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AbstractA Bayesian network is a graphical model that encodes probabilistic relationships amongvariables of interest. When used in conjunction with statistical techniques, the graph-ical model has several advantages for data analysis. One, because the model encodesdependencies among all variables, it readily handles situations where some data entriesare missing. Two, a Bayesian network can be used to learn causal relationships, andhence can be used to gain understanding about a problem domain and to predict theconsequences of intervention. Three, because the model has both a causal and prob-abilistic semantics, it is an ideal representation for combining prior knowledge (whichoften comes in causal form) and data. Four, Bayesian statistical methods in conjunc-tion with Bayesian networks o�er an e�cient and principled approach for avoiding theover�tting of data. In this paper, we discuss methods for constructing Bayesian net-works from prior knowledge and summarize Bayesian statistical methods for using datato improve these models. With regard to the latter task, we describe methods forlearning both the parameters and structure of a Bayesian network, including techniquesfor learning with incomplete data. In addition, we relate Bayesian-network methodsfor learning to techniques for supervised and unsupervised learning. We illustrate thegraphical-modeling approach using a real-world case study.1 IntroductionA Bayesian network is a graphical model for probabilistic relationships among a set ofvariables. Over the last decade, the Bayesian network has become a popular representationfor encoding uncertain expert knowledge in expert systems (Heckerman et al., 1995a). Morerecently, researchers have developed methods for learning Bayesian networks from data. Thetechniques that have been developed are new and still evolving, but they have been shownto be remarkably e�ective for some data-analysis problems.In this paper, we provide a tutorial on Bayesian networks and associated Bayesiantechniques for extracting and encoding knowledge from data. There are numerous rep-resentations available for data analysis, including rule bases, decision trees, and arti�cialneural networks; and there are many techniques for data analysis such as density estima-tion, classi�cation, regression, and clustering. So what do Bayesian networks and Bayesianmethods have to o�er? There are at least four answers.One, Bayesian networks can readily handle incomplete data sets. For example, considera classi�cation or regression problem where two of the explanatory or input variables arestrongly anti-correlated. This correlation is not a problem for standard supervised learningtechniques, provided all inputs are measured in every case. When one of the inputs is notobserved, however, most models will produce an inaccurate prediction, because they do not1



encode the correlation between the input variables. Bayesian networks o�er a natural wayto encode such dependencies.Two, Bayesian networks allow one to learn about causal relationships. Learning aboutcausal relationships are important for at least two reasons. The process is useful when weare trying to gain understanding about a problem domain, for example, during exploratorydata analysis. In addition, knowledge of causal relationships allows us to make predictionsin the presence of interventions. For example, a marketing analyst may want to knowwhether or not it is worthwhile to increase exposure of a particular advertisement in orderto increase the sales of a product. To answer this question, the analyst can determinewhether or not the advertisement is a cause for increased sales, and to what degree. Theuse of Bayesian networks helps to answer such questions even when no experiment aboutthe e�ects of increased exposure is available.Three, Bayesian networks in conjunction with Bayesian statistical techniques facilitatethe combination of domain knowledge and data. Anyone who has performed a real-worldanalysis knows the importance of prior or domain knowledge, especially when data is scarceor expensive. The fact that some commercial systems (i.e., expert systems) can be built fromprior knowledge alone is a testament to the power of prior knowledge. Bayesian networkshave a causal semantics that makes the encoding of causal prior knowledge particularlystraightforward. In addition, Bayesian networks encode the strength of causal relationshipswith probabilities. Consequently, prior knowledge and data can be combined with well-studied techniques from Bayesian statistics.Four, Bayesian methods in conjunction with Bayesian networks and other types of mod-els o�ers an e�cient and principled approach for avoiding the over �tting of data. As weshall see, there is no need to hold out some of the available data for testing. Using theBayesian approach, models can be \smoothed" in such a way that all available data can beused for training.This tutorial is organized as follows. In Section 2, we discuss the Bayesian interpretationof probability and review methods from Bayesian statistics for combining prior knowledgewith data. In Section 3, we describe Bayesian networks and discuss how they can be con-structed from prior knowledge alone. In Section 4, we discuss algorithms for probabilisticinference in a Bayesian network. In Sections 5 and 6, we show how to learn the probabilitiesin a �xed Bayesian-network structure, and describe techniques for handling incomplete dataincluding Monte-Carlo methods and the Gaussian approximation. In Sections 7 through 12,we show how to learn both the probabilities and structure of a Bayesian network. Topicsdiscussed include methods for assessing priors for Bayesian-network structure and parame-ters, and methods for avoiding the over�tting of data including Monte-Carlo, Laplace, BIC,2



and MDL approximations. In Sections 13 and 14, we describe the relationships betweenBayesian-network techniques and methods for supervised and unsupervised learning. InSection 15, we show how Bayesian networks facilitate the learning of causal relationships.In Section 16, we illustrate techniques discussed in the tutorial using a real-world case study.In Section 17, we give pointers to software and additional literature.2 The Bayesian Approach to Probability and StatisticsTo understand Bayesian networks and associated learning techniques, it is important tounderstand the Bayesian approach to probability and statistics. In this section, we providean introduction to the Bayesian approach for those readers familiar only with the classicalview.In a nutshell, the Bayesian probability of an event x is a person's degree of belief inthat event. Whereas a classical probability is a physical property of the world (e.g., theprobability that a coin will land heads), a Bayesian probability is a property of the personwho assigns the probability (e.g., your degree of belief that the coin will land heads). Tokeep these two concepts of probability distinct, we refer to the classical probability of anevent as the true or physical probability of that event, and refer to a degree of belief in anevent as a Bayesian or personal probability. Alternatively, when the meaning is clear, werefer to a Bayesian probability simply as a probability.One important di�erence between physical probability and personal probability is that,to measure the latter, we do not need repeated trials. For example, imagine the repeatedtosses of a sugar cube onto a wet surface. Every time the cube is tossed, its dimensionswill change slightly. Thus, although the classical statistician has a hard time measuring theprobability that the cube will land with a particular face up, the Bayesian simply restrictshis or her attention to the next toss, and assigns a probability. As another example, considerthe question: What is the probability that the Chicago Bulls will win the championship in2001? Here, the classical statistician must remain silent, whereas the Bayesian can assigna probability (and perhaps make a bit of money in the process).One common criticism of the Bayesian de�nition of probability is that probabilitiesseem arbitrary. Why should degrees of belief satisfy the rules of probability? On what scaleshould probabilities be measured? In particular, it makes sense to assign a probability ofone (zero) to an event that will (not) occur, but what probabilities do we assign to beliefsthat are not at the extremes? Not surprisingly, these questions have been studied intensely.With regards to the �rst question, many researchers have suggested di�erent sets ofproperties that should be satis�ed by degrees of belief (e.g., Ramsey 1931, Cox 1946, Good3



Figure 1: The probability wheel: a tool for assessing probabilities.1950, Savage 1954, DeFinetti 1970). It turns out that each set of properties leads to thesame rules: the rules of probability. Although each set of properties is in itself compelling,the fact that di�erent sets all lead to the rules of probability provides a particularly strongargument for using probability to measure beliefs.The answer to the question of scale follows from a simple observation: people �nd itfairly easy to say that two events are equally likely. For example, imagine a simpli�ed wheelof fortune having only two regions (shaded and not shaded), such as the one illustrated inFigure 1. Assuming everything about the wheel as symmetric (except for shading), youshould conclude that it is equally likely for the wheel to stop in any one position. Fromthis judgment and the sum rule of probability (probabilities of mutually exclusive andcollectively exhaustive sum to one), it follows that your probability that the wheel will stopin the shaded region is the percent area of the wheel that is shaded (in this case, 0.3).This probability wheel now provides a reference for measuring your probabilities of otherevents. For example, what is your probability that Al Gore will run on the Democraticticket in 2000? First, ask yourself the question: Is it more likely that Gore will run or thatthe wheel when spun will stop in the shaded region? If you think that it is more likely thatGore will run, then imagine another wheel where the shaded region is larger. If you thinkthat it is more likely that the wheel will stop in the shaded region, then imagine anotherwheel where the shaded region is smaller. Now, repeat this process until you think thatGore running and the wheel stopping in the shaded region are equally likely. At this point,your probability that Gore will run is just the percent surface area of the shaded area onthe wheel.In general, the process of measuring a degree of belief is commonly referred to as aprobability assessment. The technique for assessment that we have just described is one ofmany available techniques discussed in the Management Science, Operations Research, andPsychology literature. One problem with probability assessment that is addressed in thisliterature is that of precision. Can one really say that his or her probability for event x is0:601 and not 0:599? In most cases, no. Nonetheless, in most cases, probabilities are used4



to make decisions, and these decisions are not sensitive to small variations in probabilities.Well-established practices of sensitivity analysis help one to know when additional precisionis unnecessary (e.g., Howard and Matheson, 1983). Another problem with probabilityassessment is that of accuracy. For example, recent experiences or the way a question isphrased can lead to assessments that do not re
ect a person's true beliefs (Tversky andKahneman, 1974). Methods for improving accuracy can be found in the decision-analysisliterature (e.g, Spetzler et al. (1975)).Now let us turn to the issue of learning with data. To illustrate the Bayesian approach,consider a common thumbtack|one with a round, 
at head that can be found in mostsupermarkets. If we throw the thumbtack up in the air, it will come to rest either on itspoint (heads) or on its head (tails).1 Suppose we 
ip the thumbtack N + 1 times, makingsure that the physical properties of the thumbtack and the conditions under which it is
ipped remain stable over time. From the �rst N observations, we want to determine theprobability of heads on the N + 1th toss.In the classical analysis of this problem, we assert that there is some physical probabilityof heads, which is unknown. We estimate this physical probability from the N observationsusing criteria such as low bias and low variance. We then use this estimate as our probabilityfor heads on the N + 1th toss. In the Bayesian approach, we also assert that there is somephysical probability of heads, but we encode our uncertainty about this physical probabilityusing (Bayesian) probabilities, and use the rules of probability to compute our probabilityof heads on the N + 1th toss.2To examine the Bayesian analysis of this problem, we need some notation. We denote avariable by an upper-case letter (e.g., X; Y;Xi;�), and the state or value of a correspondingvariable by that same letter in lower case (e.g., x; y; xi; �). We denote a set of variables bya bold-face upper-case letter (e.g., X;Y;Xi). We use a corresponding bold-face lower-caseletter (e.g., x;y;xi) to denote an assignment of state or value to each variable in a givenset. We say that variable set X is in con�guration x. We use p(X = xj�) (or p(xj�) asa shorthand) to denote the probability that X = x of a person with state of information�. We also use p(xj�) to denote the probability distribution for X (both mass functionsand density functions). Whether p(xj�) refers to a probability, a probability density, or aprobability distribution will be clear from context. We use this notation for probabilitythroughout the paper. A summary of all notation is given at the end of the chapter.Returning to the thumbtack problem, we de�ne � to be a variable3 whose values �1This example is taken from Howard (1970).2Strictly speaking, a probability belongs to a single person, not a collection of people. Nonetheless, inparts of this discussion, we refer to \our" probability to avoid awkward English.3Bayesians typically refer to � as an uncertain variable, because the value of � is uncertain. In con-5



correspond to the possible true values of the physical probability. We sometimes refer to �as a parameter. We express the uncertainty about � using the probability density functionp(�j�). In addition, we use Xl to denote the variable representing the outcome of the lth 
ip,l = 1; : : : ; N + 1, and D = fX1 = x1; : : : ; XN = xNg to denote the set of our observations.Thus, in Bayesian terms, the thumbtack problem reduces to computing p(xN+1jD; �) fromp(�j�).To do so, we �rst use Bayes' rule to obtain the probability distribution for � given Dand background knowledge �: p(�jD; �) = p(�j�) p(Dj�; �)p(Dj�) (1)where p(Dj�) = Z p(Dj�; �) p(�j�) d� (2)Next, we expand the term p(Dj�; �). Both Bayesians and classical statisticians agree onthis term: it is the likelihood function for binomial sampling. In particular, given the valueof �, the observations in D are mutually independent, and the probability of heads (tails)on any one observation is � (1� �). Consequently, Equation 1 becomesp(�jD; �) = p(�j�) �h (1� �)tp(Dj�) (3)where h and t are the number of heads and tails observed in D, respectively. The probabilitydistributions p(�j�) and p(�jD; �) are commonly referred to as the prior and posterior for �,respectively. The quantities h and t are said to be su�cient statistics for binomial sampling,because they provide a summarization of the data that is su�cient to compute the posteriorfrom the prior. Finally, we average over the possible values of � (using the expansion ruleof probability) to determine the probability that the N + 1th toss of the thumbtack willcome up heads:p(XN+1 = headsjD; �) = Z p(XN+1 = headsj�; �) p(�jD; �) d�= Z � p(�jD; �) d� � Ep(�jD;�)(�) (4)where Ep(�jD;�)(�) denotes the expectation of � with respect to the distribution p(�jD; �).To complete the Bayesian story for this example, we need a method to assess the priordistribution for �. A common approach, usually adopted for convenience, is to assume thatthis distribution is a beta distribution:p(�j�) = Beta(�j�h; �t) � �(�)�(�h)�(�t)��h�1(1� �)�t�1 (5)trast, classical statisticians often refer to � as a random variable. In this text, we refer to � and alluncertain/random variables simply as variables. 6



