Lecture 36:
How can computation... sort data in order for you?

What is sorting?
Put keys (and associated data) in specified order
- Ascending or descending
- Numerical or alphabetical

Sort keys and keep data with it
- Key: High score
 - Data: name
- Key: Employee id
 - Data: Name, Position, Phone, Salary
- Key: Search terms for web page
 - Data: URL, cached version, similar pages

Why is sorting important?
General:
- Can find what you want faster given sorted data

Sorted data is easier to search through
- Can apply binary search instead of exhaustive search

Trivial to find minimum and maximum elements
- First and last in list

Easy to find duplicate values
- Adjacent to each other in list

Easy to find patterns, anomalies, gap
- TCP can find missing packets
Many Different Sorting Algorithms

Today: Slow algorithms, but easy to understand
 • Selection sort
 • Insertion sort

Next Lecture: Faster algorithms
 • Mergesort
 • Quicksort

Review:
How to find Min in List?

Loop through List using index variable

Input:
 • List : Unsorted List

Output:
 • Min
 • Min index

Local variable:
 • index

Robust to length of List

How can you sort using Minimum?

How can you sort list of numbers if you can find the minimum?
 • Move numbers into “sorted list”

Algorithm 1:
Selection Sort

To sort data...

Repeat until nothing in unsorted list:
 • Find minimum element
 • Add element to sorted list
 • Delete from unsorted list
Selection Sort in Action

Unsorted list

Sorted list

How to Implement Selection Sort in Scratch?

Control code

Asks Sorter Sprite to do work

Create unsorted list

Get the list sorted

Check that the list really is sorted

Sorter Sprite: Helper Functions

Make List

Check List

Selection Sorter Sprite

Selection Sort: Two Lists

Finds minimum remaining element in unsorted

Adds to Sorted (in order)

Deletes minimum from unsorted
Selection Sort:
Do we need two Lists?

Unsorted list:

<table>
<thead>
<tr>
<th>8</th>
<th>5</th>
<th>2</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Sorted list:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Selection Sort: One List Demo

Swaps minimum with key at desired location

Selection Sort in Scratch:

One List

Variable i:
Number of sorted elements

Variable j:
Looks for min of remaining unsorted elements (start at variable "i" in each iteration)

Algorithm 2: Insertion Sort

What algorithm do you use to sort cards?
Insertion Sort

Divide cards into two groups: sorted and unsorted

Initial state: 1 sorted card, N-1 unsorted

Repeat for all cards
 - Remove 1st card from unsorted portion
 - Insert into correct location in sorted list
 - Repeat loop
 - Keep moving down list until card to left < new card
 - Could change algorithm to start at bottom and move up...
 - Change definition of sorted vs. unsorted portions

Which Sorting Algorithm is Best?

Compare number of loop iterations as function of N – size of input list

Previously analyzed searching algorithms
 - Linear search: O(N) operations
 - Binary search: O(log₂ N) operations

Insertion Sort in Scratch

Repeat for all cards
 - Take 1st unsorted card
 - Insert into correct location in sorted list: Repeat loop
 - Keep moving down list until card to left is smaller than new card
 - OR at beginning of list

Selection Sort: How many loop iterations?

Selection Sort: Two Lists

Size of list: N

2 loops: Outer and inner
 - How many iterations of outer loop?
 - N
 - How many iterations of inner loop?
 - N, N-1, N-2, ... 1
 - Average: N/2
 - Total?
 - N * N/2
 - Complexity?
 - O(N²)

11/30/10
Insertion Sort in Scratch

Outer loop?
Always N

Inner loop - Worst case? Data in reverse order! Must move key to beginning
1, 2, ..., N-3, N-2, N-> N/2

Best case? Data sorted already! Done immediately!
0

Average case? Move to middle of list... ½ * Worst case
O(N²)

Today’s Summary

Intuitive but Slow Sorting
- Selection sort: Select minimum and make next in list
- Insertion sort: Take next and insert in correct place
- Both require operations O(N²)
- Tip: Always write check code (easier than work code)

Reading
- Section 3.3.3

Announcements
- Exam 2 returned (Median 86, Ave 80)
- Project 2: Trivia Lists
- Click “Love It” for Project 1 samples