

<u>Hisashi Hayashi</u>

Jun Sese

Shinichi Morishita

Department of Computer Science University of Tokyo

Task

Predict the localization of a given gene in a cell among 15 distinct positions

Data

- Relation table with six categorical attributes
 Essential, Class, Complex, Phenotype, Motif, Chromosome Number
- Interaction matrix listing all the interactions between genes

Challenges

- How to use interactions?
- How to deal with missing values ?

Characteristic of Dataset

- Class, Complex, Motif, and Interaction are highly correlated with localization (evaluated by entropy).
- Each attribute however has many missing values.
 70% of Class, 50% of Complex, 50% of Motif
- Four attributes together complement each other to fill missing values.
- Only 14 among 381 test records are isolated.

The Winning Approach

Examined three approaches:

- Decision tree with correlated association rules
- Boosting correlated association rules
- Nearest neighbor strategy

Nearest neighbor worked best against the training dataset.

The crux was the definition of "neighborhood."

Definition of Neighborhood

Two records agree on an attribute A iff

A's values of both records are defined and equal.

Example of the Relational Table

	Complex	Class	Motif
Gene 1	Translocon	actins	?
Gene 2	?:	actins	?
Gene 3	Translocon	?	PS00012
Gene 4	Translocon	?	?

Definition of Neighborhood – Cont'd

Two records *agree on* the interaction matrix iff these records are interacted.

Example of the Interaction Matrix

Definition of Neighborhood – Cont'd

X: a test gene Y: a training gene

If X and Y agree on attribute A, associate the positive weight of the agreement w_A to A. Otherwise, $w_A = 0$.

Y is a nearest neighbor of X if Y maximizes the sum of weights; $W_{\text{Class}} + W_{\text{Complex}} + W_{\text{Motif}} + W_{\text{Interaction}}$

```
When X and Y agree on all the attributes, W_{\text{Complex}} >> W_{\text{Class}} >> W_{\text{Motif}} >> W_{\text{Interaction}} (ex. 1000 >> 100 >> 1)
```

4

Nearest Neighbors - Example

The Relational Table

		Complex	Class	Motif	Sum of
$W_{\!\scriptscriptstyle\mathcal{A}}$		1000	100	10	Weight
Test	Gene 1	Translocon	actins	?	
Training	Gene 2	?	actins	?	101
Training	Gene 3	Translocon	?	PS00012	1001
Training	Gene 4	Translocon	?	?	1001

Prediction

- 1. Given a test gene X.
- 2. Predict the localization of *X* by a majority vote among the nearest neighbors of *X*.

Conclusion

- Data mining machinery automatically selects biologically meaningful four attributes.
- The step of handling missing values was most elaborated and time-consuming.