
•  we could use the following code

11

10

01

00

•  expected number of bits we have to communicate:
2 bits/bike

Trek

Specialized

Cervelo

Serrota

type code

Information theory background
•  we can do better if the bike types aren’t equiprobable
•  optimal code uses bits for event with

probability

− log2 P(y)
P(y)

1

€

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2
3

3

1

01

001

000

− P(y)log2 P(y)
y∈values(Y)
∑

Type/probability # bits code

•  expected number of bits we have to communicate:
1.75 bits/bike

Entropy
•  entropy is a measure of uncertainty associated with a

random variable

•  defined as the expected number of bits required to
communicate the value of the variable

 entropy function for
 binary variable

H (Y) = − P(y)log2 P(y)

y∈values(Y)
∑

P(Y = 1)

H (Y)

Conditional entropy

•  What’s the entropy of Y if we condition on some other
variable X?

H (Y | X) = P(X = x) H (Y | X = x)

x∈values(X)
∑

H (Y | X = x) = − P(Y = y | X = x) log2P(Y = y | X = x)

y∈values(Y)
∑

where

Information gain
(a.k.a. mutual information)

•  choosing splits in ID3: select the split S that most
reduces the conditional entropy of Y for training set D	

 InfoGain(D,S) = HD (Y)− HD (Y | S)

D indicates that we’re calculating
probabilities using the specific sample D	

Information gain example

Information gain example

Humidity

high normal

D: [3+, 4-]	

D: [9+, 5-]	

D: [6+, 1-]	

•  What’s the information gain of splitting on Humidity?	

 HD (Y) = −
9
14
log2

9
14
"
#$

%
&'
−
5
14
log2

5
14
"
#$

%
&'
= 0.940

HD (Y |high) = − 3
7

log2
3
7

"
#$

%
&'
−

4
7

log2
4
7

"
#$

%
&'

 = 0.985

HD (Y |normal) = − 6
7

log2
6
7

"
#$

%
&'
−

1
7

log2
1
7

"
#$

%
&'

 = 0.592

InfoGain(D,Humidity) = HD (Y)− HD (Y |Humidity)

 = 0.940 − 7
14

(0.985)+ 7
14

0.592()"
#$

%
&'

 = 0.151

Key Property: Equal change in
P(Y) yields bigger change in
entropy if toward an extreme

P(Y = 1)

H (Y)

Means there is InfoGain in this
split, though no gain in accuracy

X

T F

Information gain example

Humidity

high normal

D: [3+, 4-]	

D: [9+, 5-]	

D: [6+, 1-]	

•  Is it better to split on Humidity or Wind?	

 HD (Y |weak) = 0.811

InfoGain(D,Humidity) = 0.940 − 7
14

(0.985)+ 7
14

0.592()"
#$

%
&'

 = 0.151

Wind

weak strong

D: [6+, 2-]	

D: [9+, 5-]	

D: [3+, 3-]	

 HD (Y | strong) = 1.0

InfoGain(D,Wind) = 0.940 − 8
14

(0.811)+ 6
14

1.0()"
#$

%
&'

 = 0.048

✔

One limitation of information gain

•  information gain is biased towards tests with many
outcomes

•  e.g. consider a feature that uniquely identifies each
training instance
–  splitting on this feature would result in many

branches, each of which is “pure” (has instances of
only one class)

–  maximal information gain!

Gain ratio
•  To address this limitation, C4.5 uses a splitting criterion

called gain ratio

•  consider the potential information generated by splitting
on S	

GainRatio(D,S) = InfoGain(D,S)

SplitInfo(D,S)

SplitInfo(D,S) = −
Dk

Dk∈ outcomes(S)
∑ log2

Dk

D
$

%
&

'

(
)

use this to normalize information gain

Stopping criteria
We should form a leaf when

•  all of the given subset of instances are of the same class
•  we’ve exhausted all of the candidate splits

Is there a reason to stop earlier, or to prune back the tree?	

How can we assess the accuracy of a tree?
•  Can we just calculate the fraction of training examples

that are correctly classified?

 •  Consider a problem domain in which instances are
assigned labels at random with P(Y = T) = 0.5

•  How accurate would a learned decision tree be on
previously unseen instances?

•  How accurate would it be on its training set?	

How can we assess the accuracy of a tree?
•  to get an unbiased estimate of a learned model’s

accuracy, we must use a set of instances that are held-
aside during learning

•  this is called a test set

 all instances

labeled instances

test

train

Overfitting
•  consider error of model h over

•  training data:
•  entire distribution of data:

•  model overfits the training data if there is an

alternative model such that

errorD (h)
error(h)

h∈H
h '∈H

error(h) > error(h ')

errorD (h) < errorD (h ')

Overfitting with noisy data
suppose

•  the target concept is
•  there is noise in some feature values
•  we’re given the following training set

