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Abstract

Motivation: Standard laboratory classification of the plasma cell dyscrasia monoclonal
gammopathy of undetermined significance (MGUS) and the overt plasma cell neoplasm
multiple myeloma (MM) is quite accurate, yet, for the most part, biologically uninforma-
tive. Most, if not all, cancers are caused by inherited or acquired genetic mutations that
manifest themselves in altered gene expression patterns in the clonally related cancer cells.
Microarray technology allows for qualitative and quantitative measurements of the expres-
sion levels of thousands of genes simultaneously, and it has now been used both to classify
cancers that are morphologically indistinguishable and to predict response to therapy. It
is anticipated that this information can also be used to develop molecular diagnostic mod-
els and to provide insight into mechanisms of disease progression, e.g., transition from
healthy to benign hyperplasia or conversion of a benign hyperplasia to overt malignancy.
However, standard data analysis techniques are not trivial to employ on these large data
sets. Methodology designed to handle large data sets (or modified to do so) is needed to
access the vital information contained in the genetic samples, which in turn can be used
to develop more robust and accurate methods of clinical diagnostics and prognostics.

Results: Here we report on the application of a panel of statistical and data mining
methodologies to classify groups of samples based on expression of 12,000 genes derived
from a high density oligonucleotide microarray analysis of highly purified plasma cells from
newly diagnosed MM, MGUS, and normal healthy donors. The three groups of samples
are each tested against each other. The methods are found to be similar in their ability
to predict group membership; all do quite well at predicting MM vs. normal and MGUS
vs. normal. However, no method appears to be able to distinguish explicitly the genetic
mechanisms between MM and MGUS. We believe this might be due to the lack of genetic
differences between these two conditions, and may not be due to the failure of the models.

∗This work supported in part by grants (CA38926-17, CA90998-02) from the NCI/NIH,
grant 9987841 from the NSF, and grant 1T15LM007359-01 from the NLM.



We report the prediction errors for each of the models and each of the methods. Addi-
tionally, we report ROC curves for the results on group prediction.

Availability: Logistic regression: standard software, available, for example in SAS. Deci-
sion trees and boosted trees: C5.0 from www.rulequest.com. SVM: SVM-light is publicly
available from svmlight.joachims.org. Näıve Bayes and ensemble of voters are publicly
available from www.biostat.wisc.edu/∼mwaddell/eov.html. Nearest Shrunken Centroids
is publicly available from http://www-stat.stanford.edu/∼tibs/PAM.

KEYWORDS: Microarray, Logistic Regression, Boosted Decision Trees, Ensemble of
Voters, Support Vector Machines, Nearest Shrunken Centroid, Multiple Myeloma, MGUS



1. Introduction
The molecular mechanisms of the related plasma cell dyscrasias monoclonal 
gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) 
are poorly understood.  The poor understanding has important clinical 
implications because MGUS is a benign plasma cell hyperplasia whereas MM is a 
uniformly fatal malignancy.  Monoclonal gammopathies are characterized by the 
detection of a monoclonal immunoglobulin in the serum or urine and underlying 
proliferation of a plasma cell/B lymphoid clone.  (Kyle and Rajkumar, 1999.)  
Patients with MGUS have less advanced disease and are characterized by a small 
detectable plasma cell population in the marrow (< 10%) and secretion of a 
monoclonal protein detectable in the serum (<30g/L), but they lack clinical 
features of overt malignancy (such as lytic bone lesions, anemia, or 
hypercalcemia.)   Patients with overt MM have increased marrow plasmacytosis 
(>10%), serum M protein (>30g/L), and generally present with anemia, lytic bone 
disease, hypercalcemia, or renal insufficiency.   

