IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3. MARCH 1992

297

Evaluating Design Choices for Shared Bus
Multiprocessors in a Throughput-Oriented
Environment

Men-Chow Chiang and Gurindar S. Sohi, Member, IEEE

Abstract—This paper considers the evaluation of design choices
in multiprocessors with a single, shared bus interconnect operat-
ing in a throughput-oriented, multiprogrammed environment, that
is, an environment in which each task is being executed on a single
processor and the performance of the multiprocessor is measured
by its overall throughput. To evaluate design choices, we develop
mean value analysis analytical models and validate our models
by comparing their results against the results of a trace-driven
simulation analysis for 5376 multiprocessor configurations. The
trace-driven simulation uses actual programs and simulates their
execution in a throughput-oriented environment.

Using multiprocessor throughput as a performance metric and
the mean value analysis models as tools, we evaluate several
design choices. We find that: 1) cache block sizes that yield the
best performance in a multiprocessor differ from the block sizes
that yield the best uniprocessor performance metrics, 2) a larger
cache set associativity might be warranted in a multiprocessor
even though it might not be warranted in a uniprocessor, 3) a
split transaction, pipelined bus yields much higher multiprocessor
throughput than a circuit switched bus, especially for larger main
memory latencies, and 4) increasing the bus width appears to be
an effective way of improving multiprocessor throughput.

Index Terms—Cache block size, cache set associativity, circuit
switched buses, mean value analysis, shared bus multiprocessors,
split transaction pipelined buses, trace-driven simulation.

1. INTRODUCTION

OW-COST microprocessors have led to the construction

of small- to medium-scale shared memory multiproces-
sors with a shared bus interconnect. Such multiprocessors,
which have been referred to as multis by Bell [6], are popular
for two reasons: 1) the shared bus interconnect is easy to
implement and 2) the shared bus interconnect allows an easy
solution to the cache coherence problem [11]. Currently, many
major computer manufacturers have a commercial product or
a research project that uses the multi paradigm.

A typical shared bus, shared memory multiprocessor (here-
after called a multi in this paper) is shown in Fig. 1. The
multi consists of several processors (typically microproces-
sors) connected together to a memory system. The memory
system includes the private caches of each processor, the
shared bus interconnect, and the main memory. The overall
performance of such a multi is heavily influenced by the

Manuscript received April 12, 1990; revised February 25, 1991. This work
was supported in part by NSF Grants CCR-8706722 and CCR-8919635.

The authors are with the Computer Sciences Department, University of
Wisconsin - Madison, Madison, WI 53706.

IEEE Log Number 9104171

design of the memory system. Starting with processors at
a particular performance level, to design a multi with a
desired performance level, the multi designer must provide
an adequate-performance memory system.

To design a memory system with an adequate performance,
the designer must have access to sophisticated performance
evaluation tools. These tools can vary from analytical models
to detailed trace-driven simulation. Analytical models are
computationally much cheaper than trace-driven simulation
and allow a much larger design space to be explored. However,
they are generally considered to be less accurate than trace-
driven simulation.

In this paper, we consider a methodology for evaluating
design choices in the memory system of multis operating
in a throughput-oriented multiprogramming environment, and
use the methodology to evaluate key design choices in such
an environment. By a throughput-oriented multiprogramming
environment, we mean an environment in which each task
is being executed on a single processor and the performance
of the system is measured by the overall throughput of the
multiprocessor.'

At the heart of our methodology are mean value analysis
(MVA) analytical models. We develop MVA models of a
multi and compare the results of the MVA models to actual
trace driven simulation for over 5000 configurations. Having
validated the models, we use them to evaluate key design
choices in the memory system.

The remainder of this paper is as follows. In Section II,
we discuss the memory system model of the multi and present
some of the design choices that we consider. In Section III, we
discuss the MVA models and the trace-driven simulation setup
and summarize the results of a detailed analysis comparing
the results of the MVA models with those of trace-driven
simulation. In Section IV, we use the validated MVA models
to evaluate some key design choices and in Section V we
present concluding remarks.

II. MEMORY SYSTEM MODEL AND DESIGN CHOICES

As mentioned earlier, the memory system of a typical
multi consists of three main components: 1) the private caches
of each processor (which may be multilevel), 2) the shared
bus interconnect, and 3) the shared main memory. In such a

! The most popular multis on the market today. those designed by Sequent
Computer Systems, are designed for such an environment.

0018-9340/92%03.00 © 1992 IEEE

298

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

seoo Processor

Fig. 1.

memory system, the average memory access time (or latency)
seen by a processor, T.L, is

TP =TE + M x T, 1)

where

« TZ is the cache access time.

* M is the cache miss ratio.

+ TC is the average time taken to service a cache miss.

Equation (1) is applicable in general to any processing
system (uniprocessor or multiprocessor) with a cache and
a memory. However, the components of the equation are
variable and depend upon the parameters of the memory
system. For example, TE is a function only of the cache
organization. Likewise, M is also a function only of the cache
organization and is not dependent on other parameters of the
memory system. However, TS can be a function of several
parameters of the memory system, such as the characteristics
of the shared bus and the main memory.

A major difference between the design of a memory sys-
tem for a uniprocessor and a multiprocessor operating in a
throughput-oriented environment is in the impact of TS . Ina
uniprocessor, TS can be approximated as Ty, = a + (- B,
where B is the cache block size and « and 3 are constants
that represent the fixed overhead and the unit transfer cost of
transferring a cache block [26].

In a multi, 7S cannot be approximated as T}, = a+ 3 B.
This is because TS includes a queueing delay that can have
a significant overall contribution to TF. This queueing delay
is dependent upon the utilization of the bus which in turn is
dependent upon several system-wide characteristics such as:
1) the traffic on the bus, which is influenced by the number
of processors connected to the bus, and the organizations
of their caches, 2) the bus switching strategy, and 3) main
memory latency. If accurate results are to be obtained for
design choices in shared bus multiprocessor memory systems,
all system factors and their complex interdependencies must
be taken into account.

Before proceeding further, let us consider some design
choices in the three main components of the memory system
and see how they might influence one another. A compre-

Memory System

A shared bus multiprocessor (muiti).

hensive evaluation of design choices is not possible in this
paper (but can be carried out with our methodology) and we
focus our attention on some key design choices for throughput-
oriented multiprocessors.’

A. Cache Memory

The key component of the memory system is the cache and
most of the issues are concerned with how the choice of cache
parameters influences the design of the other components and
vice-versa. We consider three important cache parameters:
1) the cache size, 2) the cache block size, and 3) the cache
set associativity.

A large cache is able to lower TF directly by lowering M 3
Furthermore, because of lower bus traffic (assuming a constant
number of processors N), the utilization of the bus and the
queueing delay for a bus request is lowered and consequently
TS is reduced. Alternately, a lower per-processor bus utiliza-
tion allows more processors to be connected together on the
bus, possibly increasing the peak throughput (or processing
power) of the multi.

While it is clear that larger caches allow more processors
to be connected together in a throughput-oriented environ-
ment by reducing per-processor bus bandwidth demands and
improving T.F, the relationship between the cache size and
other memory system parameters (such as the block size, the
set associativity, the bus switching strategy, bus width, and
the main memory latency) needs to be investigated and the
improvement quantified.

Cache block size is perhaps the most important parameter
in the design of each cache. The block size not only dictates
the performance but also the implementation cost of the
cache (smaller block sizes result in a larger tag memory

2For the remainder of this paper, all references to multis shall assume
a multi operating in a throughput-oriented environment, unless specifically
mentioned otherwise. i

3When a multi is executing parallel programs, 1/ can be variable even for
a fixed size cache. The value of A depends on the number of processors on
which the parallel program is executing, as a result of a phenomenon called
reference spreading [19]. Consequently, a larger cache may not necessarily
be able to lower the value of A[. However, for a throughput-oriented multi,
there is no reference spreading and a larger cache will result in a lower value
of AL

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT 299

than larger block sizes). In a detailed study, Smith mentions
several architectural factors that influence the choice of a block
size and evaluates them in a uniprocessor environment [26].
Smith’s main result that is of interest to us in this paper is
that the miss ratio decreases with increasing block size up to
a point at which internal cache interference increases the miss
ratio. However, larger block sizes also cause more traffic on the
cache—memory interconnect. Since this additional traffic uses
up more bus bandwidth and since the bandwidth of the shared
bus is the critical resource in a multi, Goodman has suggested
that small block sizes are preferable for cache memories in
multis [11].

As Smith points out, minimizing the bus traffic alone is
not the correct optimization procedure in multiprocessors and
neither is a minimization of the miss ratio, independent of the
other parameters of the memory system [26]. This point, which
is also apparent from (1), is central to the topic of this paper
and cannot be overemphasized. If maximizing multiprocessor
system throughput is the goal, the choice of the block size
should not be decoupled from the parameters of the shared
bus and the main memory. Furthermore, any cvaluation must
consider (1) in its complete generality and include not only the
main memory latency and the bus transfer time of a request,
but also the queueing delays experienced by the memory
request.

