Lecture 12: How does a computer... remember?

Exam 1
Administrative Details
• In-class, Friday 10/15
• Closed notes, closed reading, closed laptops
• Covers lectures and homeworks 1-5
 - Very similar to homework questions

Understanding Code and Algorithms
• You will not write any code yourself
 - How do given Scripts behave? How many times will loop execute? What will be the value of this variable? Code equivalent?
• Draw corresponding decision tree for given code

Understanding Logic and Modern Computers
• Binary numbers, truth tables, sum of products, memory

CS 202 Schedule
10/1 F ... Remember? (Hardware perspective)
10/4 M Artificial Intelligence
10/6 W Vision
10/8 F Social Robots
10/11 M Visualization
10/13 W Exam 1 Review
10/15 F Exam 1
10/18 M Regular Lecture
10/20 W Regular Lecture
10/22 F Project 1: Draft due for peer comments on website
10/25 M Regular Lecture
10/27 W Project 1 Due: Class demos

Project 1: Variables!
Points-based Game – Open ended
• Must contain integer variable and boolean variables
• Must have multiple levels of difficulty
Review: Combinational Circuits

Combinational Circuit

- Always gives same output for given set of inputs
 - ex: adder always generates sum and carry, regardless of previous inputs
- Cycles are not allowed
 - Cannot have feedback from output back to input

- Useful for many, but not all, aspects of computation
 - Arithmetic Logic Unit (ALU)

Today’s Challenge

How can we remember information with just AND, OR, NOT?

Quick Review: Boolean Logic

How to express:
Matt will go to party if and only if Sue goes to party?

Two boolean variables: M and S

\[M = S \]

\[S \quad M \]

More Complicated Expression

Matt doesn’t like changing his mind...

Represent with a circuit:
Matt will go to the party if Sue goes or if he already wanted to go

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>M'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Sequential Circuits

Sequential Circuit (vs. Combinational)
- Stores information: state
- Output depends on state + input
 - Given same input might produce different output, depending on stored information
- Example: ticket counter
 - Advances when push button, output depends on previous state
- Cycles are allowed
 - Can have feedback from output to input
- Useful for building memory!

More Complicated Expression

Matt doesn't like changing his mind...

Represent with a circuit:
Matt will go to the party if and only if Sue goes or he already wanted to go

\[
M = S \text{ OR (} M \text{ AND NOT } R)\]

Problem with this circuit (or Matt)?
Once going, can't change mind! Once M=1, always M=1

How can Matt change his Mind?

Matt will go to the party if Sue goes OR if the following holds:
(he already wanted to go AND Rita does not go)

\[
M = S \text{ OR (} M \text{ AND NOT } R)\]

How would you express?
\[
M' = S \text{ OR (} M \text{ AND NOT } R)\]

R, S: "control" inputs
What is S doing?
- Setting state
What is R doing?
- Resetting state (to 0)
R-S Flip-Flop
(Caution: Simplified !!)

- If Set = 1 (and Reset = 0), M = 1
- If Reset = 1 (and Set = 0), M = 0
- If Set = 0, Reset = 0, M keeps old value!

Not best if both Set and Reset = 1 (who wins?)

Convenient 1-Bit Memory

- Two inputs: D (data) and WE (write enable)
 - when WE = 1, latch is set to value of D
 - when WE = 0, latch holds previous value (ignores D)

Random Access Memory (RAM)

Memory: Remembers lots of bits, not just 1 bit
- Logical $k \times m$ array of stored bits

Address Space:
number of locations
(usually a power of 2)

Addressability:
number of bits per location
(e.g., 32 bits)

Mystery Circuit

What does this combinational circuit do?
Decoder Circuit

\(n \) inputs, \(2^n \) outputs
- exactly one output is 1 for each input pattern

\[\begin{align*}
A & \quad \text{1, if } AB = 0C \\
B & \quad \text{1, if } AB = 01 \\
& \quad \text{1, if } AB = 1C \\
& \quad \text{1, if } AB = 11
\end{align*} \]

2-bit decoder

Example RAM Operation

What happens when:

<table>
<thead>
<tr>
<th>WE</th>
<th>A1</th>
<th>A0</th>
<th>D1</th>
<th>D0</th>
<th>Q2</th>
<th>Q1</th>
<th>Q0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>1 1</td>
<td>0 1</td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>

Today’s Summary

Sequential circuits (vs. combinational)
- Can remember values using feedback loops in circuits!
 - Implement Random Access Memory (RAM)

Reading
- Chapter 5.1 – 5.2.1 (Pages 151-183)

Announcements
- Homework 3: Graded by noon today...
- Homework 4: Due today
- Homework 5: Available this afternoon
- Project 1: Start thinking about soon
- Exam 1: Two weeks from today...