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Markov Chain

• A Markov chain includes
– A set of states
– A set of associated transition probabilities

• For every pair of states s and s’ (not necessarily distinct) 
we have an associated transition probability T(s s’) of 
moving from state s to state s’

• For any time t, T(s s’) is the probability of the Markov 
process being in state s’ at time t+1 given that it is in 
state s at time t



Some Properties of Markov Chains
(Some we’ll use, some you may hear used elsewhere and want to know about)

• Irreducible chain: can get from any state to any other 
eventually (non-zero probability)

• Periodic state: state i is periodic with period k if all 
returns to i must occur in multiples of k

• Ergodic chain: irreducible and has an aperiodic state. 
Implies all states are aperiodic, so chain is aperiodic.

• Finite state space: can represent chain as matrix of 
transition probabilities… then ergodic = regular…

• Regular chain: some power of chain has only 
positive elements

• Reversible chain: satisfies detailed balance (later)



Sufficient Condition for Regularity

• A Markov chain is regular if the following 
properties both hold:

1. For any pair of states s, s’ that each have 
nonzero probability there exists some path 
from s to s’ with nonzero probability

2. For all s with nonzero probability, the 
“self loop” probability T(s s) is nonzero

• Gibbs sampling is regular if no zeroes in CPTs



Examples of Markov Chains (arrows 
denote nonzero-probability transitions)
• Regular • Non-regular



Sampling of Random Variables 
Defines a Markov Chain

• A state in the Markov chain is an assignment 
of values to all random variables



Example
• Each of the four large ovals is a state
• Transitions correspond to a Gibbs sampler

Y1 = F Y2=T

Y1 = T Y2=T

Y1 = F Y2=F

Y1 = T Y2=F



Bayes Net for which Gibbs Sampling 
is a Non-Regular Markov Chain
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P(B)The Markov chain 
defined by Gibbs 
sampling has 
eight states, each 
an assignment to 
the three Boolean 
states A, B, and 
C.  It is 
impossible to go 
from the state 
A=T, B=T, C=F 
to any other state



Notation: States

• yi and yi’ denote assignments of values to the random 
variable Yi

• We abbreviate Yi=yi by yi

• y denotes the state of assignments y=(y1,y2,...,yn)
• ui is the partial description of a state given by Yj=yj

for all j not equal to i, or (y1,y2,...,yi-1,yi+1...,yn)
• Similarly, y’ =(y1’,y2’,...,yn’) and  ui’=(y1’,y2’,...,yi-

1’,yi+1’...,yn’)



Notation: Probabilities

• πt(y) = probability of being in state y at time t
• Transition function T(y y’) = probability 

of moving from state y to state y’



Bayesian Network Probabilities

• We use P to denote probabilities according to 
our Bayesian network, conditioned on the 
evidence
– For example, P(yi’|ui) is the probability that 

random variable Yi has value yi’ given that Yj=yj
for all j not equal to i



Assumption: CPTs nonzero
• We will assume that all probabilities in all conditional 

probability tables are nonzero

• So, for any y,

• So, for any event S,  

• So, for any events S1 and S2, 
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Gibbs Sampler Markov Chain

• We assume we have already chosen to sample 
variable Yi
– T(ui,yi ui,yi’) = P(yi’|ui)

• If we want to incorporate the probability of 
randomly uniformly choosing a variable to sample, 
simply multiply all transition probabilities by 1/n



Gibbs Sampler Markov Chain is 
Regular

• Path from y to y’ with Nonzero Probability:
– Let n be the number of variables in the Bayes net.
– For step i = 1 to n :
– Set variable Yi to yi’ and leave other variables the same.  