Cache set associativity is also an important design consid-
eration. It is well known that a larger set associativity reduces
M (in most cases) and, if £ and T}, are constant, a larger
set associativity is preferable, subject to implementation con-
straints [25]. However, as several researchers have observed,
T/ is not independent of the cache set associativity since a
large set associativity requires a more complex implementation
and consequently has a higher TE . If the decrease in TE by
going to a lower set associativity is greater than the increase
in M x T, then a lower set associativity results in a lower
overall T, and consequently a higher processor throughput.

In a uniprocessor, 7%, is a constant for a given block
size and memory configuration. If M is sufficiently small
(because of a large cache size, for example), the decrease
in TL due to a lower set associativity can easily overcome
an increase in M x TS [12], [13], [24]). In a multiprocessor,
however, 7€ contains a queucing delay, which can be a large
fraction of TC if the bus utilization is high. Increasing cache
set associativity not only decreases TP directly by reducing
M. it also reduces T} indirectly by reducing the utilization
of the bus and consequently the queueing delay component
of TS . Therefore, the impact of cache set associativity on
multiprocessor memory system design is another important
design issue that needs to be investigated.

B. Shared Bus

The main design issues in the shared bus are the choice of
the bus width and the bus switching strategy (or protocol).
Using a wider bus is an effective way to increase the bus
bandwidth. Increasing bus bandwidth reduces TC in two
ways: directly by reducing the bus transfer time of a block,
and indirectly by reducing the bus queucing delay duc to

the decreased bus tenure of each memory request. However,

increasing the bus width affects the design of other modules.
For example, the bandwidth of the cache and main memory
should match that of the bus. This implies that the block size
of the cache and main memory should be made at least as
large as the bus width.

Bus switching methods fall into two broad categories:
1) circuit switched buses and 2) split transaction, pipelined
buses (hereafter referred to as STP buses in this paper). In a
circuit switched bus, the bus is held by the bus master until
the entire transaction is complete. The time that the bus is
held by the master (or the bus tenure) includes the latency of
the slave device. Such a switching strategy is used in most
existing bus designs. For example, the block read and block
write transactions in the IEEE Futurebus employ a circuit
switched protocol [7].

In an STP bus, the bus is not held by the master if the slave
device is unable to respond to the request immediately. The
bus is released by the master and is made available to other
bus requesters. When the slave device is ready to respond to
a request, it obtains bus mastership and transfers data to the
requesting device. An STP bus is used in the Sequent Balance
and Symmetry multiprocessors [5], [10], and is also being
considered for the IEEE Futurebus+.

C. Main Memory

The final component of the multiprocessor memory system
is the main memory and the parameter of importance is the
main memory latency. Many studies choose to ignore this
parameter (or assume that it is a constant). As we shall see,
including main memory latency is crucial since it influences
other memory system design parameters such as the cache
block size, especially with a circuit switched bus.

1Il. PERFORMANCE EVALUATION METHODS

For evaluating design choices, the favorite tool of a com-
puter architect is trace-driven simulation using traces generated
by the actual execution of sample benchmark programs (we
call this an actual trace-driven simulation in this paper).
Unfortunately, trace-driven simulation is expensive, both in
execution time and storage requirements (required to store the
traces). The storage expense of actual trace-driven simulation
can be reduced by parameterized trace driven simulation.
In parametrized simulation, artificial traces are generated on
the fly using probability distributions that have the same
characteristics as the actual program traces. Parameterized
simulation is still computationally expensive and is generally
not considered to be as accurate as actual trace-driven simula-
tion. Finally, one can develop an analytical model. Iterative
solutions of analytical models generally are much cheaper
computationally than trace-driven simulation and consequently
allow the designer to explore a much larger design space.

Multiprocessors with arbitrary interconnection networks
have been the subject of several previous studies [16],
[20]-{23]. Studies of bus-based multiprocessor design
issues have used trace-driven simulation [9], parameterized
simulation [4], as well as analytical modeling [27], [28]. For a
system as complex as a multi, ideally a system designer would

300

Blocking Request

(Read Miss, Invalidation) Occurs
Blocking Phase Execution Phlse\

4

R |

Processor Executes
Instructions Uninterrupted

Fig. 2.

like to use an accurate analytical model to explore the design
space with a minimal computational requirement.

We use both analytical modeling as well as actual trace-
driven simulation. The analytical models that we use are based
on a “customized” mean value analysis technique that has been
proposed in [28] and applied in [14], [18], and [29]. Trace-
driven simulation is used to study a few thousand cases and,
more importantly, build confidence in the analytical models.
Once the validity of the analytical models has been established,
we use the models to evaluate our design choices.

A. Customized Mean Value Analysis (CMVA)

Our CMVA models build on similar models developed to
study bus-based multiprocessors {14], [18], [28], [29]. The
CMVA method is appealing because it is simple and intuitive.
To start we simply follow the path of a cache miss request
and sum up the waiting times and processing times along the
way to form the equations for the cache miss response time.
Equations of waiting times are then constructed assuming the
relationship between the mean values of these times are stable
and consistent.

As mentioned earlier, the operational environment that
we consider for the multi is a throughput-oriented, general
multiuser environment where each processor is running a
different user task. We also assume that the average task
characteristics for the tasks executing on each processor are
the same, i.e., the environment is homogeneous.

1) Processor Execution Model: A processor’s execution his-
tory can be viewed as consisting of two alternating phases, an
execution phase and a blocking phase. During the execution
phase the processor executes instructions uninterrupted, with
all memory requests satisfied by its local cache. The processor
changes to the blocking phase when it makes a blocking bus
request. We distinguish between blocking and nonblocking
bus requests. A processor cannot proceed unless its blocking
request (read miss or invalidation) is satisfied; it can proceed
without waiting for its nonblocking request (write back of a
dirty block) to finish. The relationship of these events is shown
in Fig. 2.

The throughput of a processor during a time period rep-
resented by consecutive execution and blocking phases is the
number of instructions executed during the two phases divided
by the duration of the two phases. Since the processor is
blocked during the blocking phase, the throughput can be
calculated as the mean number of instructions executed by
the processor during an execution phase, divided by the mean
total time of the execution and the blocking phases. The mean
number of instructions executed in an execution phase, and the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

Non-Blocking Request
(Write Back) May Occur
Blocking Phase\A Execution Phase
—————————————— f—— Time
Processor Waits Till

The Blocking Request Is Satisfied

Execution history of a processor.

mean length of the phase are derived from the trace-driven
simulation of a single processor and its cache since these
values are not influenced by other processors in the system.
The mean length of a blocking phase, or the mean response
time of a blocking bus request, is calculated using a CMVA
model of the shared bus and main memory.

2) Circuit Switched Bus: We use the following notation:

Input Parameters

s T, is the mean processing time of a processor between
two successive blocking bus requests, i.e., the dura-
tion of the execution phase. 7T, can be expressed as
IT/(M x M), where IT is the average instruction
execution time, assuming all memory references are cache
hits. M is the sum of cache miss and invalidation ratios,*
and M. is the average number of memory references
generated per instruction.

T, is the bus arbitration time. One cycle is charged for
bus arbitration when a request arrives at the bus and the
bus is not busy.

¢ Ty (Tyo, Two) is the time for which the bus is needed
to carry out a read (invalidation, write back) operation,
excluding the bus arbitration time. The main memory
latency is included as a part of 7., for a circuit switched
bus.

» P, is the probability that a blocking bus request is a read
operation.

* P, is the probability that a blocking bus request is an
invalidation operation; note that P, + P, = 1.

* P, is the probability that a cache miss results in a write
back of a dirty cache block.

« N is the total number of caches (or processors) connected
to the shared bus.

Output Parameters

* R is the mean time between two successive blocking bus
requests from the same cache.

* Rs, (Rs,) is the mean response time of a read (invalida-
tion) request, weighted by P, (P,).

* W,, is the mean bus waiting time of a read or an
invalidation request.

* T.(T,,T,) is the bus access time of a read (invalidation,
write back) request, including the bus arbitration time.

* U, (U,,U,) is the partial utilization of the bus by the
reads (invalidations, writes back) from one cache.

« U,, is the partial utilization of the bus by the blocking
(read and invalidation) requests from one cache.

4Invalidation ratio is defined in a similar way to cache miss ratio. A write
hit to a clean block generates an invalidation, and invalidation ratio is the
percentage of memory references that cause invalidation.

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT 301

« U is the partial utilization of the bus by the requests from
one cache; NU is the total bus utilization.

* B, (B,,By) is the probability that the bus is busy
servicing a read (invalidation, write back) request from a
particular cache, when a new read or invalidation request
arrives.

* Re’ (Re",Re") is the residual service time of a read
(invalidation, write back) request, when the request is
currently being serviced by the bus and a new read or
invalidation request arrives.

