
CS 547 Lecture 7: Discrete Random Variables

Daniel Myers

The Probability Mass Function

A discrete random variable is one that takes on only a countable set of values. A discrete RV is described
by its probability mass function (pmf),

p(a) = P (X = a)

The pmf specifies the probability that random variable X takes on the specific value a.

Recall our coin-flipping example. If we flip three coins and count the number of heads that appear, we obtain
the following pmf:

P (0 heads) =
1
8

P (1 head) =
3
8

P (2 heads) =
3
8

P (3 heads) =
1
8

All questions about the behavior of a discrete random variable can be answered using its pmf.

Total Probability

Observe that the probabilities in the number-of-heads pmf add up to 1. Because the random variable must
always take on one of its values with non-zero probability, the sum of all its non-zero probabilities must be
1. Mathematically, ∑

x:p(x)>0

p(x) = 1,

where the notation can be read as “sum over the values of x such that p(x) is greater than zero”.

Bernoulli Trials

The Bernoulli trial is a simple discrete random variable with only two possible outcomes: 0 and 1. The RV
has one parameter, p, and its pmf is

P (X = 0) = 1− p

P (X = 1) = p

You can think of the Bernoulli trial as flipping a weighted coin that comes up heads with probability p and
tails with probability 1 − p. Bernoulli trials are also used to model randomized algorithms that are not
guaranteed to return the correct answer to a question.
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The Geometric Random Variable

Suppose we perform a series of independent Bernoulli trials, each with parameter p. The geometric random
variable describes the number of trials required until we obtain our first success. Its pmf is given by

P (X = k) = (1− p)k−1p

That is, the probability that we obtain our first success on the kth trial is the probability of getting k − 1
failures (each with probability 1− p), and a success on trial k.

Suppose we want to model packet loss in a computer network. If the probability of dropping a packet is p
and each packet is independent of the others, then we can model the number of packets sent before a drop
as a geometric random variable. For example, if p = .01, the probability that we drop the 10th packet is

P (X = 10) = (1− .01)10−1(.01) ≈ .009

What is the probability that we send more than 10 packets successfully? This can be calculated using total
probability. If we send more than 10 packets, then a drop did not occur on any of the first 10 trials. The
probability is thus

P (X > 10) = 1−
10∑

i=1

P (X = i) = 1−
10∑

i=1

(1− p)i−1p

Expected Value

The expected value of a random variable is a weighted average of its possible values.

E[X] =
∑

x:p(x)>0

xp(x)

Each value x is weighted by the probability that the random variable X actually takes the value x. Thus,
the values that occur most frequently make the greatest contribution to the expected value.

The expected value serves as a measure of centrality for a random variable’s distribution.

For the number-of-heads example given above, the expected value is

E[number of heads] =
1
8
· 0 +

3
8
· 1 +

3
8
· 2 +

1
8
· 3 = 1.5

Note that the expected value is fractional – the random variable may never actually take on its average
value!

Expected Value of a Geometric Random Variable

For the geometric random variable, the expected value calculation is

E[X] =
∞∑

k=1

k P (X = k) =
∞∑

k=1

k(1− p)k−1p

Solving this expression requires dealing with the infinite sum. Examining a table of summations shows the
following result, which is very close to the correct form:

∞∑
i=1

i xi =
x

(1− x)2
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Applying a little manipulation brings the expected value’s sum into the correct form. We can then use the
result from the table of summations and simplify to obtain the final expected value.

E[X] =
∞∑

k=1

k(1− p)k−1p

=
p

1− p

∞∑
k=1

k(1− p)k

=
p

1− p

1− p

(1− (1− p))2

=
1
p

Notation

We’ll frequently use X in place of E[X], especially in calculations involving other expected values. Many
statistics texts use µ to represent the mean of a random variable, but we’ll avoid that notation since we’ve
already established a convention of µ as the service rate of a queue.

Properties of the Expected Value

The expected value is a linear operation. Scaling or shifting a random random variable simply scales and
shifts the expected value by the same amount:

E[aX + b] = aE[X] + b

The expected value of the sum of two (or more) random variables is simply the sum of their individual
expected values:

E[X + Y ] = E[X] + E[Y ]

This result holds even when X and Y are not statistically independent.

Variance

The expected value of a random variable provides a description of its average behavior, but it tells us
nothing about how much it varies1. This is important, because variability is the key driver of performance
and uncertainty in systems. Even if the system has acceptable average behavior, extreme variability can
lead to all kinds of performance problems.

The variance, σ2, of a random variable is defined as the expected variation of a random variable from its
own mean,

σ2 = E[(X −X)2]

The square root of the variance, σ, is called the standard deviation.

By expanding the squared term and using the linearity properties of the expected value, we can write the
variance as,

σ2 = E[X2]−X
2

That is, the variance can be calculated as the average of the squares minus the square of the average.
1As I once heard an operations research professor quip, “Even MBA students know a mean is useless without a measure of

variability.”
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The term E[X2] is called the second moment of X. The basic expected value E[X] is the first moment.
We can define additional higher moments: E[X3] is the third moment, E[X4] is the fourth moment, and so
forth.

Each moment is associated with a different property of the distibution. The first moment is a measure of
centrality. The second moment is associated (through the variance) with the spread of the distribution. The
third moment is associated with the skew of the distribution – whether it is symmetric or asymmetric about
the mean. The fourth moment is associated with kurtosis, a measure of the “peakedness” of the distribution.
Specifying the moments is an alternate way of characterizing the behavior of a random variable. In practice,
the first two moments are by far the most important.

Coefficient of Variation

The variance tells us something about the spread of a random variable, but this result has to be interpreted
in the context of the variable’s overall scale. For example, σ2 = 1000 is a huge variance if the mean of the
variable is 1, but less significant if the mean is 1000000.

The squared coefficient of variation combines the variance and mean into a single number:

c2
X =

σ2

X
2

Coefficients larger than 1 are associated with high variability. The smaller the coefficient, the less variability
in the variable, and a coefficient of 0 indicates a deterministic variable that always takes the same value.
The case where c2

X = 1 is particularly important in queueing systems and is associated with the exponential
distribution.

4