Approximately 2% of all MGUS cases will convert to overt MM per year 
(International Myeloma Working Group, 2003), but it is virtually impossible to 
predict which of these cases will convert.  A difficulty in the clinical management 
of MM is the extreme heterogeneity in survival, which can range from as little as 
two months to greater than eight years with only 20% of this variability being 
accounted for with current clinical laboratory tests.  Thus, there is a great need for 
more robust methods of classification and stratification of these diseases.  There is 
now strong evidence in a variety of cancers that global gene expression profiling 
can reveal a molecular heterogeneity of similar or related hematopoietic 
malignancy (Golub et. al., 1999; Alizadeh et. al., 2000.)  In MM, the most 
differentially expressed genes in a comparison of normal and malignant cells can 
be used to identify changes that may point to the basic mechanisms of cellular 
transformation (Zhan et. al., 2002).  These unique signatures could also be used 
for the development of molecular diagnostics that may be capable of identifying 
malignant cells even in the absence of any clinical manifestations, thus providing 
a means of early detection and possible prevention.  We anticipate that expression 
profiling will provide the means of differentiating MGUS and MM at the 
molecular level.  Here, we show that various methodologies applied to global 
gene expression data identified a class of genes whose altered expression is 
capable of discriminating normal and malignant plasma cells as well as 
classifying some MGUS as “like” MM and others as “unlike” MM.  The 
predictive power of this small subset of genes suggests that their deregulated 
expression may not only prove useful in creation of molecular diagnostics, but 
may also provide important insight into the mechanisms of MM development 
and/or conversion from the benign condition MGUS to the overly malignant and 
uniformly fatal MM.
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In previous work, comparison of gene expression profiles of bone marrow 
plasma cells from 32 normal, healthy donors and 74 untreated patients with MM 
revealed highly significant differences in both qualitative and quantitative gene 
expression. A statistical analysis showed that expression of 120 genes 
distinguished MM from normal cells.  A total of 50 genes showed significant 
down-regulation in MM, and 70 genes were up-regulated in MM (Zhan et. al., 
2002).  With an unsupervised two-dimensional hierarchical clustering of 5,483 
genes, MM and normal samples could also be differentiated (Zhan et. al., 2002). 
Importantly, however, these studies were unable to distinguish MGUS from MM.
Additionally, these studies simply identified genes that were different across 
groups, while we are interested in using models to predict group membership.

The findings of Zhan et. al. lead us to consider predictive genetic models 
for discriminating between malignant and healthy samples.  Using six different 
approaches: logistic regression, decision trees, support vector machines (SVM), 
Ensemble of Voters with 20 best information gain genes (EOV), naïve Bayes, and 
Nearest Shrunken Centroids (NSC), we identified subsets of genes that 
discriminated between the three types of samples (MM, MGUS, and normal 
healthy samples.)   Additionally, using the genes from the original predictive 
models (MM versus normal), an analysis of the MGUS samples found that the 
MGUS samples were genetically much more similar to the MM samples than to 
the normal subjects.  The identification of these classes of genes gives insight into 
the disease through their genetic mechanisms.   The most interesting result of this 
work is the lack of ability of the methods to successfully discriminate between 
MM and the related disease MGUS, which has a similar laboratory presentation 
but is void of any clinical symptoms.  Thus, these data suggest that in spite of its 
benign clinical course and only 2% conversion rate, MGUS may have genetic 
features that make it indistinguishable from the fatal MM.  We hypothesize that 
the reason for our prediction failures is not due to inaccurate models, but rather, 
they are due to genetic mechanisms that divide MGUS into two distinct groups: 
those that will eventually convert to MM (and are grouped with the MM samples) 
and those that will remain inactive (and are grouped separately.)  

2. BACKGROUND
We ran all six models on microarray data derived from Affymetrix (version 5)
high density oligonucleotide microarray analysis.  We compared 218 untreated 
MM samples, 45 healthy samples, and 21 samples designated as MGUS.  We 
chose to use the normalization algorithm available from the Affymetrix software. 
Information on normalization and standardization of the microarray data is 
available on Affymetrix’s website: 
www.affymetrix.com/support/technical/technotes/statistical_referen
ce_guide.pdf
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3. Methods
Various methods were employed with two goals in mind.  The first goal is to 
identify genes whose over or under expression are apparently essential in the 
comparison of healthy samples, MGUS samples, and malignant MM samples.  
The second goal is to identify optimal methods for use in analyzing microarray 
data and specifically methods applicable to analyzing microarray data on samples 
from MGUS and MM patients.    Previous work has been done in identifying lists 
of genes that discriminate between the two types of samples (Zhan et. al., 2002; 
Chauhan et. al., 2002), but, to our knowledge, this is the first work that has been 
done on simultaneously identifying discriminatory genes and evaluating models 
to predict and describe the differences between myeloma, MGUS, and healthy 
samples.

Recently, the literature has contained numerous methods for 
discrimination between two or more classes of microarray samples.  For example, 
Golub et. al. give an ad hoc measure of discrimination (Golub et. al., 1999); 
Tibshirani et. al. present a method called nearest shrunken centroid which 
improves on nearest centroid classification (Tibshirani et. al., 2002); and Dudoit 
et. al. present a comparison of multiple classification methods including Fisher’s 
linear discriminant analysis, nearest neighbor classification, classification trees, 
boosted trees, bagged trees, and aggregate classifiers (Dudoit et. al., 2002.)  We 
use six classification methods to provide results from a range of different 
techniques.  In the same way as Dudoit et. al., we use classification trees as one of 
our models; additionally, we tried boosted trees, but these did not have any 
advantage over the more simple classification trees.  Among the methods in the 
Dudoit et. al. paper, trees were intermediate performers; among our methods, 
trees were our worst performers.  We feel that our other methods will produce 
classifications as least as good as or better than methods currently being used to 
discriminate between two microarray samples.