« W, is the mean bus waiting time of a write back request.

« Q,(Q,.Q,) is the mean number of read (invalidation,
write back) requests from the same cache in the bus.

o K’ (K!..Kq) is the mean waiting time of a read or an
invalidation request, due to the read (invalidation, write
back) requests already in the bus.

« K7 (KE.KU) is the mean waiting time of a write back
request, due to the read (invalidation, write back) requests
already in the bus.

Response Time Equations: The mean time between two
successive blocking bus requests (read miss or invalidation)
from the same cache, IR, is the sum of T, and the mean time
spent in the blocking phase, which is the weighted mean of the
delays of the two types of blocking bus requests. Therefore,

R=T.+ Rs, + Rs.:
Rs, = Pr'(Wrr + Tx'):

where

€r=T,0.

The time that a request spends on the bus is the time that is
needed to service the request once it has obtained mastership
of the bus, plus any time that might be spent in arbitration for
bus mastership. If the bus is busy servicing a request while
the arbitration for mastership for the next request takes place,
the arbitration time is overlapped completely and does not
contribute to the time spent by a request on the bus. On the
other hand, the entire time to carry out arbitration is added to
the time spent on the bus by a request if the request arrives
when the bus is free. We approximate the arbitration time
component of a request’s bus tenure by considering it to be
proportional to the probability that the bus is busy when a
request from a cache arrives.

The probability that the bus is idle is (1 — NU). How-
ever, since a cache can have only one outstanding blocking
request at a time, a blocking request will never see another
blocking request from the same cache using the bus when
the request reaches the bus. The fraction of time that the
bus is servicing a blocking request from a particular cache
is U,.,. A new blocking request from the same cache can
therefore arrive at the bus only during the remaining fraction
of time, i.e., (1 = U,,). Of this fraction, (NU — U,,) is spent
servicing other requests. Therefore, the probability that the
bus is busy when a blocking request arrives from a cache is
(NU = U,,)/(1 = U,,), and the probability that the bus is
idle is (1 — (NU = Up) /(1 = Up))-

For a nonblocking request (write back) this probability
becomes (1 — (NU — U)/(1 = U)). U instead of U, is used
because we assume that a write back request can only be issued
immediately after a cache block is returned from the main

memory (a result of an earlier blocking request on a cache
miss), and it should never see any other request, blocking or
nonblocking, from the same cache using the bus. Therefore, the
total bus access times for blocking and nonblocking requests
are

NU = Uy, . 1-NU _
T,[,- — <1 - 1 . U”») X T‘u +110 - 1 _ U“y X Ta +T1r:<
€r=ruv
NU-U 1-NU
, = _—— N = —————— Too-
T[L (1 1 _ (I > X 7—‘“ +TUU l _ U x T' + uo

Waiting Time Equations: Using the mean value technique
for queueing network models [17], we decompose the waiting
time of an arriving request into three components based on the
types of the requests that delay the service of the new request.
For a blocking request

W, =K'+ K!, + K&
where

K?, = (N - 1)((@, — B.) x Tc + B, x Re"):
€£r=ru

1

K" = N((Q, — Bu) x Tu + By X Re").

The residual service time for the request that is being serviced
when a new read or invalidation request arrives is [17]

Re” =~ =T

2
The probabilities that the bus is busy servicing the request from
a particular cache when a new read or invalidation request

arrives can be approximated as

U,
B, = = 'Uw: £ =T,0,W
where
P.T,
U, = —R_ €r=1r.
PP T,
Uu,» = =
R
U, =U,.+U,

U=U,+U.+U,.

A scaling factor of (1 — U,.,,) is used because when a blocking
request such as a read or an invalidation arrives at the bus it
will not see any blocking request from the same cache being
serviced by the bus.

The mean number of requests from a particular cache, or the
mean partial queue lengths contributed by a particular cache
seen by the arriving request can be approximated by

— Rs, P.(W,, .

QI:——}? :—————(R+T): r=7ruv
- _ Pu*Pr(VVu' + Tw)
Qu; - R .

Here the queue lengths include the request that is currently
being serviced by bus. K. Ky and K2 can now be

T

302

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

Program 1 Program 2 Program N
,,,,,,,,,,,,,, oo e Y
v v v
Program Program Program
Interpreter Interpreter Interpreter
(Processor) (Processor) (Processor)
Memory Trace
Cache Cache Cache
Simulator Simulator Simulator
{Cache) (Cache) (Cache)
—
Bus Trace
(Cache Miss Trace)
Bus Simulator
(Bus, Main Memory)

Fig. 3. Trace-driven simulation setup.

computed as
PR (=
R
XTT—I-B,XR(‘,I); r=7,v

Ko = N((Prpw(w;w +Tw) Bw>

x Ty + By X Rew)

Similarly, we can derive the waiting time equations for a write
back request:
Ww = K; + K:i, + K:IU
where
PCIT(WTL' + TJ,‘)

K*=(N-1)Q,T,=(N-1)x = X Ts
=70
_ P (W,
K% = (N = 1)@, T = (N — 1) x Lufe@WutTu) o

R

In the above equations for K2 and K, we assume that a
write back request immediately follows a cache miss read and
is issued after the main memory reply to the miss read arrives
at the cache. Therefore, when the write back request arrives
at the bus, the residual service time of the request is simply a
complete service time of the request.

3) STP Bus: The derivation of the CMVA model for an STP
bus is carried out along similar lines as in the case of a circuit

switched bus and is summarized in the Appendix.

B. Trace Driven Simulation

1) Simulators: Our trace-driven simulation, whose main pur-
pose is to validate the models of Section III-A, is carried out

using a software simulator which simulates program execution
on a Sequent Symmetry-like multiprocessor. The simulator
consists of three modules: 1) a program interpreter or tracer,
2) a cache simulator, and 3) a shared bus (and main memory)
simulator. Fig. 3 shows the basic setup of the simulator.

The benchmark program whose execution is to be simulated
is compiled into the Intel 80386 machine language using the
Sequent Symmetry C compiler. The tracer program then uses
the prrace facility of Dynix® and interprets the program to
obtain a dynamic memory trace. It does so by stopping after
the execution of each instruction, examining the core image of
the instruction, and interpreting the instruction to generate the
memory reference trace records. Each memory trace record
contains the virtual memory address accessed, the access type
(a read or a write), and the time the access is made. The time
associated with each memory reference in the trace generated
by the tracer program is the dynamic instruction number which
generated the memory reference and is an ideal number that
would represent the time at which the memory reference
would be generated if: 1) all memory references generated
by an instruction are generated simultaneously, 2) all memory
references are serviced in zero time, and 3) all instructions
take the same amount of time to execute.

Since the time at which memory references are generated
during the execution of an instruction and the execution time of
each instruction are highly dependent upon the implementation
of the processor, we shall assume that all instructions take
the same amount of time to execute, and that all memory
references from an instruction are generated at the same time
(of course they are submitted to the memory onc at a time). To
obtain realistic times at which the memory references would
be generated and serviced in the multiprocessor environment,

SDynix is the Unix operating system adapted to run on the Sequent
Symmetry.

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT

303

Instruction Execution Time «.......... Processor 1 Processor 2 Processor N l
l Uniprocessor Trace [

' |

Cache 1 Cache 2 ‘ Cache N ‘

‘ Cache Miss Trace]
Request Queuing Delay PPV,
Bus Arbitration Delay

Bus Transfer Time PR
Bus Arbitration Delay

Shared Bus

(Split Transaction)

Request Queuning Delay ...
S ;ﬂ; ng «

t Transaction)

Main Memory Latency PR ’

Main Memory

Fig. 4. Timing delays in the multi.

the memory traces have to be passed through the cache and
bus simulators.

The memory trace generated by the tracer program is used
to drive a cache simulator. By filtering out references that are
cache hits (of course depending upon the cache organization),
the cache simulator generates a cache miss, write back, and
invalidation trace, i.c., a trace of bus requests. Each bus trace
record contains the time of generation (still an ideal time) and
the type of the bus request. We use the Berkeley Ownership
protocol for generating the invalidation requests [15], though
any other protocol could be used in a straightforward manner
in the cache simulation. Although our throughput-oriented
environment precludes any sharing of data between caches,
we assume that the coherence protocol is enforced at all times,
and an invalidation request is generated when a write occurs
to a clean cache block.

Bus traces from several benchmark programs are then used
to drive a bus simulator which simulates the operation of the
shared bus and the main memory. In deciding which request
is to be serviced next, the bus simulator uses a FCFS policy.
The relevant delays and timing parameters in our simulation
model are shown in Fig. 4. For each input bus request, the
latency seen by the request is the sum of bus queueing delay,
the bus transfer time of the request, and for a cache miss read,
the reply. As a result of the bus simulation, the realistic time
at which each memory reference is serviced is obtained. Note
that the decoupling of cache and bus simulations is possible
due to the assumption of a throughput-oriented multiuser
environment. In such an environment the actual memory
performance will not affect the occurrences and the partial
ordering of the events that happen on each processor and
cache (this may not be true if the multiprocessor is executing
a parallel program). The bus simulation simply calculates a
total ordering with a correct time scale for all the events in
the system.

