
Decision Tree Learning 



Goals for the lecture 
you should understand the following concepts 

•  the decision tree representation 
•  the standard top-down approach to learning a tree 
•  Occam’s razor 
•  entropy and information gain 
•  types of decision-tree splits 
•  test sets and unbiased estimates of accuracy 
•  overfitting 
•  early stopping and pruning 
•  tuning (validation) sets 
•  regression trees 
•  m-of-n splits 
•  using lookahead in decision tree search 

 



A decision tree to predict heart disease  
thal 

#_major_vessels > 0 present 

normal fixed_defect 

true false 

1 2 

present 

reversible_defect 

chest_pain_type absent 

absent absent absent present 

3 4 

Each internal node tests one feature xi	


 
Each branch from an internal node 
represents one outcome of the test 
 
Each leaf predicts y or P(y | x)	





Decision tree exercise 
Suppose x1 … x5 are Boolean features, and y is also Boolean 
 
How would you represent the following with decision trees? 

 y = x2x5      (i.e. y = x2 ∧ x5 )

y = x2 ∨ x5

y = x2x5 ∨ x3¬x1



History of decision tree learning 

dates of seminal publications: work on these 
2 was contemporaneous 

many DT variants have been 
developed since CART and ID3 
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CART developed by Leo Breiman, Jerome 
Friedman, Charles Olshen, R.A. Stone 

ID3, C4.5, C5.0 developed by Ross Quinlan 



An Example: Genetic Data 



A Supervised Learning Task 
•  Given: a set of SNP profiles, each from a different 

patient. 
 

Details: unordered pair of DNA bases at each SNP 
position constitute the features, and patient’s 
disease constitutes the class 
 

•  Do: Learn a model that accurately predicts 
      class based on features 



Decision Trees in One Picture 

    Diseased                Not Diseased 

SNP502 has A 

No Yes 



Top-down decision tree learning 

MakeSubtree(set of training instances D) 

 C = DetermineCandidateSplits(D) 

 if stopping criteria met 

  make a leaf node N	



  determine class label/probabilities for N 

 else 

  make an internal node N 

  S = FindBestSplit(D, C) 

  for each outcome k of S 

   Dk = subset of instances that have outcome k	



   kth child of N = MakeSubtree(Dk) 

 return subtree rooted at N 



Candidate splits in ID3, C4.5 
•  splits on nominal features have one branch per value 

•  splits on continuous features use a threshold 

thal 

normal fixed_defect reversible_defect 

weight ≤ 35 

true false 



Candidate splits on continuous features 

weight ≤ 35 

true false 

weight 

17 35 

given a set of training instances D and a specific feature F	


•  sort the values of F in D	


•  evaluate split thresholds in intervals between instances of 

different classes 

•  could use midpoint of each considered interval as the threshold 
•  C4.5 instead picks the largest value of F in the entire training set that 

does not exceed the midpoint 



Candidate splits 
•  instead of using k-way splits for k-valued features, could 

require binary splits on all discrete features (CART does this) 

•  Breiman et al. proved for the 2-class case, the optimal binary 
partition can be found considered only O(k) possibilities 
instead of O(2k) 	



thal 

normal reversible_defect ∨ fixed_defect 

color 

red ∨blue green ∨ yellow 



Finding the best split 

•  How should we select the best feature to split on at each step? 

•  Key hypothesis: the simplest tree that classifies the training 
examples accurately will work well on previously unseen examples 



Occam’s razor 

•  attributed to 14th century William of Ockham 

•  “Nunquam ponenda est pluralitis sin necesitate” 

•  “Entities should not be multiplied beyond necessity” 

•  “should proceed to simpler theories until simplicity can be traded for 
greater explanatory power” 

•  “when you have two competing theories that make exactly the same 
predictions, the simpler one is the better” 



But a thousand years earlier, 
I said, “We consider it a good 
principle to explain the 
phenomena by the simplest 
hypothesis possible.” 



Occam’s razor and decision trees 

•  there are fewer short models (i.e. small trees) than 
long ones 

•  a short model is unlikely to fit the training data well 
by chance 

•  a long model is more likely to fit the training data 
well coincidentally 

Why is Occam’s razor a reasonable heuristic for decision 
tree learning? 



Finding the best splits 

•  Can we return the smallest possible decision tree that 
accurately classifies the training set? 