For each of the following methods (and each of the comparisons), we 
employed 10-fold cross validation to estimate the prediction error. Using 10-fold 
cross validation, 1/10th of the data was removed (the ‘test’ data), and the entire 
model was created using only the remaining 90% of the data (the ‘training’ data.)  
The test data were then run through the training model and any misclassifications 
were noted.  Error rates were computed by compiling the misclassifications from 
each of the 10 independent runs.  Empirical results suggest that 10-fold cross 
validation may provide better accuracy estimates than the more common leave 
one out cross validation (Kohavi, 1995.)

Each of our methods is listed below and can be considered as a particular 
algorithm.  For most of the methods we must first subset the list of ~12,000 genes 
due to computational limitations.  Therefore, our results will be a comparison of 
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each of the complete algorithms that produced the result.  We refer to the 
complete algorithm as the method or model.

3.1 Logistic Regression
The logistic procedure creates a model that predicts a binary value of the outcome 
(e.g., MM=1, normal = 0) based on numeric values of the gene:
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example, of being in the MM sample (predictive value close to one) or of being in 
the normal sample (predictive value close to zero.)  The structure allows for 
knowledge of the uncertainty in predicting the group membership of future 
samples.  For example, a new sample might be classified as MM with a predictive 
probability of 0.53, albeit with much less confidence than another sample whose 
predictive probability is 0.99.  A gene with a positive value for the β coefficient 
indicates that an increase in gene expression correlates to a higher probability of 
classification to the more highly diseased group.

Logistic regression was applied using SAS software on the signal data, 
using two different gene selection methods.  First, for each independent run of the 
data, the best subset function was used to find a small group of genes which best 
predicted the two groups of interest (MM vs. normal, MM vs. MGUS, or MGUS 
vs. normal.)  The best subset function in SAS finds the best model of a given size 
out of the full set of parameters (either all the genes or a subset of genes.)  To 
choose between the models of different sizes, we penalized the score function by 
the number of parameters, and took the model with the highest penalized score 
function.  Because of computing limitations, we were required to first subset the 
genes (from 12625 genes down to about 50 genes) from the full set.  This first 
subset was arrived at by ranking the contribution (p-value) of each gene 
individually in a univariate logistic model.  We call this procedure the “best” 
subset selection for logistic regression.

Second, for each independent run of the data, forward selection was used 
to find a subset of genes which best predicted the two groups of interest.  Again, 
because of computing limitations, we were required to first subset the genes (from 
12625 down to 500 genes) from the full list.  We maintain that the list of 500 
genes give sufficient variety in the contribution to the model that it is equivalent 
to forward selection from the full set of 12625 genes.   We call this procedure the 
“forward” subset selection for logistic regression.
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3.2 Decision Trees
Decision tree induction algorithms begin by finding the single feature (gene) that 
is most correlated with class, where the measure of correlation may be the 
correlation coefficient, mutual information (as in the system ID3), Gini index (as 
in the system CART), or one of several others.  For concreteness of the present 
discussion, we will use mutual information and take the classes to be MM vs. 
normal (the same discussion applies to MM vs. MGUS and MGUS vs. normal).
For each gene the algorithm computes the information gain of the detection and 
of the optimal split point for the real-valued measure (signal.)  Information gain is 
defined as follows.  The entropy of a data set is  – p log2p – (1-p) log2(1-p) where 
p is the fraction of samples that are of class MM. A split takes one data set and 
divides it into two data sets: the set of data points for which the gene has a value 
below the split point (a particular value) and the set of data points for which the 
gene has a value above the split point.  The information gain of the split is the 
entropy of the original data set minus the weighted sum of entropies of the two 
data sets resulting from the split, where these entropies are weighted by the 
fraction of data points in each set.  This split yields a “decision stump,” or 
decision tree with one internal node (split point value), as illustrated in Figure 1.  
If the new “leaf” or data set contains data points with different class values, then 
the algorithm recursively splits these “impure” nodes in the same fashion, until all 
decision nodes are pure.  In practice, to avoid over-fitting, typical decision tree 
systems then “prune” the tree to get a smaller tree that is nearly consistent with 
the data though not necessarily completely consistent.  Each leaf then makes the 
majority class prediction among data points that end at that leaf.  In the present 
work we apply the decision tree system C5.0 (www.rulequest.com), one of the 
most widely used data mining algorithms on the market.  C5.0 uses information 
gain to score splits; information about pruning is available on the aforementioned 
website.

Figure 1.  Example of a decision tree with one internal node, also called a 
“decision stump.”