Beta(3,2)Beta(2,2)Beta(1,1) Beta(19,39)Figure 2: Several beta distributions.where �h > 0 and �t > 0 are the parameters of the beta distribution, � = �h+�t, and �(�)is the Gamma function which satis�es �(x + 1) = x�(x) and �(1) = 1. The quantities �hand �t are often referred to as hyperparameters to distinguish them from the parameter �.The hyperparameters �h and �t must be greater than zero so that the distribution can benormalized. Examples of beta distributions are shown in Figure 2.The beta prior is convenient for several reasons. By Equation 3, the posterior distribu-tion will also be a beta distribution:p(�jD; �) = �(�+N)�(�h + h)�(�t + t)��h+h�1(1� �)�t+t�1 = Beta(�j�h + h; �t + t) (6)We say that the set of beta distributions is a conjugate family of distributions for binomialsampling. Also, the expectation of � with respect to this distribution has a simple form:Z � Beta(�j�h; �t) d� = �h� (7)Hence, given a beta prior, we have a simple expression for the probability of heads in theN + 1th toss: p(XN+1 = headsjD; �) = �h + h� +N (8)Assuming p(�j�) is a beta distribution, it can be assessed in a number of ways. Forexample, we can assess our probability for heads in the �rst toss of the thumbtack (e.g.,using a probability wheel). Next, we can imagine having seen the outcomes of k 
ips, andreassess our probability for heads in the next toss. From Equation 8, we have (for k = 1)p(X1 = headsj�) = �h�h + �t p(X2 = headsjX1 = heads; �) = �h + 1�h + �t + 1Given these probabilities, we can solve for �h and �t. This assessment technique is knownas the method of imagined future data.Another assessment method is based on Equation 6. This equation says that, if we startwith a Beta(0; 0) prior4 and observe �h heads and �t tails, then our posterior (i.e., new4Technically, the hyperparameters of this prior should be small positive numbers so that p(�j�) can benormalized. 7



prior) will be a Beta(�h; �t) distribution. Recognizing that a Beta(0; 0) prior encodes a stateof minimum information, we can assess �h and �t by determining the (possibly fractional)number of observations of heads and tails that is equivalent to our actual knowledge about
ipping thumbtacks. Alternatively, we can assess p(X1 = headsj�) and �, which can beregarded as an equivalent sample size for our current knowledge. This technique is knownas the method of equivalent samples. Other techniques for assessing beta distributions arediscussed by Winkler (1967) and Chaloner and Duncan (1983).Although the beta prior is convenient, it is not accurate for some problems. For example,suppose we think that the thumbtack may have been purchased at a magic shop. In thiscase, a more appropriate prior may be a mixture of beta distributions|for example,p(�j�) = 0:4 Beta(20; 1)+ 0:4 Beta(1; 20)+ 0:2 Beta(2; 2)where 0.4 is our probability that the thumbtack is heavily weighted toward heads (tails).In e�ect, we have introduced an additional hidden or unobserved variable H , whose statescorrespond to the three possibilities: (1) thumbtack is biased toward heads, (2) thumbtackis biased toward tails, and (3) thumbtack is normal; and we have asserted that � conditionedon each state of H is a beta distribution. In general, there are simple methods (e.g., themethod of imagined future data) for determining whether or not a beta prior is an accuratere
ection of one's beliefs. In those cases where the beta prior is inaccurate, an accurateprior can often be assessed by introducing additional hidden variables, as in this example.So far, we have only considered observations drawn from a binomial distribution. Ingeneral, observations may be drawn from any physical probability distribution:p(xj�; �) = f(x; �)where f(x; �) is the likelihood function with parameters �. For purposes of this discussion,we assume that the number of parameters is �nite. As an example, X may be a continuousvariable and have a Gaussian physical probability distribution with mean � and variance v:p(xj�; �) = (2�v)�1=2 e�(x��)2=2vwhere � = f�; vg.Regardless of the functional form, we can learn about the parameters given data usingthe Bayesian approach. As we have done in the binomial case, we de�ne variables corre-sponding to the unknown parameters, assign priors to these variables, and use Bayes' ruleto update our beliefs about these parameters given data:p(�jD; �) = p(Dj�; �) p(�j�)p(Dj�) (9)8



We then average over the possible values of � to make predictions. For example,p(xN+1jD; �) = Z p(xN+1j�; �) p(�jD; �) d� (10)For a class of distributions known as the exponential family, these computations can bedone e�ciently and in closed form.5 Members of this class include the binomial, multi-nomial, normal, Gamma, Poisson, and multivariate-normal distributions. Each memberof this family has su�cient statistics that are of �xed dimension for any random sample,and a simple conjugate prior.6 Bernardo and Smith (pp. 436{442, 1994) have compiledthe important quantities and Bayesian computations for commonly used members of theexponential family. Here, we summarize these items for multinomial sampling, which weuse to illustrate many of the ideas in this paper.In multinomial sampling, the observed variable X is discrete, having r possible statesx1; : : : ; xr. The likelihood function is given byp(X = xkj�; �) = �k; k = 1; : : : ; rwhere � = f�2; : : : ; �rg are the parameters. (The parameter �1 is given by 1 �Prk=2 �k .)In this case, as in the case of binomial sampling, the parameters correspond to physicalprobabilities. The su�cient statistics for data set D = fX1 = x1; : : : ; XN = xNg arefN1; : : : ; Nrg, where Ni is the number of times X = xk in D. The simple conjugate priorused with multinomial sampling is the Dirichlet distribution:p(�j�) = Dir(�j�1; : : : ; �r) � �(�)Qrk=1 �(�k) rYk=1 ��k�1k (11)where � = Pri=1 �k, and �k > 0; k = 1; : : : ; r. The posterior distribution p(�jD; �) =Dir(�j�1 +N1; : : : ; �r +Nr). Techniques for assessing the beta distribution, including themethods of imagined future data and equivalent samples, can also be used to assess Dirichletdistributions. Given this conjugate prior and data set D, the probability distribution forthe next observation is given byp(XN+1 = xkjD; �) = Z �k Dir(�j�1 +N1; : : : ; �r +Nr) d� = �k +Nk� +N (12)As we shall see, another important quantity in Bayesian analysis is the marginal likelihoodor evidence p(Dj�). In this case, we havep(Dj�) = �(�)�(�+N) � rYk=1 �(�k +Nk)�(�k) (13)5Recent advances in Monte-Carlo methods have made it possible to work e�ciently with many distribu-tions outside the exponential family. See, for example, Gilks et al. (1996).6In fact, except for a few, well-characterized exceptions, the exponential family is the only class ofdistributions that have su�cient statistics of �xed dimension (Koopman, 1936; Pitman, 1936).9



We note that the explicit mention of the state of knowledge � is useful, because it reinforcesthe notion that probabilities are subjective. Nonetheless, once this concept is �rmly inplace, the notation simply adds clutter. In the remainder of this tutorial, we shall notmention � explicitly.In closing this section, we emphasize that, although the Bayesian and classical ap-proaches may sometimes yield the same prediction, they are fundamentally di�erent meth-ods for learning from data. As an illustration, let us revisit the thumbtack problem. Here,the Bayesian \estimate" for the physical probability of heads is obtained in a manner thatis essentially the opposite of the classical approach.Namely, in the classical approach, � is �xed (albeit unknown), and we imagine all datasets of size N thatmay be generated by sampling from the binomial distribution determinedby �. Each data set D will occur with some probability p(Dj�) and will produce an estimate��(D). To evaluate an estimator, we compute the expectation and variance of the estimatewith respect to all such data sets:Ep(Dj�)(��) = XD p(Dj�) ��(D)Varp(Dj�)(��) = XD p(Dj�) (��(D)� Ep(Dj�)(��))2 (14)We then choose an estimator that somehow balances the bias (��Ep(Dj�)(��)) and varianceof these estimates over the possible values for �.7 Finally, we apply this estimator to thedata set that we actually observe. A commonly-used estimator is the maximum-likelihood(ML) estimator, which selects the value of � that maximizes the likelihood p(Dj�). Forbinomial sampling, we have ��ML(D) = NkPrk=1NkFor this (and other types) of sampling, the ML estimator is unbiased. That is, for all valuesof �, the ML estimator has zero bias. In addition, for all values of �, the variance of theML estimator is no greater than that of any other unbiased estimator (see, e.g., Schervish,1995).In contrast, in the Bayesian approach, D is �xed, and we imagine all possible values of �from which this data set could have been generated. Given �, the \estimate" of the physicalprobability of heads is just � itself. Nonetheless, we are uncertain about �, and so our �nalestimate is the expectation of � with respect to our posterior beliefs about its value:Ep(�jD;�)(�) = Z � p(�jD; �) d� (15)7Low bias and variance are not the only desirable properties of an estimator. Other desirable propertiesinclude consistency and robustness. 10



The expectations in Equations 14 and 15 are di�erent and, in many cases, lead todi�erent \estimates". One way to frame this di�erence is to say that the classical andBayesian approaches have di�erent de�nitions for what it means to be a good estimator.Both solutions are \correct" in that they are self consistent. Unfortunately, both methodshave their drawbacks, which has lead to endless debates about the merit of each approach.For example, Bayesians argue that it does not make sense to consider the expectations inEquation 14, because we only see a single data set. If we saw more than one data set, weshould combine them into one larger data set. In contrast, classical statisticians argue thatsu�ciently accurate priors can not be assessed in many situations. The common view thatseems to be emerging is that one should use whatever method that is most sensible for thetask at hand. We share this view, although we also believe that the Bayesian approach hasbeen under used, especially in light of its advantages mentioned in the introduction (pointsthree and four). Consequently, in this paper, we concentrate on the Bayesian approach.3 Bayesian NetworksSo far, we have considered only simple problems with one or a few variables. In real learningproblems, however, we are typically interested in looking for relationships among a largenumber of variables. The Bayesian network is a representation suited to this task. It isa graphical model that e�ciently encodes the joint probability distribution (physical orBayesian) for a large set of variables. In this section, we de�ne a Bayesian network andshow how one can be constructed from prior knowledge.A Bayesian network for a set of variables X = fX1; : : : ; Xng consists of (1) a networkstructure S that encodes a set of conditional independence assertions about variables in X,and (2) a set P of local probability distributions associated with each variable. Together,these components de�ne the joint probability distribution forX. The network structure S isa directed acyclic graph. The nodes in S are in one-to-one correspondence with the variablesX. We use Xi to denote both the variable and its corresponding node, and Pai to denotethe parents of node Xi in S as well as the variables corresponding to those parents. Thelack of possible arcs in S encode conditional independencies. In particular, given structureS, the joint probability distribution for X is given byp(x) = nYi=1 p(xijpai) (16)The local probability distributions P are the distributions corresponding to the terms inthe product of Equation 16. Consequently, the pair (S; P ) encodes the joint distributionp(x). 11



