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At this point, we’ve established all of the basic techniques required to solve open queueing models with
Poisson arrivals. We now turn our attention to closed networks.

Closed Queueing Models

Closed networks are extremely important for computer systems modeling because they capture the notion
of interactivity in the system. In an open network, customers simply arrive, receive service, and depart.
In a closed network, we can model a set of users submitting requests to a system, waiting for results, then
submitting more requests.

Many computer systems exhibit this type of interactive behavior — human users interacting with a system,
threads contending for a lock, processes blocking for I/O, networked servers waiting for a response message.
Closed models are arguably more common in computer systems modeling than open models.

Product Forum Queueing Networks

We can compute exact solutions for a special class of closed queueing models called product form queueing
networks (PFQNs).

A PFQN consists of a collection of queueing and delay centers. It satisfies the following conditions.
e All queueing centers are either FCFS, PS, or LCFSPR

e Any number of delay centers are allowed

If a center is FCFS, its service times must be exponentially distributed

If a FCFS center has multiple service classes, they must all have the same average service time

External arrivals, if any, are Poisson (we won’t consider any mixed models of this type)

Routing is state-independent (the path a customer takes cannot depend on the current state of the
system)

When these conditions are satisfied, we can use the mean-value analysis (MVA) algorithm to compute exact
residence times at each center and in the entire network.! When these conditions are not precisely satisfied,
we can “bend” the MVA algorithm to produce acceptable approximate results.

The Arrival Theorem

Consider a FCFS queue with exponential arrivals in a closed network. We can analyze this queue using the
tagged customer method, just as we did for the M/M/1 system.

IThere is a small set of networks that do not satisfy these conditions but are still product form.



We are interested in deriving an expression for Rbary(n), the average residence time at queueing center k
when there are n total customers in the closed system. The number of customers, n, is a key parameter in
a closed system, so we’ll derive our results as functions of n.

When a new customer arrives to the queue, there will be some number of other customers already present
and waiting, including a customer that is in service. Let Ag(n) represent the average number of customers
present at an arrival to queueing center £ when there are n total customers in the closed system.

Exponential service times are memoryless, so each of these customers will require an average service time of
5. The tagged customer also needs s for its own service time. The average residence time is thus

Ri(n) =31, + Ag(n)sy,

We derived a similar equation for the M /M/1 queue. In that case, we were able to use the PASTA property
to argue that Ay = Q. In a closed system, however, there is no Poisson arrival process, so PASTA does not
apply. We need a new result to simplify this equation and solve for Ry (n).

The key result for closed PFQNs is the Arrival Theorem, which states that the state of the queue at an
arrival instant is equal to the average state of the queue with one customer removed from the system. That
is,

Ap(n) = Qr(n—1)

This result is not obvious, but it makes some amount of sense. If there are n customers in the entire system,
and one of those customers is arriving to queueing center k, then there are n — 1 other customers distributed
throughout the system. Therefore, the state of queue k at the instant one customer arrives depends on the
average behavior of those other n — 1 customers.

A proof of the Arrival Theorem is beyond the scope of this course, as it relies on some detailed analysis of
closed PFQNs using Markov chains. We will examine some related results towards the end of the course
when we talk about using Markov models to solve queueing systems.

We now have the first part of our closed model solution.
Ri(n) =35, + Qp(n — 1)3

In the next lecture, we’ll use this equation to develop the mean-value analysis algorithm, which we can use
to actually calculate the residence times and throughputs in a closed system.