In our simulation, we assume that a processor stalls until its
blocking request (cache miss read or invalidation) is serviced,
L.e., it can have only one outstanding memory request.® We also
assume that there is no task migration. The latter assumption

®This is true in shared bus multiprocessors that use microprocessors as

their CPU’s. Most microprocessors allow only a single outstanding memory
request.

is made to keep the simulator manageable and does not affect
our purpose of the simulation, which is to validate our CMVA
models.

C. Model Validation

The benchmark programs that we use to validate the models
are: 1) as, which is the assembler for the Intel 80386 proces-
sor, 2) cache, the cache simulator itself, 3) csh, the command
interpreter, 4) nroff, the nroff text processing program. These
benchmarks are used for validation since they are commonly
used in the Unix environment and also so that we can simulate
their execution and obtain complete and accurate knowledge
about which memory references are associated with each
instruction. This information is necessary to associate an ideal
time of generation for each memory request. We would like
to mention that cache and bus simulation (mentioned later)
to validate the models could be carried out using other traces.
However, most such traces are typically a sequence of memory
references, with no explicit notion of the time of generation
of each reference, and associating an ideal time of generation
with each reference is not always possible.

Using the tracer program a memory trace is collected for
each benchmark for 1 million instructions executed. The traces
are then passed through the cache simulator. For each cache
configuration and for each memory trace we collect a set of
statistics and generate a bus request trace file. The statistics
(M. Myot. Pr. P, and P,,) are used as inputs to the CMVA
models, and the bus request trace file is used to drive the bus
simulator.

Bus simulation is then carried out using the bus request trace
files for each configuration. More details on the bus simulation,
and how statistics are gathered during bus simulation, can be
found in [8].

To validate the model, we consider several multiprocessor
configurations with varying number of processors, memory
system parameters, and instruction execution speeds. More
specifically, we consider: 1) average zero memory-wait-state
instruction execution times of 2, 3, or 4 bus cycles,” 2) 8
or 16 processors, 3) cache sizes of 4K, 8K, 16K, 32K, 64K,

7All times in our model are in terms of bus cycles where a bus cycle is the
time taken for a single transfer on the bus.

304

100

80 4

60

Goa W ~3 000D

-0

40

-

20 4

v o w0

0

-10 -5 0 5 10

Percentage Deviation
@

Fig. 5.

128K, or 256K bytes, 4) cache block sizes of 4, 8, 16, 32,
64, 128, 256, or 512 bytes, 5) direct mapped or two-way set-
associative caches, 6) main memory latencies of 3, 5, 7, or
9 cycles, and 7) circuit switched or STP buses, each with a
bus width of 32 bits, and multiplexed address and data lines.
The cross product of the parameters therefore allows us to
evaluate and compare system performance using our trace-
driven simulation and our CMVA models for 5376 system
configurations.

Using inputs to the CMVA models obtained from the cache
simulations mentioned above, and the other parameters of the
memory system configuration, we solve the models iteratively
and obtain the average multiprocessor throughput, which is the
sum of the throughputs of the individual processors. Having
obtained the results using both techniques, we compute the
percentage difference between the values obtained. Since our
emphasis in this paper is evaluating design choices, and since
we shall use processor throughput as the performance metric
(see Section 1V), we only consider the validity of the models
in determining processor throughput here. A comprehensive
comparison between the results of the models and simulation
for other metrics, such as read latency and bus utilization, is
carried out in [8].

Fig. 5 histograms the percentage difference between the val-
ues of the average multiprocessor thoughput obtained from the
trace-driven simulation and the CMVA analysis. Fig. 5(a) and
(b) each represent 2688 system configurations using circuit
switched and STP buses, respectively. In the histograms, a
negative difference indicates that the value obtained by the
CMVA models is less than the value obtained by simulation.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

80

60 4

O PE~T060- 0"

- 0

40 4

——

20 A

P e}

-10 -5 0 5 10

Percentage Deviation

(b)

Difference in processor throughput between the results of the CMVA models and trace-driven simulation. (a) Circuit switched bus. (b) STP bus.

Each step in the histogram represents a 2% difference.

Fig. 5(a) and (b) show that in about 80% of the 2688 cases
of a circuit switched bus and 60% of the 2688 cases of an
STP bus, the magnitude of the difference in multiprocessor
throughput obtained from the two techniques is less than 1%.
We can also see that in more than 92% of the cases the
magnitude is less than 3%, in less than 0.5% of the cases
the magnitude of the difference is greater than 5%, and all
the differences are within 8%. This is quite encouraging since
it establishes the accuracy of our CMVA models and allows
the evaluation of the design choices to be carried out using
the models.

IV. EVALUATION OF DESIGN CHOICES

Since our models are quite accurate over a wide range of
multiprocessor configurations as illustrated in the previous
section and in [8], and since their solution is 4-5 orders
of magnitude faster than trace-driven simulation, we use the
models for our evaluation of design choices. To provide inputs
to the models, we need to obtain values of M, Mc¢, Py, Py,
and P, from traces that are representative of the workload for
which we want to evaluate design choices. While the miss
ratio characteristics, i.e., M, of various cache organizations
are easily available from the literature for a wide variety of
workloads, the values of M., P, P, and P, are typically
not available.

We could use the traces of Section III-C which were used
to validate our models. However, while those traces were
adequate for model validation, we feel that they are not

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT 308

sufficiently representative of workloads for which we would
like to evaluate design tradeoffs, especially since they contain
no operating system activity. Moreover, to put our results in
perspective, we would like to use workloads that have been
used previously for uniprocessor cache studies. Therefore,
we use traces generated using the Address Tracing Using
Microcode (ATUM) technique [1].

In the ATUM technique, patches are made to the microcode
of the machine to generate addresses for all the memory
references made by the processor. These refercnces include
references made by the user programs as well as references
made by the operating system. The ATUM traces that we
use are gathered via microcode patches on a VAX 8200 by
Agarwal and Sites. These traces are distributed by DEC,
are considered to be the best public-domain traces for a
multiprogrammed, multiuser environment, and they have been
widely used in recent cache studies [2], [3], [12], [13], [24].
By passing the ATUM traces through a uniprocessor cache
simulator we obtain the values of M. M,.¢. P.. P,.. and ..

Keeping in mind that our goal is to evaluate the impact
of a particular design choice in the memory system on the
peak multiprocessor throughput that can be supported by the
memory system, we compute the maximum multi throughput
for the memory system configuration (cache, shared bus, and
main memory). This is done using the following procedure.
For each memory system configuration, we compute the total
multi throughput (which is the sum of the throughputs of each
processor in the multi) for an increasing number of processors.
The maximum multi throughput is the throughput at the point
beyond which the addition of more processors contributes less
than 1% to the total throughput of the multi, i.c., the throughput
when the bus is saturated. The exact number of processors in
the multi at the point at which the maximum multi throughput
is achieved varies with the parameters of thc memory system.

Unless mentioned otherwise, for all the system configura-
tions that we evaluate in the coming sections, we assume that
the bus is 32 bits wide with multiplexed address/data lines
and has a cycle time of 50 ns (or is a 20 MHz bus), the
processor CPU’s have a peak performance of 5 VAX MIPS
and all caches are write back. We would like to mention that
the results we present are not tied specifically to the processor
and bus speeds. We have obtained similar results for other
CPU and bus speeds but we do not present them in this paper
due to space considerations. In all our experiments, throughput
is measured in VAX MIPS since the traces that we use are
relevant only to VAXen.

A. Cache Performance Metrics and Uniprocessor Performance

Before we evaluate our design tradeoffs, we consider the
performance of several uniprocessor cache organizations using
the ATUM traces and traditional uniprocessor cache per-
formance metrics. This allows the design choices for the
multiprocessor memory system to be compared with equiv-
alent choices for a uniprocessor memory system.

The miss ratio (in percentage) is presented in Fig. 6(a) for
various cache sizes and block sizes (all caches are direct

mapped and write back). For bus traffic. we distinguish
between data only traffic [Fig. 6(b)] and data and address
traffic [Fig. 6(c)]. The data traffic includes only the actual
data transfer cycles whereas the address and data traffic also
includes the addressing overhead (the bus is 32 bits with
multiplexed address and data lines). The data traffic ratio (in
percentage) is the ratio of the traffic that appears on the bus
in the presence of a cache to the traffic that appears without
the cache. Thus, if the data traffic ratio is 400%, it means that
the traffic on the bus with the cache is 4 times as much as the
traffic without the cache. We will use the data of Fig. 6 shortly.