     AB00015
      <  2300

Myeloma Normal
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3.3 Ensemble of Voters (EOV)
Even with pruning, decision trees can sometimes over-fit the data.  One approach 
to avoid over-fitting is to learn an ensemble, or a set of classifiers (in the present 
case, trees) that will vote on each new case to be predicted.  The simplest 
ensemble scheme uses the n best-scoring classifiers (e.g., by information gain or 
accuracy), where predictions are made by unweighted voting.  Progressively more 
sophisticated ensemble schemes include weighted voting of the top n classifiers, 
bagging (Breiman 1996) and boosting (Freund and Schapire, 1996). Our 
“Ensemble of Voters” (EOV) approach is the simplest ensemble scheme we could 
imagine.  It predicts by unweighted voting of the top n decision stumps; a 
decision stump is the simplest decision tree -- a decision tree with a single internal 
node, or decision node, as shown in Figure 1.  We rather arbitrarily committed to 
n=20 decision stumps before experimentation, largely for purposes of model 
comprehensibility; this number of genes is large enough to be interesting yet 
small enough not to be overwhelming.  Afterward we verified that the results 
were not sensitive to this choice of n unless it went below 10 or above 100.  In 
addition to this simplest ensemble scheme, we also employed boosting for trees
(Freund and Schapire, 1996.)  With boosting, after a model (e.g., tree) is learned, 
the few training data points that are inconsistent with the model are given 
increased weight (e.g., replicated), and training is repeated.  This process repeats a
number of times.  Prediction is again by a vote, but where each model’s vote is 
weighted by its training set accuracy.

In our experiments, boosting did not improve the performance of C5.0, so 
we do not report the results of boosted trees in this paper.  We do report the 
results of EOV.  It is worth noting that our EOV approach is similar to that 
employed by Golub and colleagues (Golub et al., 1999) with the exception that 
EOV uses unweighted rather than weighted voting.  This observation raises the 
question of whether weighting the votes could perhaps improve performance of 
EOV.  Of course, there are many different ways to choose the weights.  One very 
natural choice leads to a widely-used algorithm in data mining and machine
learning, known as “simple Bayes” or “naïve Bayes,” which we describe next.

3.3 Naïve Bayes
Naïve Bayes is so named because it makes the (often) naïve assumption that all 
features (e.g. gene expression levels) are conditionally independent given the 
class value (e.g. MM or normal).  In spite of this naïve assumption, in practice it 
often works very well.  Like logistic regression, naïve Bayes returns a probability 
distribution over the class values.  The model simply takes the form of Bayes’ 
rule with the naïve conditional independence assumption:

)Pr(

)Pr()|Pr()...|Pr(
)|Pr( 1

X

MMMMxMMx
XMM n=
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In practice we can ignore the denominator, and compute both Pr(MM|X) and 
Pr(Normal|X) normalized to sum to one.  When X is a real-valued signal (gene 
expression value), we discretize using the split point that maximizes information 
gain on the training data (i.e., we use the best-scoring decision stump for this 
gene).  Having discretized, we can again use the frequency in the data to estimate 
Pr(x|MM).  One important methodological point is that the discretization step 
must be repeated on every fold of cross-validation using only the training data for 
that fold, or else the accuracy estimates for the approach will be overly-optimistic.  
When the features are discretized in the manner described, they are in fact the 
decision stumps considered by EOV.  Hence naïve Bayes can be seen as a variant 
of EOV where the votes are weighted according to probabilities. We mentioned 
decision stumps in this section not to say that we are using decision stumps to 
calculate P(x_j|MM) (which is calculated using standard methods.) Instead, we 
hope to show a parallel between the underlying models built using naïve Bayes 
and built using ensembles of voters.  In a sense, one can think of a naïve Bayes 
net as simply an ensemble of voting decision stumps where each stump's vote is 
weighted by its P(x_j|MM).

The question remains of how badly our performance is hurt by the naïve 
assumption in naïve Bayes.  To determine this, we compare naïve Bayes with 
Bayesian network learning.  A naïve Bayes model corresponds to a very simple 
form of Bayesian network, shown in Figure 2 below.  

. . .

Figure 2.  Structure of a naïve Bayes model where the class is MM vs. Normal 
and the features are genes G1, G2, …, Gk.

We used the top 10% of genes, as selected by information gain, in the 
naïve Bayes model.  Ten percent was chosen rather arbitrarily so as to not overfit 
the data by recursive feature selection.  We did not want to bias our accuracy 
results by trying all possible number of features and using the best one.  The 
selection of features was repeated on every fold of cross-validation using only the 
training data for that fold.

Additionally, we tried applying Bayes’ Net (Power Predictor) to the data, 
but the resulting model was consistently the Naïve Bayes model or a model that 

MM or  
Normal

G1 G2 G3 Gk
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did a worse job of prediction.  For that reason, we leave those results out.  We are 
currently working on an algorithm to find a better Bayes’ Net structure.