The probabilities encoded by a Bayesian network may be Bayesian or physical. Whenbuilding Bayesian networks from prior knowledge alone, the probabilities will be Bayesian.When learning these networks from data, the probabilities will be physical (and their valuesmay be uncertain). In subsequent sections, we describe how we can learn the structure andprobabilities of a Bayesian network from data. In the remainder of this section, we explorethe construction of Bayesian networks from prior knowledge. As we shall see in Section 10,this procedure can be useful in learning Bayesian networks as well.To illustrate the process of building a Bayesian network, consider the problem of de-tecting credit-card fraud. We begin by determining the variables to model. One possiblechoice of variables for our problem is Fraud (F ), Gas (G), Jewelry (J), Age (A), and Sex(S), representing whether or not the current purchase is fraudulent, whether or not therewas a gas purchase in the last 24 hours, whether or not there was a jewelry purchase inthe last 24 hours, and the age and sex of the card holder, respectively. The states of thesevariables are shown in Figure 3. Of course, in a realistic problem, we would include manymore variables. Also, we could model the states of one or more of these variables at a �nerlevel of detail. For example, we could let Age be a continuous variable.This initial task is not always straightforward. As part of this task we must (1) correctlyidentify the goals of modeling (e.g., prediction versus explanation versus exploration), (2)identify many possible observations that may be relevant to the problem, (3) determine whatsubset of those observations is worthwhile to model, and (4) organize the observations intovariables having mutually exclusive and collectively exhaustive states. Di�culties here arenot unique to modeling with Bayesian networks, but rather are common to most approaches.Although there are no clean solutions, some guidance is o�ered by decision analysts (e.g.,Howard and Matheson, 1983) and (when data are available) statisticians (e.g., Tukey, 1977).In the next phase of Bayesian-network construction, we build a directed acyclic graphthat encodes assertions of conditional independence. One approach for doing so is based onthe following observations. From the chain rule of probability, we havep(x) = nYi=1 p(xijx1; : : : ; xi�1) (17)Now, for every Xi, there will be some subset �i � fX1; : : : ; Xi�1g such that Xi andfX1; : : : ; Xi�1g n�i are conditionally independent given �i. That is, for any x,p(xijx1; : : : ; xi�1) = p(xij�i) (18)Combining Equations 17 and 18, we obtainp(x) = nYi=1 p(xij�i) (19)12



Fraud Age

Gas

p(f=yes) = 0..00001
p(a=<30) = 0.25
p(a=30-50) = 0.40

p(j=yes|f=yes,a=*,s=*) = 0.05
p(j=yes|f=no,a=<30,s=male) = 0..0001
p(j=yes|f=no,a=30-50,s=male) = 0.0004
p(j=yes|f=no,a=>50,s=male) = 0.0002
p(j=yes|f=no,a=<30,s=female) = 0..0005
p(j=yes|f=no,a=30-50,s=female) = 0.002
p(j=yes|f=no,a=>50,s=female) = 0.001

p(g=yes|f=yes) = 0.2
p(g=yes|f=no) = 0.01

Sex

Jewelry

p(s=male) = 0.5

Figure 3: A Bayesian-network for detecting credit-card fraud. Arcs are drawn from causeto e�ect. The local probability distribution(s) associated with a node are shown adjacentto the node. An asterisk is a shorthand for \any state."Comparing Equations 16 and 19, we see that the variables sets (�1; : : : ;�n) correspond tothe Bayesian-network parents (Pa1; : : : ;Pan), which in turn fully specify the arcs in thenetwork structure S.Consequently, to determine the structure of a Bayesian network we (1) order the vari-ables somehow, and (2) determine the variables sets that satisfy Equation 18 for i = 1; : : : ; n.In our example, using the ordering (F;A; S;G; J), we have the conditional independenciesp(ajf) = p(a)p(sjf; a) = p(s)p(gjf; a; s) = p(gjf)p(jjf; a; s; g) = p(jjf; a; s) (20)Thus, we obtain the structure shown in Figure 3.This approach has a serious drawback. If we choose the variable order carelessly, theresulting network structure may fail to reveal many conditional independencies among thevariables. For example, if we construct a Bayesian network for the fraud problem usingthe ordering (J;G; S; A;F ), we obtain a fully connected network structure. Thus, in theworst case, we have to explore n! variable orderings to �nd the best one. Fortunately,there is another technique for constructing Bayesian networks that does not require anordering. The approach is based on two observations: (1) people can often readily assert13



causal relationships among variables, and (2) causal relationships typically correspond toassertions of conditional dependence. In particular, to construct a Bayesian network for agiven set of variables, we simply draw arcs from cause variables to their immediate e�ects.In almost all cases, doing so results in a network structure that satis�es the de�nitionEquation 16. For example, given the assertions that Fraud is a direct cause of Gas, andFraud, Age, and Sex are direct causes of Jewelry, we obtain the network structure in Figure3. The causal semantics of Bayesian networks are in large part responsible for the successof Bayesian networks as a representation for expert systems (Heckerman et al., 1995a).In Section 15, we will see how to learn causal relationships from data using these causalsemantics.In the �nal step of constructing a Bayesian network, we assess the local probabilitydistribution(s) p(xijpai). In our fraud example, where all variables are discrete, we assessone distribution for Xi for every con�guration of Pai. Example distributions are shown inFigure 3.Note that, although we have described these construction steps as a simple sequence,they are often intermingled in practice. For example, judgments of conditional independenceand/or cause and e�ect can in
uence problem formulation. Also, assessments of probabilitycan lead to changes in the network structure. Exercises that help one gain familiarity withthe practice of building Bayesian networks can be found in Jensen (1996).4 Inference in a Bayesian NetworkOnce we have constructed a Bayesian network (from prior knowledge, data, or a combina-tion), we usually need to determine various probabilities of interest from the model. Forexample, in our problem concerning fraud detection, we want to know the probability offraud given observations of the other variables. This probability is not stored directly inthe model, and hence needs to be computed. In general, the computation of a probabilityof interest given a model is known as probabilistic inference. In this section we describeprobabilistic inference in Bayesian networks.Because a Bayesian network for X determines a joint probability distribution for X, wecan|in principle|use the Bayesian network to compute any probability of interest. Forexample, from the Bayesian network in Figure 3, the probability of fraud given observationsof the other variables can be computed as follows:p(f ja; s; g; j) = p(f; a; s; g; j)p(a; s; g; j) = p(f; a; s; g; j)Pf 0 p(f 0; a; s; g; j) (21)For problems with many variables, however, this direct approach is not practical. Fortu-14



nately, at least when all variables are discrete, we can exploit the conditional independenciesencoded in a Bayesian network to make this computation more e�cient. In our example,given the conditional independencies in Equation 20, Equation 21 becomesp(f ja; s; g; j) = p(f)p(a)p(s)p(gjf)p(jjf; a; s)Pf 0 p(f 0)p(a)p(s)p(gjf 0)p(jjf 0; a; s) (22)= p(f)p(gjf)p(jjf; a; s)Pf 0 p(f 0)p(gjf 0)p(jjf 0; a; s)Several researchers have developed probabilistic inference algorithms for Bayesian net-works with discrete variables that exploit conditional independence roughly as we havedescribed, although with di�erent twists. For example, Howard and Matheson (1981), Olm-sted (1983), and Shachter (1988) developed an algorithm that reverses arcs in the networkstructure until the answer to the given probabilistic query can be read directly from thegraph. In this algorithm, each arc reversal corresponds to an application of Bayes' theorem.Pearl (1986) developed a message-passing scheme that updates the probability distributionsfor each node in a Bayesian network in response to observations of one or more variables.Lauritzen and Spiegelhalter (1988), Jensen et al. (1990), and Dawid (1992) created an al-gorithm that �rst transforms the Bayesian network into a tree where each node in the treecorresponds to a subset of variables in X. The algorithm then exploits several mathemat-ical properties of this tree to perform probabilistic inference. Most recently, D'Ambrosio(1991) developed an inference algorithm that simpli�es sums and products symbolically,as in the transformation from Equation 21 to 22. The most commonly used algorithm fordiscrete variables is that of Lauritzen and Spiegelhalter (1988), Jensen et al (1990), andDawid (1992).Methods for exact inference in Bayesian networks that encode multivariate-Gaussian orGaussian-mixture distributions have been developed by Shachter and Kenley (1989) andLauritzen (1992), respectively. These methods also use assertions of conditional indepen-dence to simplify inference. Approximate methods for inference in Bayesian networks withother distributions, such as the generalized linear-regression model, have also been devel-oped (Saul et al., 1996; Jaakkola and Jordan, 1996).Although we use conditional independence to simplify probabilistic inference, exact in-ference in an arbitrary Bayesian network for discrete variables is NP-hard (Cooper, 1990).Even approximate inference (for example, Monte-Carlo methods) is NP-hard (Dagum andLuby, 1993). The source of the di�culty lies in undirected cycles in the Bayesian-networkstructure|cycles in the structure where we ignore the directionality of the arcs. (If we addan arc from Age to Gas in the network structure of Figure 3, then we obtain a structure withone undirected cycle: F�G�A�J�F .) When a Bayesian-network structure contains many15



undirected cycles, inference is intractable. For many applications, however, structures aresimple enough (or can be simpli�ed su�ciently without sacri�cing much accuracy) so thatinference is e�cient. For those applications where generic inference methods are imprac-tical, researchers are developing techniques that are custom tailored to particular networktopologies (Heckerman 1989; Suermondt and Cooper, 1991; Saul et al., 1996; Jaakkola andJordan, 1996) or to particular inference queries (Ramamurthi and Agogino, 1988; Shachteret al., 1990; Jensen and Andersen, 1990; Darwiche and Provan, 1996).5 Learning Probabilities in a Bayesian NetworkIn the next several sections, we show how to re�ne the structure and local probabilitydistributions of a Bayesian network given data. The result is set of techniques for dataanalysis that combines prior knowledge with data to produce improved knowledge. Inthis section, we consider the simplest version of this problem: using data to update theprobabilities of a given Bayesian network structure.Recall that, in the thumbtack problem, we do not learn the probability of heads. Instead,we update our posterior distribution for the variable that represents the physical probabilityof heads. We follow the same approach for probabilities in a Bayesian network. In particular,we assume|perhaps from causal knowledge about the problem|that the physical jointprobability distribution for X can be encoded in some network structure S. We writep(xj�s; Sh) = nYi=1 p(xijpai; �i; Sh) (23)where �i is the vector of parameters for the distribution p(xijpai; �i; Sh), �s is the vectorof parameters (�1; : : : ; �n), and Sh denotes the event (or \hypothesis" in statistics nomen-clature) that the physical joint probability distribution can be factored according to S.8 Inaddition, we assume that we have a random sample D = fx1; : : : ;xNg from the physicaljoint probability distribution of X. We refer to an element xl of D as a case. As in Section 2,we encode our uncertainty about the parameters �s by de�ning a (vector-valued) variable�s, and assessing a prior probability density function p(�sjSh). The problem of learningprobabilities in a Bayesian network can now be stated simply: Given a random sample D,compute the posterior distribution p(�sjD;Sh).8As de�ned here, network-structure hypotheses overlap. For example, given X = fX1;X2g, any jointdistribution for X that can be factored according the network structure containing no arc, can also befactored according to the network structure X1 �! X2. Such overlap presents problems for model averaging,described in Section 7. Therefore, we should add conditions to the de�nition to insure no overlap. Heckermanand Geiger (1996) describe one such set of conditions.16