As mentioned ecarlier, the impact of the memory system
on processor performance is directly governed by (1). In a
uniprocessor, if we assume that T and T are independent
of the cache organization, the best cache organization is one
that minimizes the overall miss ratio. However, as mentioned
carlier, TL and T, are not independent of cache organization,
and to evaluate the impact of the entire memory system on
processor throughput, the impact of TE and T¢ must be
considered. This is illustrated in Figs. 7 and 8.

In Fig. 7, we plot the throughput of a uniprocessor (in
VAX MIPS) as a function of the main memory latency for
several cache sizes and main memory latencies. For all cases,
the cache is direct mapped. The trends to be observed from
Fig. 7 are somewhat obvious: 1) as the main memory latency
increases, 1<, increases and consequently the throughput of the
uniprocessor decreases and 2) the impact of the main memory
latency on processor throughput is sensitive to the cache block
size. As we shall see, in multiprocessors neither trend needs
to be as pronounced as in the case of uniprocessors, especially
with an STP bus. More on this in Section IV-B.

Fig. 8(a)—(d) plots the processor throughput for cache sizes
of 4K, 16K, 64K, and 256K bytes, respectively, each with
varying set associativity and block size. The main mem-
ory latency is kept fixed at 250 ns (5 cycles) in all cases.
To account for the impact of set associativity on processor
throughput, Tg of caches with set associativities of 2, 4,
and 8 is 10% greater than TX for a direct mapped cache
[12]. Two trends are obvious from Fig. 8. The first trend is
that as cache size increases, the block size that results in
the best uniprocessor throughput increases. Furthermore, the
throughput tends to “flatten” out, indicating that several block
sizes may give roughly the same performance. The second
trend to note is that as cache size increases, the need for set
associativity decreases. For larger caches, when the cycle time
advantages of direct mapped caches are taken into account,
direct mapped caches can actually provide better throughput
than set associative caches even though the set associative
caches may have a better miss ratio. Both trends apparent in
Fig. 8 are well known and have been described in detail in
the literature on uniprocessor caches [13], [26]. Our purpose
of presenting them here is again to show that neither trend
may occur for multiprocessor caches that we discuss in the
upcoming sections.

8Bus traffic includes traffic generated to service miss requests, as well as
write back and invalidation requests.

306
25
-‘ Cache Size (bytes)
0 4k v 64k
o 8k ° 12k
a 16k + 256k
20 4 x 3%
M
i
s 154
s
R
a
t
i
° 10 4
%
i ¥
0 r T T r T T T !
4 8 16 32 64 128 256 512
Block Size (bytes)
@

O R -] w e W

O~ T

1000 4

100 4

10 4

Cache Size (bytes)

m]

[e]
A
X

IS

K v 64
K o 12
6k, 256k
2%

— 00

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

Cache Size (bytes)

D

S

kK v 64k
o 8% o I

a 16k 4 256k
X

1000

we W

%

T T T T T T T

16 32 64 128 256 5
Block Size (bytes)

(b)

IS
oo
-
(%)

L\

» o
oo

16

T T T T

32 64 28 256 5

—
—
N

Block Size (bytes)

©

Fig. 6. Cache performance metrics for the ATUM traces. (a) Miss ratio. (b) Bus traffic ratio (data only). (c) Bus traffic ratio (data and address).

B. Cache Block Size Choice

To evaluate the choice of a block size, we consider only
direct mapped caches (we consider other set associativities

in Section IV-C). Using our CMVA models, we calculate the
maximum multi throughput as the block size is varied, for
different cache sizes and main memory latencies. Fig. 9(a)—(d)
presents the maximum multi throughput (in VAX MIPS) with

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT

5,
4
M
a
X
i
m
u 34
m
T
h
r
o
24
u
g
h
P
u
t
1| Main Memory Latency (cycles)
o 3 11
o 5 13
a7 15
X 9
0 T T T T T T 1
4 8 16 32 64 128 256 512
Block Size (bytes)
(a)
"
4 |
M
a
X
i
m
u 3
m
T
h
r
o
. 24
g
h
p
u
t
1] Main Memory Latency (cycles)
o 3 11
o 5 13
a7 15
X 9
0 T T T T ¥ T 1
4 16 32 64 128 256

Block Size (bytes)

©

512

e B ~xw»

~ e T e 0 = T

Beg-nw¥

~E0W S0 s 0T

307

512

54
4
34
2 4
1] Main Memory Latency (cycles)
g 3 v n
o 35 o 13
a 7 + 15
X 9
0 T T T T T T T 1
4 8 16 32 64 128 256
Block Size (bytes)
(b)
S5
4 |
34
2
1 Main Memory Latency (cycles)
o 3 v 1
o S ° 13
a 7 + 15
X 9
0 T T T T T T T :
4 8 16 32 64 128 256

Block Size (bytes)

(d)

512

Fig. 7. Maximum uniprocessor throughput (in VAX MIPS) with varying main memory latency. (a) Cache size = 4K bytes. (b) Cache size = 16K bytes.

various cache sizes and main memory latencies for a circuit
switched bus and Fig. 10(a)—(d) presents the same for an

STP bus.

(c) Cache size = 64K bytes. (d) Cache size = 256K bytes.

From Fig. 9, we can make several observations about mem-

ory system design choices with a circuit switched bus. First,
larger block sizes tend to be favored as the cache size is

308

5
1
4 |
M
a
X
i
m
u 34
m
T
h
T
[+]
v 24
g
h
P
u
b 1 Cache Organization
X Direct Mapped
O 2 Way Set Associative
o 4Way
A 8Way
0 T T T T T T T 1
4 8 16 32 64 128 256 512
Block Size (bytes)
@
54
4
M
a
X
i
m
u 3 4
m
T
h
T
o
u 2 4
g
h
P
u
t
1 Cache Organization
X Direct Mapped
O 2 Way Set Associative
o 4Way
a 8 Way
0 T r T T T T T |
4 8 16 32 64 128 256 512
Block Size (bytes)
©

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

1
4 J
M
a
X
i
m
u 34
m
T
h
r
o
24
4
h
p
u
! 1 Cache Organization
X Direct Mapped
O 2 Way Set Associative
O 4Way
A 8Way
0 T T T T r T T !
4 8 16 32 64 128 256 512
Block Size (bytes)
(b)
5
4 4
M
a
X
i
m
u 34
m
T
h
r
o
a 24
g
h
P
u
t
1 Cache Organization
X Direct Mapped
O 2 Way Set Associative
o 4Way
A 8 Way
0 T T T T T T T 1
4 8 16 32 64 128 256 512
Block Size (bytes)
@

Fig. 8. Maximum uniprocessor throughput (in VAX MIPS) with varying cache set associativity. (a) Cache size = 4K bytes. (b) Cache size = 16K bytes.
(c) Cache size = 64K bytes. (d) Cache size = 256K bytes.

increased. However, the trend towards larger block sizes is not
as strong as in the case of a uniprocessor (compare Fig. 9 with
Fig. 7). While the trend towards larger block sizes may seem

obvious, we point out that this conclusion can not be derived
from a simple consideration of the bus traffic and/or the miss
ratio cache metrics. From Fig. 6 we see that the miss ratio

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT 309

160 - 160 -
Cache Size (bytes) Cache Size (bytes)
o 4k v 64k o 4k v 64k
o 8k 12k o 8 12k
M © M °
a A 16k + 256k a A 16k + 256k
X X 32k X X 32k
i 120 i 120
m m
u u
m m
M M
u u
1 1
t 80 to80
1 1
T T
h h
T r
o o
u u
g g
ho 404 no 404
p P
u u
t 9/6’_6\9\& |
0 0 . T T T T T T
4 8 16 32 64 128 256 512
Block Size (bytes) Block Size (bytes)
(a) (b)
160 . 160 -
Cache Size (bytes) Cache Size (bytes)
o 4k v 64k O 4k v 64k
o 8k 12k 8k 12k
M ° M o °
a A 16k + 256k a A 16k + 256k
x X 32k x X 32
i 120 i 120
m m
u u
m m
M M
u u
1 1
t 80 4 t 80
1 1
T T
h h
r r
(o] o
u u
g 4
b 40 h 40
P P
u u
[A/ﬁ/H‘B\ t
0 0
4 8 16 32 64 128 256 512
Block Size (bytes) Block Size (bytes)
©) @)

Fig. 9. Maximum multi throughput (in VAX MIPS) with a circuit switched bus. (a) Main memory latency = 150 ns. (b) Main memory latency = 250 ns.
(¢) Main memory latency = 350 ns. (d) Main memory latency = 450 ns.

metric favors larger block sizes as cache size is increased but not sufficient since the bus is held by the master until the entire
the bus traffic metrics still favor smaller block sizes. In a circuit transaction is complete. A read transaction includes the main
switched bus, consideration of the bus traffic alone is clearly ~memory latency and therefore, the data traffic performance