3.4 Nearest Shrunken Centroid (NSC)
Nearest Shrunken Centroid classification is an extension of naïve Bayes and 
linear discriminant analysis (LDA).  (Specifically, NSC with no shrinkage is 
equivalent to naïve Bayes using a Gaussian kernel and diagonal LDA.) The 
classification process is done by computing centroids for each class based on gene 
expression, and then the centroids are shrunken toward an overall centroid given 
by the entire data set.  The shrinking process happens by a user-defined 
“threshold.”  The threshold is a specified value which is subtracted from each 
dimension of the centroid estimate.  However, a centroid cannot be shifted across 
zero.  So, if the centroid is a vector (1.2, 7, -.5) and the threshold is 3, the 
shrunken centroid will be (0, 4, -3.5).  The threshold is chosen so as to minimize 
the prediction error.  A sample is allocated to the closest centroid, using Euclidean 
distances.  The process of shrinking allows for some genes to be removed from 
the prediction process, thus reducing the effect of noisy genes.  This method is 
due to Tibshirani, Hastie, Narasimhan, and Chu, and further details are given in  
Tibshirani et. al., 2002.

3.5 Support Vector Machines
Support vector machines (SVMs) (Vapnik, 1998; Cristianini, 2000) are another 
novel data mining approach that has proven within the last three years to be well 
suited to gene expression microarray data (Brown et. al., 1999; Furey et. al., 
2000.)  At its simplest level, a support vector machine is an algorithm that 
attempts to find a linear separator between the data points of two classes.  SVMs 
seek to maximize the margin, or separation between the two classes. Maximizing 
the margin can be viewed as an optimization task that can be solved with 
quadratic programming techniques.  Of course, in practice there may be no good 
linear separator of the data.  Support vector machines based on “kernel methods” 
can efficiently identify separators that belong to other functional classes.  A 
commonly used kernel is the Gaussian kernel.  Nevertheless, for gene expression 
microarray data, it has been repeatedly demonstrated empirically that simple 
linear SVMs give better performance (Brown et. al., 1999; Furey et. al., 2000)
than SVMs with other kernels.  Because it has been repeatedly observed that 
support vector machine performance can be improved by prior feature selection, 
the top 10% of the features as selected by information gain were provided to the 
SVM.  Once again, 10% was chosen rather arbitrarily, and the selection of 
features was repeated on every fold of cross-validation using only the training 
data for that fold.
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4. Results
As mentioned, each model was tested using 10-fold cross validation to obtain 
error (misclassification) rates.  For each of 10 runs of the data, 10% of the sample 
was removed and the prediction model was created.  Then, using the created 
model, the test sample was predicted into groups, and the accuracy was recorded.  
After completing all 10 runs, the accuracy values were accumulated into the 
following table (Table 1.)  (A balanced error rate can be computed from these 
values by taking a weighted average of the correct classification rates with respect 
to sample size.)

Table 1.
% correctly 
classified

MM Normal
#

genes MM MGUS
#

genes MGUS Normal
# 

genes
Logistic –
best

96.8% 84.4% 10 91.3% 38.1% 10 91.1% 71.4% 10

Logistic-
forward

97.3% 84.4% 4 93.1% 38.1% 8 81.0% 91.1% 3

Trees 96.3% 91.1% 4 89.0% 23.8% 7 57.1% 91.1% 3
EOV 97.7% 100% 20 67.0% 90.5% 20 71.4% 100% 20
Naïve Bayes 97.3% 100% 250 93.1% 57.1% 250 76.2% 100% 250
SVM 97.7% 95.6% 250 96.8% 23.8% 250 76.2% 100% 250
NSC 95.9% 100% 11 77.1% 85.7% 102 98.2% 100% 408

There does not appear to be one methodology that stands out from the rest 
in terms of predicting group membership.  In the difficult classification of MM vs. 
MGUS, Ensemble of Voters classifies the most MGUS correctly (90.48%), but 
the fewest MM correctly (66.97%.)  Using naïve Bayes or nearest shrunken 
centroids may produce the best classification, though they do not seem to be 
appreciably better than the other methods.  All the methods appear to be able to 
classify MM vs. Normal quite well and MGUS vs. Normal almost as well.
However, as mentioned in the introduction, Trees appear to be the worst 
classifiers.

Notice that in Table 1 we have also provided the number of genes used to 
classify the dichotomous groups.  These numbers are based on the full model 
which uses complete data to discriminate between the two groups (and not the 
cross validation models.)  A small number of genes is useful in being able to 
interpret the model biologically.  However, with a small number of genes, it is 
likely that the model won’t be as robust as a model with a larger number of genes.  
For example, in the forward logistic regression, the three genes that were selected 
in the MGUS vs. Normal classification were the exact same genes selected in four 
of the cross validation models, but five of the cross validation models did not 
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include any of the three complete model genes.  In contrast, 186 out of the 250 
(74.4%) of the genes used in the Naïve Bayes comparison of MM vs. Normal 
were present in all cross validation models.  It seems as though stability in 
modeling is a trade-off to biological interpretation with a small number of genes.