•  Instead, we’ll use an information-theoretic heuristic to 
greedily choose splits 

NO! This is an NP-hard problem 
[Hyafil & Rivest, Information Processing Letters, 1976] 



Information theory background 

•  consider a problem in which you are using a code to communicate 
information to a receiver 

•  example: as bikes go past, you are communicating the 
manufacturer of each bike  

 



Information theory background 

•  suppose there are only four types of bikes 
•  we could use the following code 
 

11 

10 

01 

00 

•  expected number of bits we have to communicate:  
2 bits/bike 

Trek 

Specialized 

Cervelo 

Serrota 

type code 



Information theory background 
•  we can do better if the bike types aren’t equiprobable 
•  optimal code uses                    bits for event with 

probability 
 

− log2 P(y)
P(y)

1 

  

€ 

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2 
3 

3 

1 

01 

001 

000 

 
− P(y)log2 P(y)
y∈values(Y )
∑

Type/probability # bits code 

•  expected number of bits we have to communicate:  
1.75 bits/bike 



Entropy 
•  entropy is a measure of uncertainty associated with a 

random variable 

•  defined as the expected number of bits required to 
communicate the value of the variable 

 entropy function for 
 binary variable 

 
H (Y ) = − P(y)log2 P(y)

y∈values(Y )
∑

P(Y = 1)

H (Y )



Conditional entropy 

•  What’s the entropy of Y if we condition on some other 
variable X? 

 

 
H (Y | X) = P(X = x) H (Y | X = x)

x∈values(X )
∑

 
H (Y | X = x) = − P(Y = y | X = x) log2P(Y = y | X = x)

y∈values(Y )
∑

where 



Information gain  
(a.k.a. mutual information) 

•  choosing splits in ID3: select the split S that most 
reduces the conditional entropy of Y for training set D	



 
 InfoGain(D,S) = HD (Y )− HD (Y | S)

D indicates that we’re calculating 
probabilities using the specific sample D	





Information gain example  
 



Information gain example  
 

Humidity 

high normal 

D: [3+, 4-]	



D: [9+, 5-]	



D: [6+, 1-]	



•  What’s the information gain of splitting on Humidity?	
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InfoGain(D,Humidity) = HD (Y )− HD (Y |Humidity)
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Key Property: Equal change in 
P(Y) yields bigger change in 
entropy if toward an extreme 

P(Y = 1)

H (Y )



Means there is InfoGain in this 
split, though no gain in accuracy 

X 

T F 



Information gain example  
 

Humidity 

high normal 

D: [3+, 4-]	



D: [9+, 5-]	



D: [6+, 1-]	



•  Is it better to split on Humidity or Wind?	



 

 HD (Y |weak) = 0.811

 

InfoGain(D,Humidity) = 0.940 − 7
14

(0.985)+ 7
14

0.592( )"
#$

%
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                                   = 0.151

Wind 

weak strong 

D: [6+, 2-]	



D: [9+, 5-]	



D: [3+, 3-]	



 HD (Y | strong) = 1.0

 

InfoGain(D,Wind) = 0.940 − 8
14

(0.811)+ 6
14

1.0( )"
#$

%
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                                   = 0.048

✔ 



One limitation of information gain 

•  information gain is biased towards tests with many 
outcomes 

•  e.g. consider a feature that uniquely identifies each 
training instance 
–  splitting on this feature would result in many 

branches, each of which is “pure” (has instances of 
only one class) 

–  maximal information gain! 

 



Gain ratio 
•  To address this limitation, C4.5 uses a splitting criterion 

called gain ratio 

•  consider the potential information generated by splitting 
on S	



 

 
GainRatio(D,S) = InfoGain(D,S)

SplitInfo(D,S)

SplitInfo(D,S) = −
Dk

Dk∈ outcomes(S )
∑ log2

Dk

D
$

%
&

'

(
)

use this to normalize information gain 



Stopping criteria 
We should form a leaf when 

•  all of the given subset of instances are of the same class 
•  we’ve exhausted all of the candidate splits 

Is there a reason to stop earlier, or to prune back the tree?	



 



How can we assess the accuracy of a tree? 
•  Can we just calculate the fraction of training examples 

that are correctly classified? 

 •  Consider a problem domain in which instances are 
assigned labels at random with P(Y = T) = 0.5   

•  How accurate would a learned decision tree be on 
previously unseen instances? 

•  How accurate would it be on its training set?	