We refer to the distribution p(xijpai; �i; Sh), viewed as a function of �i, as a local distri-bution function. Readers familiar with methods for supervised learning will recognize thata local distribution function is nothing more than a probabilistic classi�cation or regressionfunction. Thus, a Bayesian network can be viewed as a collection of probabilistic classi�ca-tion/regression models, organized by conditional-independence relationships. Examples ofclassi�cation/regression models that produce probabilistic outputs include linear regression,generalized linear regression, probabilistic neural networks (e.g., MacKay, 1992a, 1992b),probabilistic decision trees (e.g., Buntine, 1993; Friedman and Goldszmidt, 1996), kerneldensity estimation methods (Book, 1994), and dictionary methods (Friedman, 1995). Inprinciple, any of these forms can be used to learn probabilities in a Bayesian network; and,in most cases, Bayesian techniques for learning are available. Nonetheless, the most stud-ied models include the unrestricted multinomial distribution (e.g., Cooper and Herskovits,1992), linear regression with Gaussian noise (e.g., Buntine, 1994; Heckerman and Geiger,1996), and generalized linear regression (e.g., MacKay, 1992a and 1992b; Neal, 1993; andSaul et al., 1996).In this tutorial, we illustrate the basic ideas for learning probabilities (and structure)using the unrestricted multinomial distribution. In this case, each variable Xi 2 X is dis-crete, having ri possible values x1i ; : : : ; xrii , and each local distribution function is collectionof multinomial distributions, one distribution for each con�guration of Pai. Namely, weassume p(xki jpaji ; �i; Sh) = �ijk > 0 (24)where pa1i ; : : : ;paqii (qi = QXi2Pai ri) denote the con�gurations ofPai, and �i = ((�ijk)rik=2)qij=1are the parameters. (The parameter �ij1 is given by 1 �Prik=2 �ijk .) For convenience, wede�ne the vector of parameters �ij = (�ij2; : : : ; �ijri)for all i and j. We use the term \unrestricted" to contrast this distribution with multinomialdistributions that are low-dimensional functions of Pai|for example, the generalized linear-regression model.Given this class of local distribution functions, we can compute the posterior distributionp(�sjD;Sh) e�ciently and in closed form under two assumptions. The �rst assumption isthat there are no missing data in the random sample D. We say that the random sampleD is complete. The second assumption is that the parameter vectors �ij are mutually17
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�Figure 4: A Bayesian-network structure depicting the assumption of parameter indepen-dence for learning the parameters of the network structure X ! Y . Both variables X andY are binary. We use x and �x to denote the two states of X , and y and �y to denote the twostates of Y .independent.9 That is, p(�sjSh) = nYi=1 qiYj=1 p(�ij jSh)We refer to this assumption, which was introduced by Spiegelhalter and Lauritzen (1990),as parameter independence.Given that the joint physical probability distribution factors according to some networkstructure S, the assumption of parameter independence can itself be represented by a largerBayesian-network structure. For example, the network structure in Figure 4 represents theassumption of parameter independence for X = fX; Y g (X , Y binary) and the hypothesisthat the network structure X ! Y encodes the physical joint probability distribution forX. Under the assumptions of complete data and parameter independence, the parametersremain independent given a random sample:p(�sjD;Sh) = nYi=1 qiYj=1 p(�ij jD;Sh) (25)Thus, we can update each vector of parameters �ij independently, just as in the one-variablecase. Assuming each vector �ij has the prior distribution Dir(�ij j�ij1; : : : ; �ijri), we obtain9The computation is also straightforward if two or more parameters are equal. For details, see Thiesson(1995). 18



the posterior distributionp(�ij jD;Sh) = Dir(�ij j�ij1 +Nij1; : : : ; �ijri +Nijri) (26)where Nijk is the number of cases in D in which Xi = xki and Pai = paji .As in the thumbtack example, we can average over the possible con�gurations of �s toobtain predictions of interest. For example, let us compute p(xN+1jD;Sh), where xN+1 isthe next case to be seen after D. Suppose that, in case xN+1, Xi = xki and Pai = paji ,where k and j depend on i. Thus,p(xN+1jD;Sh) = Ep(�sjD;Sh) nYi=1 �ijk!To compute this expectation, we �rst use the fact that the parameters remain independentgiven D:p(xN+1jD;Sh) = Z nYi=1 �ijk p(�sjD;Sh) d�s = nYi=1 Z �ijk p(�ij jD;Sh) d�ijThen, we use Equation 12 to obtainp(xN+1jD;Sh) = nYi=1 �ijk +Nijk�ij +Nij (27)where �ij =Prik=1 �ijk and Nij =Prik=1Nijk.These computations are simple because the unrestricted multinomial distributions are inthe exponential family. Computations for linear regression with Gaussian noise are equallystraightforward (Buntine, 1994; Heckerman and Geiger, 1996).6 Methods for Incomplete DataLet us now discuss methods for learning about parameters when the random sample isincomplete (i.e., some variables in some cases are not observed). An important distinctionconcerning missing data is whether or not the absence of an observation is dependent on theactual states of the variables. For example, a missing datum in a drug study may indicatethat a patient became too sick|perhaps due to the side e�ects of the drug|to continuein the study. In contrast, if a variable is hidden (i.e., never observed in any case), thenthe absence of this data is independent of state. Although Bayesian methods and graphicalmodels are suited to the analysis of both situations, methods for handling missing datawhere absence is independent of state are simpler than those where absence and state aredependent. In this tutorial, we concentrate on the simpler situation only. Readers interestedin the more complicated case should see Rubin (1978), Robins (1986), and Pearl (1995).19



Continuing with our example using unrestricted multinomial distributions, suppose weobserve a single incomplete case. Let Y � X and Z � X denote the observed and unob-served variables in the case, respectively. Under the assumption of parameter independence,we can compute the posterior distribution of �ij for network structure S as follows:p(�ij jy; Sh) =Xz p(zjy; Sh) p(�ij jy; z; Sh) (28)= (1� p(paji jy; Sh))np(�ij jSh)o+ riXk=1 p(xki ;paji jy; Sh)np(�ij jxki ;paji ; Sh)o(See Spiegelhalter and Lauritzen (1990) for a derivation.) Each term in curly brackets inEquation 28 is a Dirichlet distribution. Thus, unless both Xi and all the variables in Pai areobserved in case y, the posterior distribution of �ij will be a linear combination of Dirichletdistributions|that is, a Dirichlet mixture with mixing coe�cients (1� p(paji jy; Sh)) andp(xki ;paji jy; Sh); k = 1; : : : ; ri.When we observe a second incomplete case, some or all of the Dirichlet componentsin Equation 28 will again split into Dirichlet mixtures. That is, the posterior distributionfor �ij we become a mixture of Dirichlet mixtures. As we continue to observe incompletecases, each missing values for Z, the posterior distribution for �ij will contain a number ofcomponents that is exponential in the number of cases. In general, for any interesting setof local likelihoods and priors, the exact computation of the posterior distribution for �swill be intractable. Thus, we require an approximation for incomplete data.6.1 Monte-Carlo MethodsOne class of approximations is based on Monte-Carlo or sampling methods. These approx-imations can be extremely accurate, provided one is willing to wait long enough for thecomputations to converge.In this section, we discuss one of many Monte-Carlo methods known as Gibbs sampling,introduced by Geman and Geman (1984). Given variables X = fX1; : : : ; Xng with somejoint distribution p(x), we can use a Gibbs sampler to approximate the expectation of afunction f(x) with respect to p(x) as follows. First, we choose an initial state for each ofthe variables in X somehow (e.g., at random). Next, we pick some variable Xi, unassignits current state, and compute its probability distribution given the states of the othern� 1 variables. Then, we sample a state for Xi based on this probability distribution, andcompute f(x). Finally, we iterate the previous two steps, keeping track of the average valueof f(x). In the limit, as the number of cases approach in�nity, this average is equal toEp(x)(f(x)) provided two conditions are met. First, the Gibbs sampler must be irreducible:20



The probability distribution p(x) must be such that we can eventually sample any possiblecon�guration of X given any possible initial con�guration of X. For example, if p(x)contains no zero probabilities, then the Gibbs sampler will be irreducible. Second, eachXi must be chosen in�nitely often. In practice, an algorithm for deterministically rotatingthrough the variables is typically used. Introductions to Gibbs sampling and other Monte-Carlo methods|including methods for initialization and a discussion of convergence|aregiven by Neal (1993) and Madigan and York (1995).To illustrate Gibbs sampling, let us approximate the probability density p(�sjD;Sh) forsome particular con�guration of �s, given an incomplete data set D = fy1; : : : ;yNg and aBayesian network for discrete variables with independent Dirichlet priors. To approximatep(�sjD;Sh), we �rst initialize the states of the unobserved variables in each case somehow.As a result, we have a complete random sample Dc. Second, we choose some variable Xil(variable Xi in case l) that is not observed in the original random sample D, and reassignits state according to the probability distributionp(x0iljDc n xil; Sh) = p(x0il; Dc n xiljSh)Px00il p(x00il; Dc n xiljSh)where Dc n xil denotes the data set Dc with observation xil removed, and the sum in thedenominator runs over all states of variable Xil. As we shall see in Section 7, the termsin the numerator and denominator can be computed e�ciently (see Equation 35). Third,we repeat this reassignment for all unobserved variables in D, producing a new completerandom sample D0c. Fourth, we compute the posterior density p(�sjD0c; Sh) as described inEquations 25 and 26. Finally, we iterate the previous three steps, and use the average ofp(�sjD0c; Sh) as our approximation.6.2 The Gaussian ApproximationMonte-Carlo methods yield accurate results, but they are often intractable|for example,when the sample size is large. Another approximation that is more e�cient than Monte-Carlo methods and often accurate for relatively large samples is the Gaussian approximation(e.g., Kass et al., 1988; Kass and Raftery, 1995).The idea behind this approximation is that, for large amounts of data, p(�sjD;Sh)/ p(Dj�s; Sh) �p(�sjSh) can often be approximated as a multivariate-Gaussian distribution.In particular, let g(�s) � log(p(Dj�s; Sh) � p(�sjSh)) (29)Also, de�ne ~�s to be the con�guration of �s that maximizes g(�s). This con�guration alsomaximizes p(�sjD;Sh), and is known as the maximum a posteriori (MAP) con�guration of21