For each method, we have identified models for predicting group 
membership; we do not report the models here because we do not yet have 
knowledge of the compatibility of the quantitative values given by Affymetrix 
chips across different laboratories.  However, because our results are based on 
cross validation, we feel that the models we have created would predict samples 
from our laboratory with a reasonable degree of accuracy (for Normal vs. MM 
and Normal vs. MGUS.) We have not provided models here, but for each 
comparison we have provided a list of genes that show up in the final model of at 
least two of the methods (tables 5, 6, and 7.) We would like to point out that the 
models classifying MM vs. MGUS had more overlap (22 overlapping genes) than 
the models classifying MM vs. Normal (8 overlapping genes) or MGUS vs. 
Normal (6 overlapping genes.)  A possible explanation for this is that there are 
probably numerous genes that distinguish MM and normal samples because the 
two groups are quite distinct.  However, the genetic similarities between MM and 
MGUS lead us to smaller number of genes that are different across the two 
groups.  This dearth of distinguishing genes conditions any good model to contain 
some of the same limited number of genes.

4.1 Meta-Voting
As an additional step to improve the prediction capabilities of our methods, we 
calculated a “meta” prediction value.  For a subset of the procedures we 
calculated the marginal predicted group and then gave a final prediction as the top 
voted group.  (A sample is classified in a group if at least three of the five
methods predict that group.)  Results are given in Table 2.

Table 2.
total % correctly 

classified
MM vs. Normal MM vs. MGUS MGUS vs. Normal

Logistic – best 93.93% 88.70% 84.85%
Trees 95.45% 87.87% 78.79%
EOV 95.45% 69.04% 90.91%
Naïve Bayes 95.45% 89.96% 92.42%
SVM 96.97% 90.38% 92.42%
Meta 96.97% 91.21% 90.91%
From the table it is apparent that the meta voting procedure does not improve the
overall results appreciably.
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4.2 Receiver Operator Characteristic (ROC) Curves
A Receiver Operating Characteristic (ROC) curve demonstrates the relationship 
between sensitivity (correct prediction to the more diseased group) and specificity 
(correct prediction to the less diseased group.)  Figures 3, 4, and 5 give the ROC 
curves for the comparison of the different classifications; MM vs. normal, MM 
vs. MGUS, and MGUS vs. normal, respectively.  The comparison of MM vs. 
MGUS is challenging for all the methods.  For example, naïve Bayes has a high 
sensitivity but at the cost of low specificity.  For even mediocre values of 
specificity, the sensitivity drops off quite rapidly.   In order to have a high 
sensitivity for any of the methods (that is, in order to have very few false positives 
of MM) we compromise our ability to predict MGUS accurately (specificity.)
However, for the two other comparisons, we see that high sensitivity does not 
come at the expense of high specificity.

4.3 Prediction of MGUS
The models that classify the MM and normal samples into distinct groups may 
also be able to be used as a predictive model for samples that are not clearly in 
either group based on clinical data.  As a whole, the MGUS samples are healthy 
(except for high levels of immunoglobulins) but clinically appear malignant.   
Applying the MM vs. normal model to the MGUS samples will give us an idea as 
to which group each MGUS sample belongs.   Table 3 provides the prediction 
distribution for the MGUS samples into the MM and normal groups based on five
of the models which compared MM to normal samples.   On average, about 75% 
of the MGUS samples are classified as MM, and about 25% are classified as 
normal.  One possible reason for this split is that the 25% who are classified as 
normal may not have disease progression.  Due to the fact that MGUS is a slow 
moving disease, we do not yet have progression data on these samples, so we 
cannot test this hypothesis.  Regardless, the similarity of MGUS to MM (even in 
the model that was derived without any MGUS) gives additional evidence that the 
MGUS is actually genetically much more similar to the MM than to the normal 
samples.

Table 3.  
MM vs. Normal    (predicting MGUS)

% MGUS classified as: MM Normal
Logistic – best 76.19% 23.81%
Trees 85.71% 14.23%
EOV 61.90% 38.10%
Naïve Bayes 76.19% 23.81%
SVM 80.95% 19.05%
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In order to better understand the mechanisms behind the poor 
classification of the MGUS samples (when compared to MM), we tabulated the 
number of MGUS classified as MM for five of the methods, logistic regression
(best subsets), EOV, Trees, Naïve Bayes, and SVM.  Of the 21 MGUS samples, 
the misclassification rates are given in Table 4.