 



How can we assess the accuracy of a tree? 
•  to get an unbiased estimate of a learned model’s 

accuracy, we must use a set of instances that are held-
aside during learning 

•  this is called a test set 

 all instances 

labeled instances 

test 

train 



Overfitting 
•  consider error of model h over 

•  training data: 
•  entire distribution of data: 

 
•  model           overfits the training data if there is an 

alternative model            such that 

 

errorD (h)
error(h)

h∈H
h '∈H

error(h) > error(h ')

errorD (h) < errorD (h ')



Overfitting with noisy data 
suppose 

•  the target concept is  
•  there is noise in some feature values 
•  we’re given the following training set  

 

Y = X1 ∧ X2
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noisy value 



Overfitting with noisy data 

X1	



X2	



T F 

X3	

T 

F 

F 

F 

X4	



T 

X1	



X2	



T F 

T F 

F 

correct tree tree that fits noisy training data 



Overfitting visualized 
consider a problem with 

•  2 continuous features 
•  3 classes 
•  some noisy training instances 

 



Overfitting with noise-free data 
suppose 

•  the target concept is  
•  P(X3 = T) = 0.5 for both classes 
•  P(Y = T) = 0.67 
•  we’re given the following training set  

 

Y = X1 ∧ X2
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Overfitting with noise-free data 

X3	



T F 

T F 

T 

training set 
accuracy 

test set 
accuracy 

100% 

66% 66% 

50% 

•  because the training set is a limited sample, there might 
be (combinations of) features that are correlated with 
the target concept by chance 

 



Overfitting in decision trees 



Avoiding overfitting in DT learning 

two general strategies to avoid overfitting 
1.  early stopping: stop if further splitting not justified by 

a statistical test 
•  Quinlan’s original approach in ID3 

2.  post-pruning: grow a large tree, then prune back 
some nodes 
•  more robust to myopia of greedy tree learning 



Pruning in ID3, C4.5 

1.  split given data into training and tuning 
(validation) sets 

2.  grow a complete tree 
3.  do until further pruning is harmful 

•  evaluate impact on tuning-set accuracy of 
pruning each node 

•  greedily remove the one that most improves 
tuning-set accuracy 



Tuning sets 
•  a tuning set (a.k.a. validation set) is a subset of the training set  

that is held aside 
•  not used for primary training process (e.g. tree growing) 
•  but used to select among models (e.g. trees pruned to 

varying degrees) 

 
all instances 

labeled instances 

test train 

tuning 



Regression trees 

X5 > 10	



X3	



X2 > 2.1	

Y=5	



Y=24	

Y=3.5	



Y=3.2	



•  in a regression tree, leaves have functions that predict 
numeric values instead of class labels 

•  the form of these functions depends on the method 
•  CART uses constants: regression trees 
•  some methods use linear functions: model trees 

 

X5 > 10	



X3	



X2 > 2.1	

Y=2X4+5	



Y=3X4+X6	



Y=3.2	



Y=1	





Regression trees in CART 

•  CART does least squares regression which tries to 
minimize 

 

 
= yi − ŷi( )2

i∈L
∑

L∈leaves
∑

yi − ŷi( )2
i=1

D

∑

target value for ith  
training instance 

value predicted by tree for ith  training 
instance (average valueof y for training 
instances reaching the leaf) 

•  at each internal node, CART chooses the split that most 
reduces this quantity 

•  if D is data at node, minimize variance 

 

1/ |D | yi − ŷi( )2
i=1

D

∑



Lookahead 

•  most DT learning methods use a hill-climbing search 
•  a limitation of this approach is myopia: an important feature may 

not appear to be informative until used in conjunction with other 
features 

•  can potentially alleviate this limitation by using a lookahead 
search [Norton ‘89; Murphy & Salzberg ‘95] 

•  empirically, often doesn’t improve accuracy or tree size 



Choosing best split in ordinary DT learning 

OrdinaryFindBestSplit(set of training instances D, set of candidate splits C) 

maxgain = -∞	



for each split S in C	



  gain = InfoGain(D, S) 

  if gain > maxgain	



	

 	

maxgain = gain	



  Sbest = S	



return Sbest	





Choosing best split with lookahead 
(part 1) 

LookaheadFindBestSplit(set of training instances D, set of candidate splits C) 

maxgain = -∞	



for each split S in C	



  gain = EvaluateSplit(D, C, S) 

  if gain > maxgain	



	

 	

maxgain = gain	



  Sbest = S	



return Sbest	





Choosing best split with lookahead 
(part 2) 

EvaluateSplit(D, C, S) 

if a split on S separates instances by class (i.e.                         ) 

 // no need to split further 

 return 

else 

  for outcomes                  of S     // let’s assume binary splits	



	

 	

  // see what the splits at the next level would be	



   Dk = subset of instances that have outcome k	



   Sk = OrdinaryFindBestSplit(Dk, C – S) 

  // return information gain that would result from this 2-level subtree 

  return  

 

  

HD (Y | S) = 0

k ∈ 1,  2{ }

HD (Y )− HD (Y | S,S1,S2 )

HD (Y )− HD (Y | S)



Correlation Immune (CI) Function 

Female Sxl gene active Survival 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Drosophila survival based on gender and Sxl gene activity 



Learning CI Functions 

•  Standard method of learning hard functions with 
TDIDT: depth-k lookahead 
–  O(mn2k-1) for m examples in n variables 

•  Can we devise a technique that allows TDIDT 
algorithms to efficiently learn hard functions? 