�s. Using a second degree Taylor polynomial of g(�s) about the ~�s to approximate g(�s),we obtain g(�s) � g( ~�s)� 12(�s � ~�s)A(�s � ~�s)t (30)where (�s � ~�s)t is the transpose of row vector (�s � ~�s), and A is the negative Hessian ofg(�s) evaluated at ~�s. Raising g(�s) to the power of e and using Equation 29, we obtainp(�sjD;Sh) / p(Dj�s; Sh) p(�sjSh) (31)� p(Dj ~�s; Sh) p( ~�sjSh) expf�12(�s � ~�s)A(�s � ~�s)tgHence, p(�sjD;Sh) is approximately Gaussian.To compute the Gaussian approximation, we must compute ~�s as well as the negativeHessian of g(�s) evaluated at ~�s. In the following section, we discuss methods for �nding~�s. Meng and Rubin (1991) describe a numerical technique for computing the secondderivatives. Raftery (1995) shows how to approximate the Hessian using likelihood-ratiotests that are available in many statistical packages. Thiesson (1995) demonstrates that,for unrestricted multinomial distributions, the second derivatives can be computed usingBayesian-network inference.6.3 The MAP and ML Approximations and the EM AlgorithmAs the sample size of the data increases, the Gaussian peak will become sharper, tendingto a delta function at the MAP con�guration ~�s. In this limit, we do not need to com-pute averages or expectations. Instead, we simply make predictions based on the MAPcon�guration.A further approximation is based on the observation that, as the sample size increases,the e�ect of the prior p(�sjSh) diminishes. Thus, we can approximate ~�s by the maximummaximum likelihood (ML) con�guration of �s:�̂s = argmax�s np(Dj�s; Sh)oOne class of techniques for �nding a ML or MAP is gradient-based optimization. Forexample, we can use gradient ascent, where we follow the derivatives of g(�s) or the like-lihood p(Dj�s; Sh) to a local maximum. Russell et al. (1995) and Thiesson (1995) showhow to compute the derivatives of the likelihood for a Bayesian network with unrestrictedmultinomial distributions. Buntine (1994) discusses the more general case where the likeli-hood function comes from the exponential family. Of course, these gradient-based methods�nd only local maxima. 22



Another technique for �nding a local ML or MAP is the expectation{maximization (EM)algorithm (Dempster et al., 1977). To �nd a local MAP or ML, we begin by assigning acon�guration to �s somehow (e.g., at random). Next, we compute the expected su�cientstatistics for a complete data set, where expectation is taken with respect to the jointdistribution for X conditioned on the assigned con�guration of �s and the known data D.In our discrete example, we computeEp(xjD;�s;Sh)(Nijk) = NXl=1 p(xki ;paji jyl; �s; Sh) (32)where yl is the possibly incomplete lth case in D. When Xi and all the variables in Paiare observed in case xl, the term for this case requires a trivial computation: it is eitherzero or one. Otherwise, we can use any Bayesian network inference algorithm to evaluatethe term. This computation is called the expectation step of the EM algorithm.Next, we use the expected su�cient statistics as if they were actual su�cient statisticsfrom a complete random sample Dc. If we are doing an ML calculation, then we determinethe con�guration of �s that maximize p(Dcj�s; Sh). In our discrete example, we have�ijk = Ep(xjD;�s;Sh)(Nijk)Prik=1 Ep(xjD;�s;Sh)(Nijk)If we are doing a MAP calculation, then we determine the con�guration of �s that maximizesp(�sjDc; Sh). In our discrete example, we have10�ijk = �ijk + Ep(xjD;�s;Sh)(Nijk)Prik=1(�ijk + Ep(xjD;�s;Sh)(Nijk))This assignment is called the maximization step of the EM algorithm. Dempster et al.(1977) showed that, under certain regularity conditions, iteration of the expectation andmaximization steps will converge to a local maximum. The EM algorithm is typicallyapplied when su�cient statistics exist (i.e., when local distribution functions are in theexponential family), although generalizations of the EM algroithm have been used for morecomplicated local distributions (see, e.g., Saul et al. 1996).10The MAP con�guration ~�s depends on the coordinate system in which the parameter variables areexpressed. The expression for the MAP con�guration given here is obtained by the following procedure. First,we transform each variable set �ij = (�ij2; : : : ; �ijri ) to the new coordinate system �ij = (�ij2; : : : ; �ijri),where �ijk = log(�ijk=�ij1); k = 2; : : : ; ri. This coordinate system, which we denote by �s, is sometimesreferred to as the canonicalcoordinate system for the multinomial distribution (see, e.g., Bernardo and Smith,1994, pp. 199{202). Next, we determine the con�guration of �s that maximizes p(�sjDc; Sh). Finally,we transform this MAP con�guration to the original coordinate system. Using the MAP con�gurationcorresponding to the coordinate system �s has several advantages, which are discussed in Thiesson (1995b)and MacKay (1996). 23



7 Learning Parameters and StructureNow we consider the problem of learning about both the structure and probabilities of aBayesian network given data.Assuming we think structure can be improved, we must be uncertain about the networkstructure that encodes the physical joint probability distribution for X. Following theBayesian approach, we encode this uncertainty by de�ning a (discrete) variable whose statescorrespond to the possible network-structure hypotheses Sh, and assessing the probabilitiesp(Sh). Then, given a random sample D from the physical probability distribution for X,we compute the posterior distribution p(ShjD) and the posterior distributions p(�sjD;Sh),and use these distributions in turn to compute expectations of interest. For example, topredict the next case after seeing D, we computep(xN+1jD) =XSh p(ShjD) Z p(xN+1j�s; Sh) p(�sjD;Sh) d�s (33)In performing the sum, we assume that the network-structure hypotheses are mutuallyexclusive. We return to this point in Section 9.The computation of p(�sjD;Sh) is as we have described in the previous two sections.The computation of p(ShjD) is also straightforward, at least in principle. From Bayes'theorem, we have p(ShjD) = p(Sh) p(DjSh)=p(D) (34)where p(D) is a normalization constant that does not depend upon structure. Thus, to de-termine the posterior distribution for network structures, we need to compute the marginallikelihood of the data (p(DjSh)) for each possible structure.We discuss the computation of marginal likelihoods in detail in Section 9. As an in-troduction, consider our example with unrestricted multinomial distributions, parameterindependence, Dirichlet priors, and complete data. As we have discussed, when there areno missing data, each parameter vector �ij is updated independently. In e�ect, we havea separate multi-sided thumbtack problem for every i and j. Consequently, the marginallikelihood of the data is the just the product of the marginal likelihoods for each i{j pair(given by Equation 13):p(DjSh) = nYi=1 qiYj=1 �(�ij)�(�ij +Nij) � riYk=1 �(�ijk +Nijk)�(�ijk) (35)This formula was �rst derived by Cooper and Herskovits (1992).Unfortunately, the full Bayesian approach that we have described is often impractical.One important computation bottleneck is produced by the average over models in Equa-tion 33. If we consider Bayesian-network models with n variables, the number of possible24



structure hypotheses is more than exponential in n. Consequently, in situations where theuser can not exclude almost all of these hypotheses, the approach is intractable.Statisticians, who have been confronted by this problem for decades in the context ofother types of models, use two approaches to address this problem: model selection andselective model averaging. The former approach is to select a \good" model (i.e., structurehypothesis) from among all possible models, and use it as if it were the correct model. Thelatter approach is to select a manageable number of good models from among all possiblemodels and pretend that these models are exhaustive. These related approaches raise severalimportant questions. In particular, do these approaches yield accurate results when appliedto Bayesian-network structures? If so, how do we search for good models? And how do wedecide whether or not a model is \good"?The question of accuracy is di�cult to answer in theory. Nonetheless, several researchershave shown experimentally that the selection of a single good hypothesis often yields ac-curate predictions (Cooper and Herskovits 1992; Aliferis and Cooper 1994; Heckerman etal., 1995b) and that model averaging using Monte-Carlo methods can sometimes be e�-cient and yield even better predictions (Madigan et al., 1996). These results are somewhatsurprising, and are largely responsible for the great deal of recent interest in learning withBayesian networks. In Sections 8 through 10, we consider di�erent de�nitions of what ismeans for a model to be \good", and discuss the computations entailed by some of thesede�nitions. In Section 11, we discuss model search.We note that model averaging and model selection lead to models that generalize well tonew data. That is, these techniques help us to avoid the over�tting of data. As is suggestedby Equation 33, Bayesian methods for model averaging and model selection are e�cient inthe sense that all cases in D can be used to both smooth and train the model. As we shallsee in the following two sections, this advantage holds true for the Bayesian approach ingeneral.8 Criteria for Model SelectionMost of the literature on learning with Bayesian networks is concerned with model selection.In these approaches, some criterion is used to measure the degree to which a networkstructure (equivalence class) �ts the prior knowledge and data. A search algorithm is thenused to �nd an equivalence class that receives a high score by this criterion. Selective modelaveraging is more complex, because it is often advantageous to identify network structuresthat are signi�cantly di�erent. In many cases, a single criterion is unlikely to identifysuch complementary network structures. In this section, we discuss criteria for the simpler25



problem of model selection. For a discussion of selective model averaging, see Madigan andRaftery (1994).8.1 Relative Posterior ProbabilityA criterion that is often used for model selection is the log of the relative posterior proba-bility log p(D;Sh) = log p(Sh) + log p(DjSh).11 The logarithm is used for numerical conve-nience. This criterion has two components: the log prior and the log marginal likelihood.In Section 9, we examine the computation of the log marginal likelihood. In Section 10.2,we discuss the assessment of network-structure priors. Note that our comments about theseterms are also relevant to the full Bayesian approach.The log marginal likelihood has the following interesting interpretation described byDawid (1984). From the chain rule of probability, we havelog p(DjSh) = NXl=1 log p(xljx1; : : : ;xl�1; Sh) (36)The term p(xljx1; : : : ;xl�1; Sh) is the prediction for xl made by model Sh after averagingover its parameters. The log of this term can be thought of as the utility or reward for thisprediction under the utility function log p(x).12 Thus, a model with the highest log marginallikelihood (or the highest posterior probability, assuming equal priors on structure) is alsoa model that is the best sequential predictor of the data D under the log utility function.Dawid (1984) also notes the relationship between this criterion and cross valida-tion. When using one form of cross validation, known as leave-one-out cross valida-tion, we �rst train a model on all but one of the cases in the random sample|say,Vl = fx1; : : : ;xl�1;xl+1; : : : ;xNg. Then, we predict the omitted case, and reward this pre-diction under some utility function. Finally, we repeat this procedure for every case in therandom sample, and sum the rewards for each prediction. If the prediction is probabilisticand the utility function is log p(x), we obtain the cross-validation criterionCV(Sh; D) = NXl=1 log p(xljVl; Sh) (37)which is similar to Equation 36. One problem with this criterion is that training and testcases are interchanged. For example, when we compute p(x1jV1; Sh) in Equation 37, we use11An equivalent criterion that is often used is log(p(ShjD)=p(Sh0 jD)) = log(p(Sh)=p(Sh0 )) +log(p(DjSh)=p(DjSh0 )). The ratio p(DjSh)=p(DjSh0 ) is known as a Bayes' factor.12This utility function is known as a proper scoring rule, because its use encourages people to assess theirtrue probabilities. For a characterization of proper scoring rules and this rule in particular, see Bernardo(1979). 26