310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

160 - 160 -
Cache Size (bytes) Cache Size (bytes)
o 4k v 64k o 4k v 64k
8k 12k o 8k 12k
M ° ° M o
a A& 16k + 256k a A 16k + 256k
X X 32k X X 32k
i 1204 i 120 4
m m
u u
m m
M M
u u
1 1
t 80 ' 80
i i
T T
h h
r r
o o
u u
g g
h 40 h 40 4
P p
u u
t t
0 r T T T T T 0 T T T T T T
4 8 16 32 64 128 256 512 4 8 16 32 64 128 256 512
Block Size (bytes) Block Size (bytes)
(@) (b)
160 160 1
Cache Size (bytes) Cache Size (bytes)
o 4k v 64k O 4k v 64k
o 8 12k o 8 12k
M ° M o
a a 16k + 256k a A + 256k
x X 3% x X 32k
i 120 i 120
m m
u u
m m
M M
u u
1 1 .
t 801 t 8o
i i
T T
h h
r r
o o
u u
g g
h 40 h 40 |
P P
u u
t t
O T T T T T T 0 T T T T T T
4 8 16 32 64 128 256 512 4 8 16 32 64 128 256 512
Block Size (bytes) Block Size (bytes)
© @

Fig. 10. Maximum multi throughput (in VAX MIPS) with an STP bus. (a) Main memory latency = 150 ns. (b) Main memory latency = 250 ns.
() Main memory latency = 350 ns. (d) Main memory latency = 450 ns.

metric (which is influenced only by the cache organization and ~ choices, all factors that can influence performance must be
not by other parameters of the memory system) is not a good taken into account.
indicator of the bus utilization. To accurately evaluate design Second, the choice of the block size is also sensitive to the

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT KN

main memory latency in a circuit switched bus. When main
memory latency is high, larger block sizes tend to be favored
(Fig. 9), just as in the case of a uniprocessor (Fig. 7).

Third, the main memory latency has a significant impact on
the maximum performance that can be achieved. For example,
in going from a main memory latency of 150 ns to 450 ns
with a 256K byte cache, the maximum multi throughput, with
the best block size, decreases from about 100 MIPS to about
67 MIPS. This is becausc the communication protocol of a
circuit switched bus is such that the bus is not available for
use until the entire transaction is complete, and a large main
memory latency contributes significantly to the bus utilization.

For an STP bus (Fig. 10), the results are somewhat different.
First, larger block sizes seem to be favored as cache size
increases (up to a point), just as in the case of a circuit
switched bus. In an STP bus, the bus traffic (address plus data)
is an accurate indicator of the utilization of the bus. Therefore,
why might larger block sizes be favored with STP buses even
though smaller block sizes result in a lower bus utilization? To
understand this, we need to look at (1) as well as the shapes
of the miss ratio and the traffic ratio in Fig. 6.

The memory latency in (1), TP, includes both the prob-
ability of making a bus request (the miss ratio A7) as well
as the queueing delay that the request experiences (a part of
T<). While the queueing delay increases as the utilization of
the bus increases with a larger block size, M may decrease
sufficiently with the larger block size to offset the additional
queueing delay. That is, with a larger block size, the processor
may be able to achieve a higher throughput by carrying out
local (in cache) computation more often than with a smaller
block size, even though it experiences a bigger penalty for
nonlocal access. The opposing trends in miss ratio and bus
traffic (or bus utilization in case of an STP bus) in Fig. 6 lead
to a best block size that may not result in either the best miss
ratio or the best bus traffic.

Second, the choice of the block size that allows the best
maximum multi throughput seems to be insensitive to the
main memory latency. In fact, this is just one facet of a more
interesting phenomenon that the maximum multi throughput
appears quite insensitive to the main memory latency.

These seemingly counter-intuitive observations can be ex-
plained as follow. If we view a main memory reply in
response to an eariier memory read from a processor as part
of the bus access activity of the processor, increasing the
main memory latency has the same effect as increasing the
idling time between the two accesses (the bus read and
the subsequent main memory reply). The resulting smaller bus
access rate of each processor (due to the increased idling time)
reduces the bus utilization and hence the bus queueing delay.
Therefore, the cache miss latency, T, which includes the
main memory latency as well as the queueing delay, does not
increase to the same extent as the increase in the main memory
latency. Fig. 11 shows this effect. In the initial configuration
the main memory latency is 3 cycles (or 150 ns) and each
processor has a 64K byte cache. By connecting a sufficient
number of processors to the bus, the system saturates and
delivers its maximum throughput. Keeping the same number of
processors that saturate the bus with a main memory latency of

3 cycles, the increase of cache miss latency is plotted against
larger values of main memory latency. From Fig. 11 we can
see that, for example, when block size is 64 bytes, changing
main memory latency from 3 cycles to 15 cycles (750 ns)
increases the cache miss latency by only 2 cycles (100 ns); the
difference represents a decreasc in the queueing delay because
of the slightly slower bus access rate of each processor, and
the conscquent lower bus utilization.

The increase in miss latency, however reduced, still de-
creases the throughput of an individual processor. However,
since the bus utilization is also reduced, more processors can
be added to compensate for the loss of the performance of
the individual processors. This is illustrated in Fig. 12 which
shows the number of processors used to deliver the maximum
multi throughput for different main memory latencics. As
we can see, the number of processors that can be connected
together to achieve the maximum multi throughput increases
with the decrease in throughput of cach processor due to
the increase in main memory latency. Putting it together, the
maximum throughput of a multi with an STP bus seems to
be quite insensitive to the main memory latency, as evidenced
by the nearly identical graphs for varying memory latencies in
Fig. 10(a)—(d). Of course, if the number of processors in the
muiti were fixed, the throughput of the multi would decrease
as the memory latency was increased.

C. Cache Set Associativity Choice

We now consider the choice of the set associativity for the
cache in a multi. In Fig. 13(a)—(d), we present the maximum
multi throughput that can be supported by a memory system
using cache sizes of 4K, 16K, 64K, and 256K bytes, respec-
tively, with varying set associativities. For each cache size, we
consider a direct mapped, two-way, four-way, and eight-way
set associative organizations. Again the cycle time of a cache
with set associativity of 2, 4, or 8 is assumed to be 10% longer
than the cycle time of a direct mapped cache. The bus is an
STP bus and the main memory latency is 250 ns (5 cycles).

In Fig. 13 we can see that for all four cache sizes, the
maximum multi throughput increases at least 20% when two-
way set associative instead of direct mapped caches are
used, if these caches always choose the block sizes that
give the best performance. For example, when cache sizes
are 256K bytes and block sizes are 16 bytes, the maximum
multi throughput increases from 128 MIPS with direct mapped
caches to 156 MIPS with two-way set associative caches,
an improvement of 22%. These data suggest that two-way
or four-way set associativity may be warranted in a multi
even when the cache size is quite large (256K bytes). This is
unlike uniprocessor caches where the need for set associativity
diminishes significantly as the cache size increases [12],
[13], [24].

The reason why a larger associativity is favored for the
multiprocessor caches is due to the fact that caches with
a larger associativity lower the miss ratio as well as the
per-processor utilization of the shared bus. The lower bus
utilization results in a lower queueing delay and consequently
a lower overall TS . Therefore, the product M x TS might

m

decrease sufficiently to offset the increase in T2, resulting in

312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

1 S'Ow Block Size (bytes)
n
c a 4 v 64
; A 16 + 256
a 254
s
e
i
no20
M
i
s
s
15 |
L
a
t
e
noo
c
y
(
c
y 051
c
1
e
s
) 0'0 T T T T T 1
3 S 7 9 11 13 15
Memory Latency (cycles)
Fig. 11. Increase in cache miss latency.
507 Block Size (bytes)
o 4 v 64
a 16 + 256
N 40
u
m
b
¢ * 2 w2 2 H/E
r v 7 7 v 9
30
o
f
P
T
o
¢ 20
¢ + 4 + + 1 i
s —t + +
s
[
T
s 104
0

T T T T T T 1

3 5 7 9 11 13 15
Memory Latency (cycles)

Fig. 12. Number of processors that give the maximum multi throughput.

a lower T This is in contrast to a uniprocessor in which TS of M alone may not be sufficient to offset the increase in
is independent of the cache set associativity, and a decrese TE due to the increased cache set associativity. Furthermore,
in the value of M x TS due to a decrese in the value the lower per-processor bus utilization with an increased set

CHIANG AND SOHL: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT 313

associativity allows more processors to be connected together,
and to improve the multiprocessor throughput, even though the
throughput of each processor might suffer. Therefore, keeping
in mind that caches in multiprocessors serve to reduce memory
latency as well as to increase system throughput (by reducing
the demand for the shared bus) whereas the main purpose
of a cache in a uniprocessor is to reduce memory latency
and to improve uniprocessor throughput, we see that a larger
set associativity may be warranted in a multiprocessor even
though it may not be warranted in a uniprocessor with similar
memory system parameters.

Also observe that set associativity has little effect on the
choice of the best block size. This reinforces our results of
Section [V-B on block size choice that were derived for direct
mapped caches.