Table 4.
# MGUS

Misclassified
Logistic 
(best)

EOV Trees
Naïve 
Bayes

SVM

Logistic (best) 13 2 11 7 10
EOV 2 2 2 2
Trees 16 8 12
Naïve Bayes 9 8
SVM 16

There were 13 MGUS samples misclassified using the logistic procedure; 10 of 
the 13 were also misclassified using SVM, and 11 of the 13 were misclassified 
using Decision Trees.  All of the EOV misclassifications were also misclassified 
using the other methods.  Of the 9 misclassification using Naïve Bayes, almost all 
of them were misclassified using logistic, SVM, and Trees.  This cross tabulation 
indicates that the misclassified MGUS samples are continuously getting 
misclassified which lends evidence to a possible subset of MGUS samples that are 
genetically similar to the MM samples.

5. Conclusion
In this manuscript we have compared six different statistical and data mining
algorithms for their ability to discriminate normal, hyperplastic (MGUS), and 
malignant (MM) cells based on the expression patterns of ~12,000 genes.  The 
models were highly accurate in distinguishing normal plasma cells from abnormal
cells, however they displayed a modest failure in the discrimination between the 
hyperplasic cells and malignant cells.  A goal of this study was to develop or 
modify statistical and data mining tools in order to capture a small subset of 
genes, from massive gene expression data sets, capable of accurately 
distinguishing groups of cells, e.g. normal, precancerous, and cancerous cells, 
with the ultimate goal to create sensitive and reproducible molecular-based 
diagnostic tests.  Genes that our models established as important in prediction are 
listed in tables 5, 6, and 7.  In addition, future studies will be aimed at using a 
similar strategy to identify a minimum subset of genes capable of discriminating 
subgroups of disease for risk stratification and prognostics. It is particularly 
important to understand the genetic mechanisms for multiple myeloma as the 
overall survival in MM is highly variable, with some patients surviving as long as 
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10 years and others dying within several months of diagnosis.  Current 
microarrray studies require the isolation of large numbers of cells that necessitate 
advanced facilities and expertise. Our studies represent the first step toward 
streamlining this process, as a smaller subset of genes (10-20) with a high 
predictive power allows for a massive reduction in scale, which in turn will make 
development of a commercial test more amenable to mass production and hence 
widespread clinical use.

MGUS is the most common plasma cell dyscrasia occurring in up to 2% 
of the population over age 50 (Kyle et. al., 2002.) The differentiation of MGUS 
and MM is based on a combination of clinical criteria such as the amount of bone 
marrow plasmacytosis, the concentration of monoclonal immunoglobulin, the 
presence of bone lesions, and kidney malfunction.  Especially in early phases of 
MM, the differential diagnosis may be associated with a degree of uncertainty.  
Thus, it is imperative to determine if post-genome era technologies can be used to 
overcome these limitations. However, results from our studies suggest that
development of a molecular test for discrimination based on global gene 
expression patterns will be more of a challenge than originally anticipated.  The 
results pose somewhat of a paradox in that although MGUS has all the features of 
malignancy, the disease lacks clinical symptoms, and in addition, very few 
MGUS cases will convert to overt MM over the lifetime of the patient.

One possible reason for the inability of the models to discriminate MGUS 
from MM is that MGUS represents at least two different diseases (as 
hypothesized by the overlap in misclassification of MGUS samples stated in 
section 4.3.)  In simplistic terms, MGUS can be viewed as a disease that will 
remain indolent or one that will convert to overt malignancy.  Since ours is a 
prospective study, we do not have outcome data on the MGUS population which 
would enable a separation of the MGUS samples into two distinct diseases.  With
outcome data, it may be possible to show that the models are, in fact, more 
accurate than realized.  Accruing sufficient numbers of stable and progressive 
MGUS cases along with sufficient follow-up time will help resolve this 
hypothesis.

The failure of the models to differentiate the two disease types could be 
related to the limitations of the current methodologies. The microarray profiling 
utilized here only interrogated 1/3 of the estimated 35,000 human genes 
(International Human Genome Sequencing Consortium, 2001; Venter et al., 
2001), thus it is possible that a whole genome survey would reveal discriminating 
features. We are currently investigating the possibility by performing microarray 
analysis with the new Affymetrix U133 GeneChip system, which is thought to 
interrogate all human genes. It is also possible that the full genome analysis will
reveal no significant differences.  Such a revelation could mean any of a variety 
of possibilities:  (1) there is no genetic difference between the two diseases, (2) 
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only the MGUS that are classified as MM are genetically similar to the MM, and 
the clinical tests are unable to identify that distinction, (3) the current microarray 
technology is not specific enough to measure the genetic differences between the 
two diseases, (4) the methods described above are not appropriate for this type of 
analysis.  If (1) or (2) is true, results would point to other determinants of an 
indolent or malignant course such as genetic predisposition or somatic DNA 
mutations not manifest in gene expression, a unique environmental exposure 
interacting with these predisposing genetic traits, or a non-tumor cell 
microenvironment or “soil” that promotes plasma cell growth. 