x2 for training and x1 for testing. Whereas, when we compute p(x2jV2; Sh), we use x1 fortraining and x2 for testing. Such interchanges can lead to the selection of a model that over�ts the data (Dawid, 1984). Various approaches for attenuating this problem have beendescribed, but we see from Equation 36 that the log-marginal-likelihood criterion avoidsthe problem altogether. Namely, when using this criterion, we never interchange trainingand test cases.8.2 Local CriteriaConsider the problem of diagnosing an ailment given the observation of a set of �ndings.Suppose that the set of ailments under consideration are mutually exclusive and collectivelyexhaustive, so that we may represent these ailments using a single variable A. A possibleBayesian network for this classi�cation problem is shown in Figure 5.The posterior-probability criterion is global in the sense that it is equally sensitive to allpossible dependencies. In the diagnosis problem, the posterior-probability criterion is justas sensitive to dependencies among the �nding variables as it is to dependencies betweenailment and �ndings. Assuming that we observe all (or perhaps all but a few) of the �ndingsin D, a more reasonable criterion would be local in the sense that it ignores dependenciesamong �ndings and is sensitive only to the dependencies among the ailment and �ndings.This observation applies to all classi�cation and regression problems with complete data.One such local criterion, suggested by Spiegelhalter et al. (1993), is a variation on thesequential log-marginal-likelihood criterion:LC(Sh; D) = NXl=1 log p(aljFl; Dl; Sh) (38)where al and Fl denote the observation of the ailment A and �ndings F in the lth case,respectively. In other words, to compute the lth term in the product, we train our modelS with the �rst l � 1 cases, and then determine how well it predicts the ailment given the�ndings in the lth case. We can view this criterion, like the log-marginal-likelihood, as aform of cross validation where training and test cases are never interchanged.The log utility function has interesting theoretical properties, but it is sometimes inac-curate for real-world problems. In general, an appropriate reward or utility function willdepend on the decision-making problem or problems to which the probabilistic models areapplied. Howard and Matheson (1983) have collected a series of articles describing howto construct utility models for speci�c decision problems. Once we construct such utilitymodels, we can use suitably modi�ed forms of Equation 38 for model selection.27
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Finding n. . .Figure 5: A Bayesian-network structure for medical diagnosis.9 Computation of the Marginal LikelihoodAs mentioned, an often-used criterion for model selection is the log relative posterior prob-ability log p(D;Sh) = log p(Sh) + log p(DjSh). In this section, we discuss the computationof the second component of this criterion: the log marginal likelihood.Given (1) local distribution functions in the exponential family, (2) mutual independenceof the parameters �i, (3) conjugate priors for these parameters, and (4) complete data, thelog marginal likelihood can be computed e�ciently and in closed form. Equation 35 is anexample for unrestricted multinomial distributions. Buntine (1994) and Heckerman andGeiger (1996) discuss the computation for other local distribution functions. Here, weconcentrate on approximations for incomplete data.The Monte-Carlo and Gaussian approximations for learning about parameters that wediscussed in Section 6 are also useful for computing the marginal likelihood given incompletedata. One Monte-Carlo approach, described by Chib (1995) and Raftery (1996), uses Bayes'theorem: p(DjSh) = p(�sjSh) p(Dj�s; Sh)p(�sjD;Sh) (39)For any con�guration of �s, the prior term in the numerator can be evaluated directly. Inaddition, the likelihood term in the numerator can be computed using Bayesian-networkinference. Finally, the posterior term in the denominator can be computed using Gibbssampling, as we described in Section 6.1. Other, more sophisticated Monte-Carlo methodsare described by DiCiccio et al. (1995).As we have discussed, Monte-Carlo methods are accurate but computationally ine�-cient, especially for large databases. In contrast, methods based on the Gaussian approx-imation are more e�cient, and can be as accurate as Monte-Carlo methods on large datasets.Recall that, for large amounts of data, p(Dj�s; Sh) �p(�sjSh) can often be approximated28



as a multivariate-Gaussian distribution. Consequently,p(DjSh) = Z p(Dj�s; Sh) p(�sjSh) d�s (40)can be evaluated in closed form. In particular, substituting Equation 31 into Equation 40,integrating, and taking the logarithm of the result, we obtain the approximation:log p(DjSh) � log p(Dj ~�s; Sh) + log p( ~�sjSh) + d2 log(2�)� 12 log jAj (41)where d is the dimension of g(�s). For a Bayesian network with unrestricted multinomialdistributions, this dimension is typically given by Qni=1 qi(ri � 1). Sometimes, when thereare hidden variables, this dimension is lower. See Geiger et al. (1996) for a discussion ofthis point.This approximation technique for integration is known as Laplace's method, and we referto Equation 41 as the Laplace approximation. Kass et al. (1988) have shown that, undercertain regularity conditions, relative errors in this approximation are O(1=N), where N isthe number of cases in D. Thus, the Laplace approximation can be extremely accurate.For more detailed discussions of this approximation, see|for example|Kass et al. (1988)and Kass and Raftery (1995).Although Laplace's approximation is e�cient relative to Monte-Carlo approaches, thecomputation of jAj is nevertheless intensive for large-dimension models. One simpli�cationis to approximate jAj using only the diagonal elements of the Hessian A. Although in sodoing, we incorrectly impose independencies among the parameters, researchers have shownthat the approximation can be accurate in some circumstances (see, e.g., Becker and LeCun, 1989, and Chickering and Heckerman, 1996). Another e�cient variant of Laplace'sapproximation is described by Cheeseman and Stutz (1995), who use the approximation inthe AutoClass program for data clustering (see also Chickering and Heckerman, 1996.)We obtain a very e�cient (but less accurate) approximation by retaining only thoseterms in Equation 41 that increase with N : log p(Dj ~�s; Sh), which increases linearly withN , and log jAj, which increases as d logN . Also, for large N , ~�s can be approximated bythe ML con�guration of �s. Thus, we obtainlog p(DjSh) � log p(Dj�̂s; Sh) � d2 logN (42)This approximation is called the Bayesian information criterion (BIC), and was �rst derivedby Schwarz (1978).The BIC approximation is interesting in several respects. First, it does not depend onthe prior. Consequently, we can use the approximation without assessing a prior.13 Sec-13One of the technical assumptions used to derive this approximation is that the prior is non-zero around�̂s. 29



ond, the approximation is quite intuitive. Namely, it contains a term measuring how wellthe parameterized model predicts the data (log p(Dj�̂s; Sh)) and a term that punishes thecomplexity of the model (d=2 logN). Third, the BIC approximation is exactly minus theMinimum Description Length (MDL) criterion described by Rissanen (1987). Thus, recall-ing the discussion in Section 9, we see that the marginal likelihood provides a connectionbetween cross validation and MDL.10 PriorsTo compute the relative posterior probability of a network structure, we must assess thestructure prior p(Sh) and the parameter priors p(�sjSh) (unless we are using large-sampleapproximations such as BIC/MDL). The parameter priors p(�sjSh) are also required forthe alternative scoring functions discussed in Section 8. Unfortunately, when many networkstructures are possible, these assessments will be intractable. Nonetheless, under certainassumptions, we can derive the structure and parameter priors for many network structuresfrom a manageable number of direct assessments. Several authors have discussed suchassumptions and corresponding methods for deriving priors (Cooper and Herskovits, 1991,1992; Buntine, 1991; Spiegelhalter et al., 1993; Heckerman et al., 1995b; Heckerman andGeiger, 1996). In this section, we examine some of these approaches.10.1 Priors on Network ParametersFirst, let us consider the assessment of priors for the parameters of network structures.We consider the approach of Heckerman et al. (1995b) who address the case where thelocal distribution functions are unrestricted multinomial distributions and the assumptionof parameter independence holds.Their approach is based on two key concepts: independence equivalence and distributionequivalence. We say that two Bayesian-network structures forX are independence equivalentif they represent the same set of conditional-independence assertions for X (Verma andPearl, 1990). For example, given X = fX; Y; Zg, the network structures X ! Y ! Z,X  Y ! Z, and X  Y  Z represent only the independence assertion that X and Z areconditionally independent given Y . Consequently, these network structures are equivalent.As another example, a complete network structure is one that has no missing edge|that is,it encodes no assertion of conditional independence. When X contains n variables, there aren! possible complete network structures: one network structure for each possible orderingof the variables. All complete network structures for p(x) are independence equivalent. Ingeneral, two network structures are independence equivalent if and only if they have the30



same structure ignoring arc directions and the same v-structures (Verma and Pearl, 1990).A v-structure is an ordered tuple (X; Y; Z) such that there is an arc from X to Y and fromZ to Y , but no arc between X and Z.The concept of distribution equivalence is closely related to that of independence equiva-lence. Suppose that all Bayesian networks for X under consideration have local distributionfunctions in the family F . This is not a restriction, per se, because F can be a large family.We say that two Bayesian-network structures S1 and S2 for X are distribution equivalentwith respect to (wrt) F if they represent the same joint probability distributions forX|thatis, if, for every �s1, there exists a �s2 such that p(xj�s1; Sh1 ) = p(xj�s2; Sh2 ), and vice versa.Distribution equivalence wrt some F implies independence equivalence, but the con-verse does not hold. For example, when F is the family of generalized linear-regressionmodels, the complete network structures for n � 3 variables do not represent the samesets of distributions. Nonetheless, there are families F|for example, unrestricted multino-mial distributions and linear-regression models with Gaussian noise|where independenceequivalence implies distribution equivalence wrt F (Heckerman and Geiger, 1996).The notion of distribution equivalence is important, because if two network structuresS1 and S2 are distribution equivalent wrt to a given F , then the hypotheses associated withthese two structures are identical|that is, Sh1 = Sh2 . Thus, for example, if S1 and S2 aredistribution equivalent, then their probabilities must be equal in any state of information.Heckerman et al. (1995b) call this property hypothesis equivalence.In light of this property, we should associate each hypothesis with an equivalence classof structures rather than a single network structure, and our methods for learning networkstructure should actually be interpreted as methods for learning equivalence classes of net-work structures (although, for the sake of brevity, we often blur this distinction). Thus,for example, the sum over network-structure hypotheses in Equation 33 should be replacedwith a sum over equivalence-class hypotheses. An e�cient algorithm for identifying theequivalence class of a given network structure can be found in Chickering (1995).We note that hypothesis equivalence holds provided we interpret Bayesian-networkstructure simply as a representation of conditional independence. Nonetheless, stronger def-initions of Bayesian networks exist where arcs have a causal interpretation (see Section 15).Heckerman et al. (1995b) and Heckerman (1995) argue that, although it is unreasonableto assume hypothesis equivalence when working with causal Bayesian networks, it is of-ten reasonable to adopt a weaker assumption of likelihood equivalence, which says that theobservations in a database can not help to discriminate two equivalent network structures.Now let us return to the main issue of this section: the derivation of priors from a man-ageable number of assessments. Geiger and Heckerman (1995) show that the assumptions31



of parameter independence and likelihood equivalence imply that the parameters for anycomplete network structure Sc must have a Dirichlet distribution with constraints on thehyperparameters given by �ijk = � p(xki ;paji jShc ) (43)where � is the user's equivalent sample size,14, and p(xki ;paji jShc ) is computed from theuser's joint probability distribution p(xjShc ). This result is rather remarkable, as the twoassumptions leading to the constrained Dirichlet solution are qualitative.To determine the priors for parameters of incomplete network structures, Heckerman etal. (1995b) use the assumption of parameter modularity, which says that if Xi has the sameparents in network structures S1 and S2, thenp(�ij jSh1 ) = p(�ij jSh2 )for j = 1; : : : ; qi. They call this property parameter modularity, because it says that thedistributions for parameters �ij depend only on the structure of the network that is localto variable Xi|namely, Xi and its parents.Given the assumptions of parameter modularity and parameter independence,15 it is asimple matter to construct priors for the parameters of an arbitrary network structure giventhe priors on complete network structures. In particular, given parameter independence, weconstruct the priors for the parameters of each node separately. Furthermore, if node Xi hasparents Pai in the given network structure, we identify a complete network structure whereXi has these parents, and use Equation 43 and parameter modularity to determine the priorsfor this node. The result is that all terms �ijk for all network structures are determinedby Equation 43. Thus, from the assessments � and p(xjShc ), we can derive the parameterpriors for all possible network structures. Combining Equation 43 with Equation 35, weobtain a model-selection criterion that assigns equal marginal likelihoods to independenceequivalent network structures.We can assess p(xjShc ) by constructing a Bayesian network, called a prior network, thatencodes this joint distribution. Heckerman et al. (1995b) discuss the construction of thisnetwork.10.2 Priors on StructuresNow, let us consider the assessment of priors on network-structure hypotheses. Note that thealternative criteria described in Section 8 can incorporate prior biases on network-structure14Recall the method of equivalent samples for assessing beta and Dirichlet distributions discussed inSection 2.15This construction procedure also assumes that every structure has a non-zero prior probability.32