D. Bus Choice

From the results presented in Figs. 9 and 10, it is clear
that an STP bus can provide much better maximum system
performance than a circuit switched bus, especially when the
main memory latency is large. Furthermore, an STP bus is
able to sustain maximum system performance for a wide range
of main memory latencies. However, for low main memory
latencies, circuit switched buses can compete in performance
with STP buses.

Finally, we consider the bus width choice. Fig. 14 shows
the performance impact of increasing the bus width. In all
cases the main memory latency is 250 ns and an STP bus
is used. For both 64K and 256K bytes caches, doubling the
bus width from 4 bytes to 8 bytes increases the maximum
multi throughput by about 50% (at a block size of 16 bytes).
Each further doubling of the bus width improves performance
less (about 30%). A wider bus decreases the block transfer
time and consequently the bus utilization and the queueing
delay. The reduced queueing delay and bus transfer time
improve the read latency and the throughput of an individual
processor; the reduced bus utilization allows more processors
to be added to the system. Increasing the bus width appears to
be an effective way of improving system performance, but has
diminishing returns. It warrants investigation when a system is
being designed, just as any other memory system parameter.

While our results on bus choice are not unexpected, we
reiterate the need to include all components of the memory
system in evaluating any design choices and determining
the magnitude of the maximum system processing power.
Furthermore, our analytical models allow one to determine
quantitatively the magnitude of performance difference be-
tween arbitrary design choices in the memory system.

V. SUMMARY AND CONCLUDING REMARKS

We have considered the evaluation of design choices for
shared bus multiprocessors (multis) operating in a multiuser,
throughput-oriented environment. We developed “customized”
mean value analysis (CMVA) models for evaluating multis and
compared the values of processor throughput obtained from
the models with the values obtained from actual trace-driven
simulation for 5376 system configurations. Our results indicate

that the CMVA models can predict the processor throughput
with an error of less than 3% in about 90% of the cases and
with an error of less than 5% in almost all cases (99%). This
is done with computational requirements that are typically
about five orders of magnitude less than that of trace-driven
simulation. Therefore, we believe that the CMVA models
are a very useful tool in exploring the design space and in
evaluating design choices in bus-based, throughput-oriented
multiprocessors.

Using our CMVA models and processor memory reference
characteristics derived from the widely-used ATUM traces,
we evaluated some design choices in the memory system of
a multi. We found that a simple consideration of traditional
performance metrics (such as miss ratio and bus traffic),
independent of the parameters of the shared bus and the main
memory, is likely to result in erroneous conclusions. With a
circuit switched bus, it is especially important to consider all
components of the memory system, including main memory
latency. With a split transaction, pipelined (STP) bus, main
memory latency is less crucial to maximum multi throughput,
but the best block size is neither the one that results in
the lowest cache miss ratio nor the one that results in the
lowest bus traffic. Also, an STP bus is preferable to a circuit
switched bus if the system performance is to be maximized.
The performance of an STP bus can be further improved, with
diminishing returns, by increasing the bus width.

We also considered the need for set associativity in
the caches. Although the importance of set associativity
in uniprocessor caches diminishes when the cache size
is as large as 256K bytes, we find that set associativity
is desirable in multiprocessors even with such large
caches. This is because the additional set associativity
reduces the per-processor bus bandwidth demand and allows
more processors to be connected together in the multi,
thereby increasing the maximum multiprocessor through-
put.

Our evaluation of design choices is specific to the traces that
we use and while we caution the reader against interpreting
our results as true in general, we encourage the reader to
use mean value analysis models similar to the ones we have
considered, customize them to their particular environment,
drive them with program characteristics particular to their
environment, and use the models to evaluate their design
choices.

APPENDIX
THE CMVA MODEL FOR AN STP Bus

We use the following additional notation for an STP bus:

Input Parameters

e T,, is the main memory latency.

* T,, is the bus access time of a read request, excluding
the bus arbitration time.

* Ty, is the bus access time of a block transfer either for a
cache write back or a main memory reply, excluding the
bus arbitration time.

Qutput Parameters

* W, is the mean bus waiting time of a read or an

314 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992
200 200 -
Cache Organization Cache Organization
X Direct Mapped X Direct Mapped
O 2 Way Set Associative O 2 Way Set Associative
M M
a o 4Way a o 4Way
b3 160 4 A 8Way x 160 4 A 8Way
i i
m m
u u
m m
M 120 J M 120
u u
1 1
t t
i i
T T
h 804 h 804
r r
o o
u u
g g
h h
P 404 P 40 4
u u
t t
O T T T T T T T 0 T T T T T T T
4 8 16 32 64 128 256 512 4 8 16 32 64 128 256
Block Size (bytes) Block Size (bytes)
(a) (b)
200 - 200 -
Cache Organization
X Direct Mapped
O 2 Way Set Associative
M M
a o 4Way 2 160
x 160 4 A 8Way x 7
i i
m m
u u
m m
M 120 M 120 4
u u
1 1
t t
i i
T T
n 804 b 80
r T
o [
u u
g g
h h Cache Organizati
P 40 P 40 ache gamzauon
s . X Direct Mapped
O 2 Way Set Associative
o 4Way
A 8Way
0 T T T T T T T 1 0 T T T T T T T
4 8 16 32 64 128 256 512 4 8 16 32 64 128 256
Block Size (bytes) Block Size (bytes)
© @

Fig. 13. Maximum multi throughput (in VAX MIPS) with varying cache set associativity. (a) Cache size = 4K bytes. (b) Cache size = 16K bytes. (c) Cache
size = 64K bytes. (d) Cache size = 256K bytes.

the bus arbitration time.
» T, is the bus access time of a write back or a main
memory reply, including the bus arbitration time.

invalidation request.
e W, is the mean bus waiting time of a main memory reply.
« T, is the bus access time of a read operation, including

e —eZ BeBexws X

~ED TR E O T

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT 315
500 500
Bus Width (bytes) Bus Width (bytes)
o 4 o 4
N B6 " N 86
1 1
a0l 2 d a0 2
X 32 x X 32
v 64 ! v o«
m
u
m
300 M 300
u
i
t
1
T
200 4 h 200 4
T
o
u
g
h
100 | & P 100
u
t
0 T T T T T T T T 0 : : . . . - .)
4 8 16 32 64 128 256 512 4 8 16 32 64 128 256 512
Block Size (bytes) Block Size (bytes)
(a) (b)
14. Maximum multi throughput (in VAX MIPS) for an STP bus with varying bus width. (a) Cache size = 64K bytes. (b) Cache size = 256K bytes.

Fig.

U, denotes the partial utilization of the bus by the read
requests from one cache.

U, denotes the partial utilization of the bus by the main
memory replies to one cache.

U, denotes the partial utilization of the bus by the reads,
invalidations from, and the main memory replies to onc
cache.

Qq denotes the mean number of read requests from the
same cache in the bus.

@, denotes the mean number of main memory replies to
the same cache in the bus.

B, (B..B,) is the probability that the bus is busy
servicing a read (invalidation, write back) request from a
particular cache, when a new read, invalidation, or main
memory reply arrives.

B, is the probability that the bus is busy servicing a
main memory reply to a particular cache, when a new
read, invalidation, or main memory reply arrives.

Re? is the residual transfer time of a read request when
the request is serviced by the bus and a new read,
invalidation, or main memory reply arrives.

Re? is the residual transfer time of a main memory reply
when the memory reply is serviced by the bus and a new
read, invalidation, or main memory reply arrives.

K¢ (K. Kj.l) is the mean bus waiting time of a read re-
quest, an invalidation from, or a main memory reply, due
to the read (invalidation, main memory reply) requests
already in the bus.

K\ is the mean bus waiting time of a read request or an

invalidation, due to the writes back already in the bus.
« K} is the mean bus waiting time for a main memory
reply, due to the writes back already in the bus.
« K is the mean bus waiting time of a write back request,
due to the main memory replies already in the bus.
Response Time Equations: The response time equations of
the CMVA model for an STP bus can be derived in a way
similar to that for a circuit switched bus.

R="T.+ Rs, + Rs,
Rs, =P (W + T, + T + Wa+ Ty)
Rs, = Po(Wy + T0)

where

NU -U, 1—- NU
Tr =|1—-——— a Tro = T Ta Tro:
: (1—U,.>XT+‘ -, et

x=q.u.d

(N-1)U 1-NU
T,=|1-——— T o= —— X Ty + Ty
u: < 1-U X u+Zi 1-U X + 14

Waiting Time Equations: The waiting time equations for an
STP bus are more complicated than those for a circuit switched
bus because there are four kinds of requests in the system: a
cache can generate read, write, and invalidation requests, and
the main memory can generate replies in response to read
requests. An arriving request can see all four kinds of requests
in the bus queue, hence its average waiting time consists of

316

four components.
Wy, = K+ K + Ki + K,
K =(N- 1)((@1 — BI) x Ty + By x Re’); r=q,v,d
K% = N((Q, — Bw) X Tw + By, x Re")
Wy=Ki+ K+ K!+ K

Ky = (N -1)((Q, — Bw) x Tuw + By x Re")

W, = Ki, + K + K, + K

Kza; = (N - l)asz

r=gq,d,v,w.