Y = X1 ∧ X2

X1	

 X2	

 X3	

 X4	

 X5	

 …	

 Y	

T	

 T	

 T	

 T	

 T	

 …	

 T	

T	

 T	

 F	

 F	

 T	

 …	

 T	

T	

 F	

 T	

 T	

 F	

 …	

 T	

T	

 F	

 F	

 T	

 F	

 …	

 F	

T	

 F	

 T	

 F	

 F	

 …	

 F	

F	

 T	

 T	

 F	

 T	

 …	

 F	

noisy value

Overfitting with noisy data

X1	

X2	

T F

X3	

T

F

F

F

X4	

T

X1	

X2	

T F

T F

F

correct tree tree that fits noisy training data

Overfitting visualized
consider a problem with

•  2 continuous features
•  3 classes
•  some noisy training instances

Overfitting with noise-free data
suppose

•  the target concept is
•  P(X3 = T) = 0.5 for both classes
•  P(Y = T) = 0.67
•  we’re given the following training set

Y = X1 ∧ X2

X1	

 X2	

 X3	

 X4	

 X5	

 …	

 Y	

T	

 T	

 T	

 T	

 T	

 …	

 T	

T	

 T	

 T	

 F	

 T	

 …	

 T	

T	

 T	

 T	

 T	

 F	

 …	

 T	

T	

 F	

 F	

 T	

 F	

 …	

 F	

F	

 T	

 F	

 F	

 T	

 …	

 F	

Overfitting with noise-free data

X3	

T F

T F

T

training set
accuracy

test set
accuracy

100%

66% 66%

50%

•  because the training set is a limited sample, there might
be (combinations of) features that are correlated with
the target concept by chance

Overfitting in decision trees

Avoiding overfitting in DT learning

two general strategies to avoid overfitting
1.  early stopping: stop if further splitting not justified by

a statistical test
•  Quinlan’s original approach in ID3

2.  post-pruning: grow a large tree, then prune back
some nodes
•  more robust to myopia of greedy tree learning

Pruning in ID3, C4.5

1.  split given data into training and tuning
(validation) sets

2.  grow a complete tree
3.  do until further pruning is harmful

•  evaluate impact on tuning-set accuracy of
pruning each node

•  greedily remove the one that most improves
tuning-set accuracy

Tuning sets
•  a tuning set (a.k.a. validation set) is a subset of the training set

that is held aside
•  not used for primary training process (e.g. tree growing)
•  but used to select among models (e.g. trees pruned to

varying degrees)

all instances

labeled instances

test train

tuning

Regression trees

X5 > 10	

X3	

X2 > 2.1	

Y=5	

Y=24	

Y=3.5	

Y=3.2	

•  in a regression tree, leaves have functions that predict
numeric values instead of class labels

•  the form of these functions depends on the method
•  CART uses constants: regression trees
•  some methods use linear functions: model trees

X5 > 10	

X3	

X2 > 2.1	

Y=2X4+5	

Y=3X4+X6	

Y=3.2	

Y=1	

Regression trees in CART

•  CART does least squares regression which tries to
minimize

= yi − ŷi()2

i∈L
∑

L∈leaves
∑

yi − ŷi()2
i=1

D

∑

target value for ith
training instance

value predicted by tree for ith training
instance (average valueof y for training
instances reaching the leaf)

•  at each internal node, CART chooses the split that most
reduces this quantity

•  if D is data at node, minimize variance

1/ |D | yi − ŷi()2
i=1

D

∑

Lookahead

•  most DT learning methods use a hill-climbing search
•  a limitation of this approach is myopia: an important feature may

not appear to be informative until used in conjunction with other
features

•  can potentially alleviate this limitation by using a lookahead
search [Norton ‘89; Murphy & Salzberg ‘95]

•  empirically, often doesn’t improve accuracy or tree size

Choosing best split in ordinary DT learning

OrdinaryFindBestSplit(set of training instances D, set of candidate splits C)

maxgain = -∞	

for each split S in C	

 gain = InfoGain(D, S)

 if gain > maxgain	

	

 	

maxgain = gain	

 Sbest = S	

return Sbest	

Choosing best split with lookahead
(part 1)

LookaheadFindBestSplit(set of training instances D, set of candidate splits C)

maxgain = -∞	

for each split S in C	

 gain = EvaluateSplit(D, C, S)

 if gain > maxgain	

	

 	

maxgain = gain	

 Sbest = S	

return Sbest	

Choosing best split with lookahead
(part 2)

EvaluateSplit(D, C, S)

if a split on S separates instances by class (i.e.)

 // no need to split further

 return

else

 for outcomes of S // let’s assume binary splits	

	

 	

 // see what the splits at the next level would be	

 Dk = subset of instances that have outcome k	

 Sk = OrdinaryFindBestSplit(Dk, C – S)

 // return information gain that would result from this 2-level subtree

 return

HD (Y | S) = 0

k ∈ 1, 2{ }

HD (Y)− HD (Y | S,S1,S2)

HD (Y)− HD (Y | S)

Correlation Immune (CI) Function

Female Sxl gene active Survival

0 0 0

0 1 1

1 0 1

1 1 0

Drosophila survival based on gender and Sxl gene activity

Learning CI Functions

•  Standard method of learning hard functions with
TDIDT: depth-k lookahead
–  O(mn2k-1) for m examples in n variables

•  Can we devise a technique that allows TDIDT
algorithms to efficiently learn hard functions?