hypotheses. Methods similar to those discussed in this section can be used to assess suchbiases.The simplest approach for assigning priors to network-structure hypotheses is to assumethat every hypothesis is equally likely. Of course, this assumption is typically inaccurateand used only for the sake of convenience. A simple re�nement of this approach is to askthe user to exclude various hypotheses (perhaps based on judgments of of cause and e�ect),and then impose a uniform prior on the remaining hypotheses. We illustrate this approachin Section 12.Buntine (1991) describes a set of assumptions that leads to a richer yet e�cient approachfor assigning priors. The �rst assumption is that the variables can be ordered (e.g., througha knowledge of time precedence). The second assumption is that the presence or absence ofpossible arcs are mutually independent. Given these assumptions, n(n � 1)=2 probabilityassessments (one for each possible arc in an ordering) determines the prior probability ofevery possible network-structure hypothesis. One extension to this approach is to allow formultiple possible orderings. One simpli�cation is to assume that the probability that anarc is absent or present is independent of the speci�c arc in question. In this case, only oneprobability assessment is required.An alternative approach, described by Heckerman et al. (1995b) uses a prior network.The basic idea is to penalize the prior probability of any structure according to some measureof deviation between that structure and the prior network. Heckerman et al. (1995b) suggestone reasonable measure of deviation.Madigan et al. (1995) give yet another approach that makes use of imaginary data from adomain expert. In their approach, a computer program helps the user create a hypotheticalset of complete data. Then, using techniques such as those in Section 7, they compute theposterior probabilities of network-structure hypotheses given this data, assuming the priorprobabilities of hypotheses are uniform. Finally, they use these posterior probabilities aspriors for the analysis of the real data.11 Search MethodsIn this section, we examine search methods for identifying network structures with highscores by some criterion. Consider the problem of �nding the best network from the set ofall networks in which each node has no more than k parents. Unfortunately, the problem fork > 1 is NP-hard even when we use the restrictive prior given by Equation 43 (Chickering etal. 1995). Thus, researchers have used heuristic search algorithms, including greedy search,greedy search with restarts, best-�rst search, and Monte-Carlo methods.33



One consolation is that these search methods can be made more e�cient when themodel-selection criterion is separable. Given a network structure for domain X, we say thata criterion for that structure is separable if it can be written as a product of variable-speci�ccriteria: C(Sh; D) = nYi=1 c(Xi;Pai; Di) (44)where Di is the data restricted to the variables Xi and Pai. An example of a separablecriterion is the BD criterion (Equations 34 and 35) used in conjunction with any of themethods for assessing structure priors described in Section 10.Most of the commonly used search methods for Bayesian networks make successive arcchanges to the network, and employ the property of separability to evaluate the merit ofeach change. The possible changes that can be made are easy to identify. For any pair ofvariables, if there is an arc connecting them, then this arc can either be reversed or removed.If there is no arc connecting them, then an arc can be added in either direction. All changesare subject to the constraint that the resulting network contains no directed cycles. We useE to denote the set of eligible changes to a graph, and �(e) to denote the change in logscore of the network resulting from the modi�cation e 2 E. Given a separable criterion, ifan arc to Xi is added or deleted, only c(Xi;Pai; Di) need be evaluated to determine �(e).If an arc between Xi and Xj is reversed, then only c(Xi;Pai; Di) and c(Xj;�j ; Dj) needbe evaluated.One simple heuristic search algorithm is greedy search. First, we choose a networkstructure. Then, we evaluate �(e) for all e 2 E, and make the change e for which �(e) is amaximum, provided it is positive. We terminate search when there is no e with a positivevalue for �(e). When the criterion is separable, we can avoid recomputing all terms �(e)after every change. In particular, if neither Xi, Xj , nor their parents are changed, then �(e)remains unchanged for all changes e involving these nodes as long as the resulting networkis acyclic. Candidates for the initial graph include the empty graph, a random graph, agraph determined by one of the polynomial algorithms described previously in this section,and the prior network.A potential problem with any local-search method is getting stuck at a local maximum.One method for escaping local maxima is greedy search with random restarts. In thisapproach, we apply greedy search until we hit a local maximum. Then, we randomlyperturb the network structure, and repeat the process for some manageable number ofiterations.Another method for escaping local maxima is simulated annealing. In this approach,we initialize the system at some temperature T0. Then, we pick some eligible change e34



at random, and evaluate the expression p = exp(�(e)=T0). If p > 1, then we make thechange e; otherwise, we make the change with probability p. We repeat this selectionand evaluation process � times or until we make � changes. If we make no changes in �repetitions, then we stop searching. Otherwise, we lower the temperature by multiplying thecurrent temperature T0 by a decay factor 0 < 
 < 1, and continue the search process. Westop searching if we have lowered the temperature more than � times. Thus, this algorithmis controlled by �ve parameters: T0; �; �; 
 and �. To initialize this algorithm, we can startwith the empty graph, and make T0 large enough so that almost every eligible change ismade, thus creating a random graph. Alternatively, we may start with a lower temperature,and use one of the initialization methods described for local search.Another method for escaping local maxima is best-�rst search (e.g., Korf, 1993). In thisapproach, the space of all network structures is searched systematically using a heuristicmeasure that determines the next best structure to examine. Chickering (1996) has shownthat, for a �xed amount of computation time, greedy search with random restarts producesbetter models than does either simulated annealing or best-�rst search.One important consideration for any search algorithm is the search space. The methodsthat we have described search through the space of Bayesian-network structures. Nonethe-less, when the assumption of hypothesis equivalence holds, one can search through thespace of network-structure equivalence classes. One bene�t of the latter approach is thatthe search space is smaller. One drawback of the latter approach is that it takes longer tomove from one element in the search space to another. Work by Spirtes and Meek (1995)and Chickering (1996)) con�rm these observations experimentally. Unfortunately, no com-parisons are yet available that determine whether the bene�ts of equivalence-class searchoutweigh the costs.12 A Simple ExampleBefore we move on to other issues, let us step back and look at our overall approach. In anutshell, we can construct both structure and parameter priors by constructing a Bayesiannetwork (the prior network) along with additional assessments such as an equivalent samplesize and causal constraints. We then use either Bayesian model selection, selective modelaveraging, or full model averaging to obtain one or more networks for prediction and/orexplanation. In e�ect, we have a procedure for using data to improve the structure andprobabilities of an initial Bayesian network.Here, we present two arti�cial examples to illustrate this process. Consider again theproblem of fraud detection from Section 3. Suppose we are given the database D in Ta-35



Table 1: An imagined database for the fraud problem.Case Fraud Gas Jewelry Age Sex1 no no no 30-50 female2 no no no 30-50 male3 yes yes yes >50 male4 no no no 30-50 male5 no yes no <30 female6 no no no <30 female7 no no no >50 male8 no no yes 30-50 female9 no yes no <30 male10 no no no <30 femaleble 12, and we want to predict the next case|that is, compute p(xN+1jD). Let us assertthat only two network-structure hypotheses have appreciable probability: the hypothesiscorresponding to the network structure in Figure 3 (S1), and the hypothesis correspondingto the same structure with an arc added from Age to Gas (S2). Furthermore, let us assertthat these two hypotheses are equally likely|that is, p(Sh1 ) = p(Sh2 ) = 0:5. In addition,let us use the parameter priors given by Equation 43, where � = 10 and p(xjShc ) is givenby the prior network in Figure 3. Using Equations 34 and 35, we obtain p(Sh1 jD) = 0:26and p(Sh2 jD) = 0:74. Because we have only two models to consider, we can model averageaccording to Equation 33:p(xN+1jD) = 0:26 p(xN+1jD;Sh1 ) + 0:74 p(xN+1jD;Sh2 )where p(xN+1jD;Sh) is given by Equation 27. (We don't display these probability distri-butions.) If we had to choose one model, we would choose S2, assuming the posterior-probability criterion is appropriate. Note that the data favors the presence of the arc fromAge to Gas by a factor of three. This is not surprising, because in the two cases in thedatabase where fraud is absent and gas was purchased recently, the card holder was lessthan 30 years old.An application of model selection, described by Spirtes and Meek (1995), is illustratedin Figure 6. Figure 6a is a hand-constructed Bayesian network for the domain of ICUventilator management, called the Alarm network (Beinlich et al., 1989). Figure 6c is arandom sample from the Alarm network of size 10,000. Figure 6b is a simple prior network36



for the domain. This network encodes mutual independence among the variables, and (notshown) uniform probability distributions for each variable.Figure 6d shows the most likely network structure found by a two-pass greedy searchin equivalence-class space. In the �rst pass, arcs were added until the model score didnot improve. In the second pass, arcs were deleted until the model score did not improve.Structure priors were uniform; and parameter priors were computed from the prior networkusing Equation 43 with � = 10.The network structure learned from this procedure di�ers from the true network struc-ture only by a single arc deletion. In e�ect, we have used the data to improve dramaticallythe original model of the user.13 Bayesian Networks for Supervised LearningAs we discussed in Section 5, the local distribution functions p(xijpai; �i; Sh) are essentiallyclassi�cation/regression models. Therefore, if we are doing supervised learning where theexplanatory (input) variables cause the outcome (target) variable and data is complete,then the Bayesian-network and classi�cation/regression approaches are identical.When data is complete but input/target variables do not have a simple cause/e�ectrelationship, tradeo�s emerge between the Bayesian-network approach and other methods.For example, consider the classi�cation problem in Figure 5. Here, the Bayesian networkencodes dependencies between �ndings and ailments as well as among the �ndings, whereasanother classi�cation model such as a decision tree encodes only the relationships between�ndings and ailment. Thus, the decision tree may produce more accurate classi�cations,because it can encode the necessary relationships with fewer parameters. Nonetheless,the use of local criteria for Bayesian-network model selection mitigates this advantage.Furthermore, the Bayesian network provides a more natural representation in which toencode prior knowledge, thus giving this model a possible advantage for su�ciently smallsample sizes. Another argument, based on bias{variance analysis, suggests that neitherapproach will dramatically outperform the other (Friedman, 1996).Singh and Provan (1995) compare the classi�cation accuracy of Bayesian networks anddecision trees using complete data sets from the University of California, Irvine Reposi-tory of Machine Learning databases. Speci�cally, they compare C4.5 with an algorithmthat learns the structure and probabilities of a Bayesian network using a variation of theBayesian methods we have described. The latter algorithm includes a model-selection phasethat discards some input variables. They show that, overall, Bayesian networks and deci-sions trees have about the same classi�cation error. These results support the argument of37
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deletedFigure 6: (a) The Alarm network structure. (b) A prior network encoding a user's beliefsabout the Alarm domain. (c) A random sample of size 10,000 generated from the Alarmnetwork. (d) The network learned from the prior network and the random sample. Theonly di�erence between the learned and true structure is an arc deletion as noted in (d).Network probabilities are not shown. 38
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C5Figure 7: A Bayesian-network structure for AutoClass. The variable H is hidden. Itspossible states correspond to the underlying classes in the data.Friedman (1996).When the input variables cause the target variable and data is incomplete, the depen-dencies between input variables becomes important, as we discussed in the introduction.Bayesian networks provide a natural framework for learning about and encoding these de-pendencies. Unfortunately, no studies have been done comparing these approaches withother methods for handling missing data.14 Bayesian Networks for Unsupervised LearningThe techniques described in this paper can be used for unsupervised learning. A simpleexample is the AutoClass program of Cheeseman and Stutz (1995), which performs dataclustering. The idea behind AutoClass is that there is a single hidden (i.e., never observed)variable that causes the observations. This hidden variable is discrete, and its possiblestates correspond to the underlying classes in the data. Thus, AutoClass can be describedby a Bayesian network such as the one in Figure 7. For reasons of computational e�ciency,Cheeseman and Stutz (1995) assume that the discrete variables (e.g., D1; D2; D3 in the�gure) and user-de�ned sets of continuous variables (e.g., fC1; C2; C3g and fC4; C5g) aremutually independent given H . Given a data set D, AutoClass searches over variants ofthis model (including the number of states of the hidden variable) and selects a variantwhose (approximate) posterior probability is a local maximum.AutoClass is an example where the user presupposes the existence of a hidden variable.In other situations, we may be unsure about the presence of a hidden variable. In suchcases, we can score models with and without hidden variables to reduce our uncertainty.We illustrate this approach on a real-world case study in Section 16. Alternatively, we mayhave little idea about what hidden variables to model. The search algorithms of Spirtes et39