In conclusion, it is anticipated that strategies like those employed here will 
allow the creation of new molecular diagnostic and prognostic tests and should 
provide useful insight into the genetic mechanisms of neoplastic transformation.
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Figure 3. ROC curves.  Six models are compared on each curve: logistic 
regression (best and forward), SVM, EOV, naïve Bayes, and NSC.  The x-axis 
models one minus the specificity while the y-axis models the sensitivity.  The 
diagonal line across the graph represents the line y=x.  The relationship between 
MM and normal is fairly straightforward to model with any of the methods.  
(Lines are not drawn for decision trees because of the computing complications 
associated with creating ROC curves for that method.)
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Figure 4. ROC curves.  Six models are compared on each curve: logistic 
regression (best and forward), SVM, EOV, naïve Bayes, and NSC.  The x-axis 
models one minus the specificity while the y-axis models the sensitivity.  The 
diagonal line across the graph represents the line y=x.  The relationship between 
MM and MGUS is difficult to characterize which is reflected in the lack of ability 
to keep specificity high for high values of sensitivity for any of the models.  
(Lines are not drawn for decision trees because of the computing complications 
associated with creating ROC curves for that method.)

16 Statistical Applications in Genetics and Molecular Biology Vol. 3 [2004], No. 1, Article 10

http://www.bepress.com/sagmb/vol3/iss1/art10



1-specificity (% Normal classified as MGUS)
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Figure 5. ROC curves.  Six models are compared on each curve: logistic 
regression (best and forward), SVM, EOV, naïve Bayes, and NSC.  The x-axis 
models one minus the specificity while the y-axis models the sensitivity.  The 
diagonal line across the graph represents the line y=x.  The relationship between 
MGUS and normal is fairly straightforward to model with any of the methods.  
(Lines are not drawn for decision trees because of the computing complications 
associated with creating ROC curves for that method.)
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Table 5.  Genes which are essential in at least two of the methods when 
comparing MM vs. Normal plasma cells.

Array ID Title

L02867-689_at paraneoplastic antigen

M25915-36780_at
"clusterin (complement lysis inhibitor, SP-40,40, sulfated 
glycoprotein 2, testosterone-repressed prostate message 2, 
apolipoprotein J)"

U14187-34573_at ephrin-A3

W26381-39490_f_at ADP-ribosylation factor GTPase activating protein 1

X16832-37021_at cathepsin H

X76079-1988_at "platelet-derived growth factor receptor, alpha polypeptide"

AF088219-
37085_g_at lysozyme homolog

AB009598-35179_at beta-1,3-glucuronyltransferase 3 (glucuronosyltransferase I)

Table 6.  Genes which are essential in at least two of the methods when 
comparing MGUS vs. Normal plasma cells.

Array ID Title

AA522530-39827_at HIF-1 responsive RTP801

AB005297-
35897_r_at

brain-specific angiogenesis inhibitor 1

D80010-38098_at lipin 1

X62025-32204_at "phosphodiesterase 6G, cGMP-specific, rod, gamma"

X66945-424_s_at
"fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, 
Pfeiffer syndrome)"

X80026-40094_r_at Lutheran blood group (Auberger b antigen included)
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Table 7.  Genes which are essential in at least two of the methods when 
comparing MM vs. MGUS plasma cells.

Array ID Title

AA976838-41764_at apolipoprotein C-I 

AB014590-36520_at KIAA0690 protein

AB020687-37684_at "solute carrier family 21 (organic anion transporter), member 9"

AF007155-40472_at "Homo sapiens clone 23763 unknown mRNA, partial cds"

AI762213-32821_at lipocalin 2 (oncogene 24p3)

AJ130718-33731_at
"solute carrier family 7 (cationic amino acid transporter, y+ 
system), member 7"

D82348-38811_at
5-aminoimidazole-4-carboxamide ribonucleotide 
formyltransferase/IMP cyclohydrolase

J02854-39145_at "myosin, light polypeptide 9, regulatory"

L36033-33834_at stromal cell-derived factor 1

M12529-608_at apolipoprotein E

M30257-583_s_at vascular cell adhesion molecule 1

M34379-37096_at "elastase 2, neutrophil"

M73255-41433_at vascular cell adhesion molecule 1

M83667-1052_s_at "CCAAT/enhancer binding protein (C/EBP), delta"

U03057-39070_at "singed-like (fascin homolog, sea urchin) (Drosophila)"

X03084-38796_at "complement component 1, q subcomponent, beta polypeptide"

X84740-1188_g_at "ligase III, DNA, ATP-dependent"

X95735-36958_at zyxin

Z22971-31438_s_at CD163 antigen

Z82244-33802_at heme oxygenase (decycling) 1

J03358-35133_at fer (fps/fes related) tyrosine kinase (phosphoprotein NCP94)

L36033-33834_at stromal cell-derived factor 1
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