That is, go from (y1’,y2’,...,yi-1’,yi,yi+1,...,yn) to (y1’,y2’,...,yi-
1’,yi’,yi+1,...,yn)

– The probability of this step is
P(yi’|y1’,y2’,...,yi-1’,yi+1,...,yn), which is nonzero

• So all steps, and thus the path, has nonzero 
probability

• Self loop T(y y) has probability P(yi|ui) > 0



How π Changes with Time in a 
Markov Chain

• πt+1(y’) = 

• A distribution πt is stationary if πt = πt+1, that is, for 
all y, πt(y) = πt+1(y)
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Detailed Balance

• A Markov chain satisfies detailed balance if 
there exists a unique distribution π such that 
for all states y, y’,

π(y)T(y y’) = π(y’)T(y’ y)
• If a regular Markov chain satisfies detailed 

balance with distribution π, then there exists t
such that for any initial distribution π0, πt = π

• Detailed balance (with regularity) implies 
convergence to unique stationary distribution



Examples of Markov Chains (arrows 
denote nonzero-probability transitions)
• Regular, Detailed 

Balance (with 
appropriate π and T) 
Converges to Stationary 
Distribution

• Detailed Balance with π
on nodes and T on arcs.  
Does not converge 
because not regular
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Gibbs Sampler satisfies Detailed 
Balance

Claim: A Gibbs sampler Markov chain defined by a Bayesian 
network with all CPT entries nonzero satisfies detailed balance 
with probability distribution π(y)=P(y) for all states y

Proof: First we will show that P(y)T(y y’) = P(y’)T(y’ y).  
Then we will show that no other probability distribution π
satisfies π(y)T(y y’) = π(y’)T(y’ y)



Gibbs Sampler satisfies Detailed 
Balance, Part 1

P(y)T(y y’) = P(yi,ui)P(yi’|ui) (Gibbs Sampler Def.)
= P(yi|ui)P(ui)P(yi’|ui) (Chain Rule)
= P(yi’,ui)P(yi|ui) (Reverse Chain Rule)
= P(y’)T(y’ y) (Gibbs Sampler Def.)



Gibbs Sampler Satisfies Detailed 
Balance, Part 2

Since all CPT entries are nonzero, the Markov chain is regular. 
Suppose there exists a probability distribution π not equal to P 
such that π(y)T(y y’) = π(y’)T(y’ y).  Without loss of 
generality, there exists some state y such that π(y) > P(y).  So, 
for every neighbor y’ of y, that is, every y’ such that T(y y’) 
is nonzero,

π(y’)T(y’ y) = π(y)T(y y’) > P(y)T(y y’) = P(y’)T(y’ y)

So π(y’) > P(y’). 



Gibbs Sampler Satisfies Detailed 
Balance, Part 3

We can inductively see that π(y’’) > P(y’’) for every 
state y’’ path-reachable from y with nonzero 
probability.  Since the Markov chain is regular,  
π(y’’) > P(y’’) for all states y’’ with nonzero 
probability.  But the sum over all states y’’ of π(y’’) 
is 1, and the sum over all states y’’ of P(y’’) is 1.  
This is a contradiction.  So we can conclude that P is 
the unique probability distribution π satisfying 
π(y)T(y y’) = π(y’)T(y’ y).



Using Other Samplers

• The Gibbs sampler only changes one random 
variable at a time
– Slow convergence
– High-probability states may not be reached 

because reaching them requires going through low-
probability states



Metropolis Sampler

• Propose a transition with probability TQ(y y’)
• Accept with probability A=min(1, P(y’)/P(y))
• If for all y, y’ TQ(y y’)=TQ(y’ y) then the 

resulting Markov chain satisfies detailed 
balance



Metropolis-Hastings Sampler

• Propose a transition with probability TQ(y y’)
• Accept with probability

A=min(1, P(y’)TQ(y’ y)/P(y)TQ(y y’))
• Detailed balance satisfied
• Acceptance probability often easy to compute 

even though sampling according to P difficult



Gibbs Sampler as Instance of 
Metropolis-Hastings

• Proposal distribution TQ(ui,yi ui,yi’) = P(yi’|ui)
• Acceptance probability
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