(a) (b)Figure 8: (a) A Bayesian-network structure for observed variables. (b) A Bayesian-networkstructure with hidden variables (shaded) suggested by the network structure in (a).al. (1993) provide one method for identifying possible hidden variables in such situations.Martin and VanLehn (1995) suggest another method.Their approach is based on the observation that if a set of variables are mutually depen-dent, then a simple explanation is that these variables have a single hidden common causerendering them mutually independent. Thus, to identify possible hidden variables, we �rstapply some learning technique to select a model containing no hidden variables. Then, welook for sets of mutually dependent variables in this learned model. For each such set ofvariables (and combinations thereof), we create a new model containing a hidden variablethat renders that set of variables conditionally independent. We then score the new models,possibly �nding one better than the original. For example, the model in Figure 8a has twosets of mutually dependent variables. Figure 8b shows another model containing hiddenvariables suggested by this model.15 Learning Causal RelationshipsAs we have mentioned, the causal semantics of a Bayesian network provide a means bywhich we can learn causal relationships. In this section, we examine these semantics, andprovide a basic discussion on how causal relationships can be learned. We note that thesemethods are new and controversial. For critical discussions on both sides of the issue, seeSpirtes et al. (1993), Pearl (1995), and Humphreys and Freedman (1995).For purposes of illustration, suppose we are marketing analysts who want to knowwhether or not we should increase, decrease, or leave alone the exposure of a particular40



advertisement in order to maximize our pro�t from the sales of a product. Let variablesAd (A) and Buy (B) represent whether or not an individual has seen the advertisementand has purchased the product, respectively. In one component of our analysis, we wouldlike to learn the physical probability that B = true given that we force A to be true, andthe physical probability that B = true given that we force A to be false.16 We denotethese probabilities p(bjâ) and p(bj�̂a), respectively. One method that we can use to learnthese probabilities is to perform a randomized experiment: select two similar populationsat random, force A to be true in one population and false in the other, and observe B.This method is conceptually simple, but it may be di�cult or expensive to �nd two similarpopulations that are suitable for the study.An alternative method follows from causal knowledge. In particular, suppose A causesB. Then, whether we force A to be true or simply observe that A is true in the currentpopulation, the advertisement should have the same causal in
uence on the individual'spurchase. Consequently, p(bjâ) = p(bja), where p(bja) is the physical probability that B =true given that we observe A = true in the current population. Similarly, p(bj�̂a) = p(bj�a).In contrast, if B causes A, forcing A to some state should not in
uence B at all. Therefore,we have p(bjâ) = p(bj�̂a) = p(b). In general, knowledge that X causes Y allows us to equatep(yjx) with p(yjx̂), where x̂ denotes the intervention that forces X to be x. For purposesof discussion, we use this rule as an operational de�nition for cause. Pearl (1995) andHeckerman and Shachter (1995) discuss versions of this de�nition that are more completeand more precise.In our example, knowledge that A causes B allows us to learn p(bjâ) and p(bj�̂a) fromobservations alone|no randomized experiment is needed. But how are we to determinewhether or not A causes B? The answer lies in an assumption about the connection betweencausal and probabilistic dependence known as the causal Markov condition, described bySpirtes et al. (1993). We say that a directed acyclic graph C is a causal graph for variablesX if the nodes in C are in a one-to-one correspondence with X, and there is an arc fromnode X to node Y in C if and only if X is a direct cause of Y . The causal Markovcondition says that if C is a causal graph for X, then C is also a Bayesian-network structurefor the joint physical probability distribution of X. In Section 3, we described a methodbased on this condition for constructing Bayesian-network structure from causal assertions.Several researchers (e.g., Spirtes et al., 1993) have found that this condition holds in manyapplications.Given the causal Markov condition, we can infer causal relationships from conditional-16It is important that these interventions do not interfere with the normal e�ect of A on B. See Heckermanand Shachter (1995) for a discussion of this point. 41



independence and conditional-dependence relationships that we learn from the data.17 Letus illustrate this process for the marketing example. Suppose we have learned (with highBayesian probability) that the physical probabilities p(bja) and p(bj�a) are not equal. Giventhe causal Markov condition, there are four simple causal explanations for this dependence:(1) A is a cause for B, (2) B is a cause for A, (3) there is a hidden common cause of Aand B (e.g., the person's income), and (4) A and B are causes for data selection. Thislast explanation is known as selection bias. Selection bias would occur, for example, if ourdatabase failed to include instances where A and B are false. These four causal explana-tions for the presence of the arcs are illustrated in Figure 9a. Of course, more complicatedexplanations|such as the presence of a hidden common cause and selection bias|are pos-sible.So far, the causal Markov condition has not told us whether or not A causes B. Sup-pose, however, that we observe two additional variables: Income (I) and Location (L),which represent the income and geographic location of the possible purchaser, respectively.Furthermore, suppose we learn (with high probability) the Bayesian network shown in Fig-ure 9b. Given the causal Markov condition, the only causal explanation for the conditional-independence and conditional-dependence relationships encoded in this Bayesian networkis that Ad is a cause for Buy. That is, none of the other explanations described in the pre-vious paragraph, or combinations thereof, produce the probabilistic relationships encodedin Figure 9b. Based on this observation, Pearl and Verma (1991) and Spirtes et al. (1993)have created algorithms for inferring causal relationships from dependence relationships formore complicated situations.16 A Case Study: College PlansReal-world applications of techniques that we have discussed can be found in Madiganand Raftery (1994), Lauritzen et al. (1994), Singh and Provan (1995), and Friedman andGoldszmidt (1996). Here, we consider an application that comes from a study by Sewell andShah (1968), who investigated factors that in
uence the intention of high school studentsto attend college. The data have been analyzed by several groups of statisticians, includingWhittaker (1990) and Spirtes et al. (1993), all of whom have used non-Bayesian techniques.Sewell and Shah (1968) measured the following variables for 10,318 Wisconsin highschool seniors: Sex (SEX): male, female; Socioeconomic Status (SES): low, lower middle,upper middle, high; Intelligence Quotient (IQ): low, lower middle, upper middle, high;17Spirtes et al. (1993) also require an assumption known as faithfulness. We do not need to make thisassumption explicit, because it follows from our assumption that p(�sjSh) is a probability density function.42
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Table 2: Su�cient statistics for the Sewall and Shah (1968) study.4 349 13 64 9 207 33 72 12 126 38 54 10 67 49 432 232 27 84 7 201 64 95 12 115 93 92 17 79 119 598 166 47 91 6 120 74 110 17 92 148 100 6 42 198 734 48 39 57 5 47 123 90 9 41 224 65 8 17 414 545 454 9 44 5 312 14 47 8 216 20 35 13 96 28 2411 285 29 61 19 236 47 88 12 164 62 85 15 113 72 507 163 36 72 13 193 75 90 12 174 91 100 20 81 142 776 50 36 58 5 70 110 76 12 48 230 81 13 49 360 98Reproduced by permission from the University of Chicago Press. c
1968 by The Universityof Chicago. All rights reserved.
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variables, then the arcs in both graphs can be interpreted causally. Some results are notsurprising|for example the causal in
uence of socioeconomic status and IQ on collegeplans. Other results are more interesting. For example, from either graph we conclude thatsex in
uences college plans only indirectly through parental in
uence. Also, the two graphsdi�er only by the orientation of the arc between PE and IQ. Either causal relationship isplausible. We note that the second most likely graph was selected by Spirtes et al. (1993),who used a non-Bayesian approach with slightly di�erent assumptions.The most suspicious result is the suggestion that socioeconomic status has a directin
uence on IQ. To question this result, we considered new models obtained from the modelsin Figure 10 by replacing this direct in
uence with a hidden variable pointing to both SESand IQ. We also considered models where the hidden variable pointed to SES, IQ, andPE, and none, one, or both of the connections SES|PE and PE|IQ were removed. Foreach structure, we varied the number of states of the hidden variable from two to six.We computed the posterior probability of these models using the Cheeseman-Stutz(1995) variant of the Laplace approximation. To �nd the MAP ~�s, we used the EM al-gorithm, taking the largest local maximum from among 100 runs with di�erent randominitializations of �s. Among the models we considered, the one with the highest posteriorprobability is shown in Figure 11. This model is 2 � 1010 times more likely that the bestmodel containing no hidden variable. The next most likely model containing a hidden vari-able, which has one additional arc from the hidden variable to PE, is 5 � 10�9 times lesslikely than the best model. Thus, if we again adopt the causal Markov assumption andalso assume that we have not omitted a reasonable model from consideration, then we havestrong evidence that a hidden variable is in
uencing both socioeconomic status and IQ inthis population|a sensible result. An examination of the probabilities in Figure 11 suggeststhat the hidden variable corresponds to some measure of \parent quality".17 Pointers to Literature and SoftwareLike all tutorials, this one is incomplete. For those readers interested in learning more aboutgraphical models and methods for learning them, we o�er the following additional referencesand pointers to software. Buntine (1996) provides another guide to the literature.Spirtes et al. (1993) and Pearl (1995) use methods based on large-sample approximationsto learn Bayesian networks. In addition, as we have discussed, they describe methods forlearning causal relationships from observational data.In addition to directed models, researchers have explored network structures containingundirected edges as a knowledge representation. These representations are discussed (e.g.)45
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NotationX; Y; Z; : : : Variables or their corresponding nodes in a BayesiannetworkX;Y;Z; : : : Sets of variables or corresponding sets of nodesX = x Variable X is in state xX = x The set of variables X is in con�guration xx;y; z Typically refer to a complete case, an incompletecase, and missing data in a case, respectivelyX nY The variables in X that are not in YD A data set: a set of casesDl The �rst l� 1 cases in Dp(xjy) The probability that X = x given Y = y(also used to describe a probability density,probability distribution, and probability density)Ep(�)(x) The expectation of x with respect to p(�)S A Bayesian network structure (a directed acyclic graph)Pai The variable or node corresponding to the parentsof node Xi in a Bayesian network structurepai A con�guration of the variables Pairi The number of states of discrete variable Xiqi The number of con�gurations of PaiSc A complete network structureSh The hypothesis corresponding to network structure S�ijk The multinomial parameter corresponding to theprobability p(Xi = xki jPai = paji )�ij = (�ij2; : : : ; �ijri)�i = (�i1; : : : ; �iqi)�s = (�1; : : : ; �n)� An equivalent sample size�ijk The Dirichlet hyperparameter corresponding to �ijk�ij =Prik=1 �ijkNijk The number of cases in data set D where Xi = xki and Pai = pajiNij =Prik=1Nijk 47
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