Key Idea

 Hard functions aren’t – if the data distribution
is significantly different from uniform

Example

•  Uniform distribution can be sampled by setting each
variable (feature) independently of all others, with
probability 0.5 of being set to 1.

•  Consider same distribution, but with each variable
having probability 0.75 of being set to 1.

Example

x1 x2 x3 … x100 f

0 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

0 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

0)(

25.0)1;(
25.0)0;(

25.0)(

=

⇓

==

==

=

i

i

i

xGAIN

xfGINI
xfGINI

fGINI

Example

x1 x2 x3 … x100 f Weight

0 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

0 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

16
1

16
3

16
3

16
9

()

0)(

256
60)1;(

256
60)0;(

256
12

256
4860)(

256
48)1;(

256
48)0;(

256
60)(

4

4

4

1

1

1

=

⇓

==

==

=
−

=

⇓

==

==

=

xGAIN

xfGINI

xfGINI

xGAIN

xfGINI

xfGINI

fGINI

Example

x1 x2 x3 … x100 f Weight

0 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

0 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

16
1

16
3

16
3

16
9

256
60

16
10

16
6)(==fGINI

Example

x1 x2 x3 … x100 f Weight

0 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

0 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

1

1 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

0

16
1

16
3

16
3

16
9 256

48
4
3

4
1)1;(

256
48

4
3

4
1)0;(

1

1

===

===

xfGINI

xfGINI

Example

x4 x1
x2x3x5…

x100
f Weight

0 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

.25:0

.75:1

0 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

.75:0

.25:1

1 0
0…0000000
0…0000001
0…0000010
 …
1…1111111

.25:0

.75:1

1 1
0…0000000
0…0000001
0…0000010
 …
1…1111111

.75:0

.25:1

16
1

16
3

16
3

16
9

256
60)1;(

256
60

16
6

16
10

4
1
4
3

4
3

4
1

4
3

4
3

4
1
4
1

)0;(

4

4

]][[

==

=

=++

==

xfGINI

xfGINI

Can Show

•  Given
–  a large enough sample and
–  a second distribution sufficiently different from the

first,
 we can learn functions that are hard for TDIDT
algorithms under the original distribution.

Issues to Address

•  How can we get a “sufficiently different” distribution?
–  Our approach: “skew” the given sample by

choosing “favored settings” for the variables

•  Not-large-enough sample effects?
–  Our approach: Average “goodness” of any

variable over multiple skews

Skewing Algorithm

•  For T trials do
–  Choose a favored setting for each variable
–  Reweight the sample
–  Calculate entropy of each variable split under this

weighting
–  For each variable that has sufficient gain,

increment a counter

•  Split on the variable with the highest count

Experiments

•  ID3 vs. ID3 with Skewing (ID3 to avoid issues to do
with parameters, pruning, etc.)

•  Several UCI Datasets

•  Synthetic Propositional Data
–  Examples of 30 Boolean variables.
–  Target Boolean functions of 2-6 of these variables.
–  Randomly chosen targets and randomly chosen

hard targets.

Results (3-variable Boolean
functions)

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y

Sample Size

ID3, No Skewing
ID3 with Skewing

Random functions CI functions

50

60

70

80

90

100

200 400 600 800 1000
A

cc
ur

ac
y

Sample Size

ID3, No Skewing
ID3 with Skewing

Results (4-variable Boolean
functions)

Random functions CI functions

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y

Sample Size

ID3, No Skewing
ID3 with Skewing

50

60

70

80

90

100

200 400 600 800 1000
A

cc
ur

ac
y

Sample Size

ID3, No Skewing
ID3 with Skewing

Results (5-variable Boolean
functions)

Random functions CI functions

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y

Sample Size

ID3, No Skewing
ID3 with Skewing

50

60

70

80

90

100

200 400 600 800 1000
A

cc
ur

ac
y

Sample Size

ID3, No Skewing
ID3 with Skewing

Results (6-variable Boolean
functions)

Random functions CI functions

75

80

85

90

95

100

200 400 600 800 1000

A
cc

ur
ac

y

Sample Size

ID3, No Skewing
ID3 with Skewing

50

60

70

80

90

100

200 400 600 800 1000
A

cc
ur

ac
y

Sample Size

ID3, No Skewing
ID3 with Skewing

Accuracy Results (UCI datasets)

Data Set ID3 ID3 with
Skewing

Heart 71.9 74.5

Voting 94.0 94.2

Contra 60.4 61.5

Monks-1 92.6 100.0

Monks-2 86.5 89.3

Monks-3 89.8 91.7

Empirical Conclusions

•  Skewing rarely hurts (hurts only at very small sample
sizes for the tasks we investigated).

•  Skewing helps dramatically when the target is hard.

•  Hard functions appear to be relatively uncommon in
UCI database.

Comments on decision tree learning

•  widely used approach
•  many variations
•  fast in practice
•  provides humanly comprehensible models when

trees not too big
•  insensitive to monotone transformations of numeric

features
•  standard methods learn axis-parallel hypotheses*
•  standard methods not suited to on-line setting*
•  usually not among most accurate learning methods

* although variants exist that are exceptions to this

