KDD-2001 Cup The Genomics Challenge

Christos Hatzis, Silico Insights
David Page, University of Wisconsin
Co-chairs

All public

August 26, 2001

Special thanks: DuPont Pharmaceuticals Research Laboratories for providing data set 1, Chris Kostas from Silico Insights for cleaning and organizing data sets 2 and 3

http://www.cs.wisc.edu/~dpage/kddcup2001/

The Genomics Challenge

 High throughput technologies in genomics, proteomics and drug screening are creating large, complex datasets

- Bioinformatics datasets are typically underdetermined
 - very large number of features (complex domain)
 - small number of instances (high cost per data point)
- Multi-relational nature of data
 - reflect complex interactions between molecules, pathways and systems
 - Hierarchical organization of interacting layers
- Current tools and approaches do not adequately address the Genomics Challenge

Overview

- Cup organization
- Dataset description
 - Thrombin binding
 - Gene function/localization prediction
- Statistics
- Tasks and highlights
- Winners talk (3x10 min)

Cup Organization

KDD-2001 Cup web site

Posting of datasets, Q&A, answer keys

Schedule

- Training dataset available: May 31
- Question period 1: June 1-10
- Test set available: July 13
- Question period 2: July 13-24
- Entries due: July 26
- Winners notified: August 1
- Results to participants: August 7

Evaluation criteria

- Task 1: weighted accuracy (average of true pos, true neg)
- Tasks 2, 3: non-weighted accuracy

Dataset 1: Molecular Bioactivity

Dataset provided by DuPont Pharmaceuticals for the KDD-2001 Cup competition

- Activity of compounds binding to thrombin
- Library of compounds included:
 - 1909 known molecules (42 actively binding thrombin)
- 139,351 binary features describe the 3-D structure of each compound
- 636 new compounds with unknown capacity to bind thrombin

Dataset 2: Protein Functional Annotation

Yeast Genome dataset

- Data on the protein-protein interactions from MIPS database (Munich Information Centre for Protein Sequences)
- Expression profiles: DeRisi et al. (1997) Science 278: 680

Relational dataset

- Gene information
- Interaction information
- Predict function,
 localization of unknown
 proteins

Statistics: I. Participation

- 136 unique groups, 200 total entries by about 300-400 participants
- Almost 5-fold increase over previous years
- More than half of the entries from commercial sector

Statistics: II. Data Mining Software

Note: Statistics from 157 responders who provided details on their approach

- Mostly custom software was used
- Especially for task 1, where the number of features was too large for most commercial systems
- Gap points to need for commercial tools that can cope with bioinformatics datasets

Statistics: III. Algorithms

- Decision trees among the most commonly used, with Naïve Bayes and k-NN
- Cross-validation to deal with small dataset size

Task 1 Highlights

 Test set was challenging second round of compounds made by chemists -- change in distribution.

- Far more features than data points; can't run most commercial systems even with 1G RAM.
- Varying degrees of correlation among features.
- Better than 60% weighted accuracy is impressive.
- Pure binary prediction task, yet the winner is a Bayes net learning system (after feature selection).

Tasks 2 & 3: Relational Prediction

KDD-2001 Cup 11

Task 2 Highlights

- Average of about 3 functions per protein.
- Multi-relational, as are many real-world databases.
- Yet top-scoring approaches were not pure relational learners.
- But top-scoring approaches did account for multi-relational structure of the data.
 - Krogel: novel form of feature construction to capture relational information in a feature vector.
 - Sese, Hayashi, and Morishita: instance-based learning, but using the interactions relation as part of the distance function.

Task 3 Highlights

 Similar to task 3, but only one localization per protein.

- Similar lessons.
- High overlap in top scorers for both tasks.
- Question: did anyone "bootstrap" by using their predictions for function to help predict localization, or vice-versa?

KDD-2001 Cup Winners

Task 1: Jie Cheng, CIBC

Task 2: Mark-A. Krogel, Magdeburg Univ.

 Task 3: Hisashi Hayashi, Jun Sese, and Shinichi Morishita, Univ. of Tokyo

Task 1 Winner

KDD Cup 2001 Results

Task 1: Thrombin

Name: Jie Cheng Rank: 1

Weighted Accuracy: 68.4435 Accuracy: 71.1356

		Predicted	
		Positive	Negative
Actual	Positive	95	55
	Negative	128	356

True Positive Rate: 63.3% True Negative Rate: 73.6%

Task 2 Winner

KDD Cup 2001 Results Task 2: Function

Name: Mark-A. Krogel

Rank: 1 93.6258

		Predicted	
		Positive	Negative
Actual	Positive	690	282
	Negative	58	4304

True Positive Rate: 71.0% True Negative Rate: 98.7%

Task 3 Winner

KDD Cup 2001 Results

Task 3: Localization

Name: Hisashi Hayashi, Jun Sese, and Shinichi Morishita

Rank: 1 72.1785

KDD-2001 Honorable Mentions

Task 1: Silander, Univ. of Helsinki

3

Task 2: Lambert, Golden Helix;
Sese & Hayashi & Morishita;
Vogel & Srinivasan, A.I. Insight

Task 3: Schonlau & DuMouchel & Volinsky & Cortes, RAND and AT&T Labs; Frasca & Zheng & Parekh & Kohavi, Blue Martini

KDD-2001 Cup Winners

• Task 1: Jie Cheng, CIBC

• Task 2: Mark-A. Krogel, Magdeburg Univ.

Task 3: Hisashi Hayashi, Jun Sese, and

Shinichi Morishita, Univ. of Tokyo