The multiplication factor for K3, is N and for Ky is
(N — 1) because an arriving read or invalidation request
may see a write back request from the same cache in the
bus, whereas a main memory reply destined for a particular
cache will never see a write back from the same cache on
the bus. The equations for the residual service time of the
request that is currently being serviced, when a new read or
invalidation request from some cache, or a reply from main
memory arrives, are

z=q,v,d,w.

The remaining equations are

U]) . , —
Ba:—'mv Jf—fIW»daw
— P.(Wy, + T,

Qq — (QR q)
= P (Wep+T,
3, - B0t T
— P (Wi+1Ty)
QU=""F
— P.P,(Wy + Tw)
Qu= ="
P.T,
U, = }31 5 z= qu
P,T,
U= =%
P.P,T,
V="

rT viy
Urqu+Ud+Uu:P(q+11—‘;)+PT

U=U,+Us+Uy,+U,
Pr(Tq+Td)+PvTv+PerTw
R .

ACKNOWLEDGMENT

The authors would like to thank M. Vernon for introducing
them to mean value analysis models and encouraging them to
consider their use.

REFERENCES

{11 A. Agarwal, R.L. Sites, and M. Horowitz, “ATUM: A new technique for
capturing address traces using microcode,” in Proc. 13th Annu. Symp.
Comput. Architecture, Tokyo, Japan, June 1986, pp. 119-127.

[2] A. Agarwal, J. Hennessy, and M. Horowitz, “Cache performance of

3]
(4

{51
(61
[7

(8]

(1

[10}

(1]

(12}

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

{23]

[24]

[25]
[26]
{27}

{28]

(29]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

operating systems and multiprogramming workloads,” ACM Trans.
Comput. Syst., vol. 6, pp. 393—431, Nov. 1988.
A. Agarwal, M. Horowitz, and J. Hennessy, “An analytical cache
model,” ACM Trans. Comput. Syst., vol. 7, pp. 184-215, May 1989.
J. Archibald and J.-L. Baer, “Cache coherence protocols: Evaluation
using a multiprocessor simulation model,” ACM Trans. Comput. Syst.,
vol. 4, pp. 273-298, Nov. 1986.
B. Beck, B. Kasten, and S. Thakker, “VLSI assist for a multiprocessor,”
Proc. ASPLOS 11, pp. 10-20, Oct. 1987.
C.G. Bell, “Muitis: A new class of multiprocessor computers,” Science,
vol. 228, pp. 462-467, Apr. 1985.
P. Borrill and J. Theus, “An advanced communication protocol for the
proposed IEEE 896 Futurebus,” IEEE Micro, pp. 42—-56, Aug. 1984.
M.-C. Chiang and G.S. Sohi, “Experience with mean value analysis
models for evaluating shared bus, throughput-oriented multiprocessors,”
in Proc. SIGMETRICS Int. Symp. Comput. Perform. Modeling, Measure-
ment and Eval., May 1991, pp. 90—100.
S.J. Eggers and R.H. Katz, “A characterization of sharing in parallel
programs and its application to coherency protocol evaluation,” in
Proc. 15th Annu. Symp. Comput. Architecture, Honolulu, HI, June 1988,
pp- 373-382.
G.N. Fielland, “Symmetry: A second generation practical paraliel,” in
Dig. Papers, COMPCON Spring 1988, Feb. 1988, pp. 114-115.
J.R. Goodman, “Using cache memory to reduce processor-memory
traffic,” in Proc. 10th Annu. Symp. Comput. Architecture, June 1983,
pp. 124-131.
M.D. Hill, “Aspects of cache memory and instruction buffer perfor-
mance,” Tech. Rep. UCB/CSD 87/381, Univ. of California at Berkeley,
Berkeley, CA, Nov. 1987.
____,“A case for direct-mapped caches,” IEEE Comput. Mag., vol. 21,
pp. 25-40, Dec. 1988.
R. Jog, G.S. Sohi, and M. K. Vernon, “The TREEBus architecture and
its analysis,” Computer Sciences Tech. Rep. 747, Univ. of Wisconsin-
Madison, Madison, WI 53706, Feb. 1988.
R.H. Katz, S.J. Eggers, D. A. Wood, C.L. Perkins, and R. G. Sheldon,
“Implementing a cache consistency protocol,” in Proc. 12th Annu. Symp.
Comput. Architecture, June 1985, pp. 276-283.
T. Lang, M. Valero, and 1. Alegre, “Bandwidth of crossbar and multiple-
bus connections for multiprocessors,” IEEE Trans. Comput., vol. C-31,
pp. 1227-1234, Dec. 1982.
E.D. Lazowska, J. Zahorjan, G.S. Graham, and K. C. Sevcik, Quanti-
tative System Performance, Computer System Analysis Using Queueing
Network Models. Englewood Cliffs, NJ: Prentice-Hall, May 1984.
S. Leutenegger and M. K. Vernon, “A mean-value performance analysis
of a new multiprocessor architecture,” in Proc. ACM SIGMETRICS
Conf. Measurement and Modelling of Comput. Syst., May 1988.
D. Lilja, D. Marcovitz, and P.-C. Yew, “Memory reference behavior
and cache peformance in a shared memory multiprocessor,” CSRD Rep.
836, Center for Supercomputing Research and Development, Univ. of
Ilinois, Urbana, IL 61801-2932, Dec. 1988.
M.A. Marsan and M. Gerla, “Markov models for multiple-bus mul-
tiprocessor systems,” IEEE Trans. Comput., vol. C-31, pp. 239-248,
Dec. 1982.
M. A. Marsan, G. Balbo, G. Conte, and F. Gregoretti, “Modeling bus
contention and memory interference in a multiprocessor system,” IEEE
Trans. Comput., vol. C-32, pp. 60-72, Jan. 1983.
T.N. Mudge, J. P. Hayes, G. D. Buzzard, and D. C. Windsor, “Analysis
of multiple bus interconnection networks,” in Proc. 1984 Int. Conf.
Parallel Processing, Aug. 1984, pp. 228-232.
J.H. Patel, “Analysis of multiprocessors with private cache memories,”
IEEE Trans. Comput., vol. C-31, pp. 296-304, Apr. 1982.
S. Przybylski, M. Horowitz, and J. Hennessy, “Performance tradeoffs
in cache design,” in Proc. 15th Annu. Symp. Comput. Architecture, June
1988, pp. 290-298.
A.J. Smith, “Cache memories,” ACM Comput. Surveys, vol. 14,
pp. 473-530, Sept. 1982.
———, “Line (block) size choice for CPU cache memories,” IEEE Trans.
Comput., vol. C-36, pp. 1063—1075, Sept. 1987.
M. K. Vernon and M. Holliday, “Performance analysis of multiprocessor
cache consistency protocols using generalized timed Petri nets,” in Proc.
SIGMETRICS Int. Symp. Comput. Perform. Modeling, Measurement and
Eval., May 1986, pp. 9-17.
M.K. Vernon, E.D. Lazowska, and J. Zahorjan, “An accurate and
efficient performance analysis technique for multiprocessor snooping
cache-consistency protocols,” in Proc. 15th Annu. Symp. Comput. Ar-
chitecture, Honolulu, HI, June 1988, pp. 308-315.
M.K. Vernon, R. Jog, and G.S. Sohi, “Performance analysis of hi-
erarchical cache-consistent multiprocessors,” Perform. Eval, vol. 9,
pp- 287-302, 1989.

CHIANG AND SOHI: SHARED BUS MULTIPROCESSORS IN THROUGHPUT-ORIENTED ENVIRONMENT

Men-Chow Chiang was born in Taitung, Taiwan,
Republic of China. He received the B.S. degree in
electronics engineering from The National Chiao-
Tung University in 1980, the M.S. degree in electri-
cal and computer engineering in 1984, and the Ph.D.
degree in computer science from The University of
Wisconsin at Madison in August, 1991

From 1980 to 1982 he served in ROC Navy as a
marine engineer. In 1982 he went to The University
of Wisconsin at Madison. and has been a teaching
and rescarch assistant in the Computer Scicnce

Gurindar S. Sohi (S'85-M'85) received his B.E.
(Hons.) degree in clectrical cngincering from the
Birla Institute of Science and Technology, Pilani.
India, in 1981 and the M.S. and Ph.D. degrecs
in electrical engineering from the University of
llinois, Urbana—Champaign, in 1983 and 1985,
respectively.

Since September 1985, he has been with the
Computer Scicnces Department at the University
of Wisconsin—Madison, where he is currently an
Associate Professor. His research interests are in

Department. His research interests include multiprocessor architectures, in the areas of computer architecture. parallel and distributed processing, and

particular the memory system designs. performance evaluation methods, and fault-tolerant computing.

parallelizing algorithms.