Key Idea 

   Hard functions aren’t – if the data distribution 
is significantly different from uniform 



Example 

•  Uniform distribution can be sampled by setting each 
variable (feature) independently of all others, with 
probability 0.5 of being set to 1. 

•  Consider same distribution, but with each variable 
having probability 0.75 of being set to 1. 



Example 

x1 x2 x3 … x100 f 

0 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 

0 

0 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 

1 

1 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 

1 

1 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 

0 

0)(
             

25.0)1;(
25.0)0;(

25.0)(

=

⇓

==

==

=

i

i

i

xGAIN

xfGINI
xfGINI

fGINI



Example 

x1 x2 x3 … x100 f Weight 

0 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

0 

0 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

1 

1 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

1 

1 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 

0 

16
1

16
3

16
3

16
9

( )

0)(
             

256
60)1;(

256
60)0;(

______________________
256
12

256
4860)(

             
256
48)1;(

256
48)0;(

______________________
256
60)(

4

4

4

1

1

1

=

⇓

==

==

=
−

=

⇓

==

==

=

xGAIN

xfGINI

xfGINI

xGAIN

xfGINI

xfGINI

fGINI



Example 

x1 x2 x3 … x100 f Weight 

0 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

0 

0 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

1 

1 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

1 

1 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 

0 

16
1

16
3

16
3

16
9

256
60

16
10

16
6)( ==fGINI



Example 

x1 x2 x3 … x100 f Weight 

0 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

0 

0 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

1 

1 0 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 
 

1 

1 1 
0…0000000 
0…0000001 
0…0000010 
    … 
1…1111111 

0 

16
1

16
3

16
3

16
9 256

48
4
3

4
1)1;(

256
48

4
3

4
1)0;(

1

1

===

===

xfGINI

xfGINI



Example 
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Can Show 

•  Given 
–  a large enough sample and 
–  a second distribution sufficiently different from the 

first,  
 we can learn functions that are hard for TDIDT 
algorithms under the original distribution. 



Issues to Address 

•  How can we get a “sufficiently different” distribution? 
–  Our approach: “skew” the given sample by 

choosing “favored settings” for the variables 

•  Not-large-enough sample effects? 
–  Our approach: Average “goodness” of any 

variable over multiple skews 



Skewing Algorithm 

•  For T trials do 
–  Choose a favored setting for each variable 
–  Reweight the sample 
–  Calculate entropy of each variable split under this 

weighting 
–  For each variable that has sufficient gain, 

increment a counter 

•  Split on the variable with the highest count 



Experiments 

•  ID3 vs. ID3 with Skewing (ID3 to avoid issues to do 
with parameters, pruning, etc.) 

•  Several UCI Datasets 

•  Synthetic Propositional Data 
–  Examples of 30 Boolean variables. 
–  Target Boolean functions of 2-6 of these variables. 
–  Randomly chosen targets and randomly chosen 

hard targets. 



Results (3-variable Boolean 
functions) 
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Results (4-variable Boolean 
functions) 

Random functions CI functions 
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Results (5-variable Boolean 
functions) 

Random functions CI functions 
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Results (6-variable Boolean 
functions) 

Random functions CI functions 
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Accuracy Results (UCI datasets) 

Data Set ID3 ID3 with 
Skewing 

Heart 71.9 74.5 

Voting 94.0 94.2 

Contra 60.4 61.5 

Monks-1 92.6 100.0 

Monks-2 86.5 89.3 

Monks-3 89.8 91.7 



Empirical Conclusions 

•  Skewing rarely hurts (hurts only at very small sample 
sizes for the tasks we investigated). 

•  Skewing helps dramatically when the target is hard. 

•  Hard functions appear to be relatively uncommon in 
UCI database. 



Comments on decision tree learning 

•  widely used approach 
•  many variations 
•  fast in practice 
•  provides humanly comprehensible models when 

trees not too big 
•  insensitive to monotone transformations of numeric 

features 
•  standard methods learn axis-parallel hypotheses* 
•  standard methods not suited to on-line setting* 
•  usually not among most accurate learning methods 

* although variants exist that are exceptions to this 


