
12/5/11	

1	

Announcements�
Final Project : Card Game �

•  Due December 12 – In-class Demos�
•  Advice: focus on lists before interface; two-player version 1st �

Intermediate Deadlines�
•  Wed (11/30): Find project partner – PAST �
•  Fri (12/2): Project proposal�

–  At least 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)�
•  Wed (12/7): Project draft to Learn@UW dropbox�

–  Whatever you have completed�

TA Lab Hours Today in 1370: 11:00 – 1:00 �
•  Strongly recommend working in lab! �

More Announcements�
Extra Credit: Fill out survey for College Board�

•  Submit screenshot to Dropbox HW11-Extra Credit �

Service-learning course (Bio375)�
•  Lead afterschool clubs for 4 – 8 graders about Scratch�
•  Full enrollment of 15 students, but contact me if interested �

How does a computer…�
execute instructions?�

UNIVERSITY of WISCONSIN-MADISON �
Computer Sciences Department �

CS 202: Introduction to Computation � Professor Andrea Arpaci-Dusseau �

""�

Today’s Topic: �
Performing Computation �

Given knowledge of topics so far: �
Build a sequential circuit for every needed

computation (e.g., playing tic-tac-toe)�
•  Design new hardware for specific purpose�
•  Extremely impractical! �

– Don’t have access to manufacturing processes�
–  Long time to design and produce�
– Expensive�

Want general purpose hardware that can execute
any program written in software�

12/5/11	

2	

History of Computation: �
Analytical Engine�

Charles Babbage (1830s): Father of computing �
Ada Lovelace: Saw wider potential: first programmer; machine can only do as instructed�

Stored Program Computer�
1930s: Alan Turing �

•  Universal (Turing) Machine: provably capable
of computing anything that is computable�

1943: ENIAC - Electronic Numerical Integrator
and Computer�

•  US Army’s Ballistic Lab �
•  Eckert/Mauchly: first general electronic

computer�
•  Hard-wired program – weeks of settings of

dials + switches �
1944: Beginnings of EDVAC�

•  Program stored in memory�
1945: John von Neumann �

•  Wrote report on stored program concept �
Basic structure became known as �

“von Neumann machine” (or model)�

What do we need to Execute�
General Program? �

1.  Place to store instructions and data�
Memory�

2.  Do work - perform mathematical/logical operations�
Processing unit �

3.  Determine next instruction to execute�
Control unit �

4.  Get data into computer to manipulate�
Input devices�

5.  Display results to user�
Output devices�

Von Neumann Model�

control�

data�

CPU: Central
Processing Unit �
(Processor)�

12/5/11	

3	

Processing Unit �
Purpose: Manipulate and modify data�
1st Component: ALU �

•  ALU = Arithmetic and Logic Unit �
•  Many operations�

–  ADD, SUB, AND and NOT �
–  Could have many functional�

units (e.g., multiply, square root)�

•  Interface: Set one line high (ADD, AND, NOT)�

Review: Four-bit Adder�

Where do A and B inputs come from? Where does output S go? �

Processing Unit �
Purpose: Manipulate and modify data�
1st Component: ALU �

•  ALU = Arithmetic and Logic Unit �
•  Many operations�

–  ADD, SUB, AND and NOT �
–  Could have many functional�

units (e.g., multiply, square root)�

•  Interface: Set one line high (ADD, AND, NOT)�

2nd Component: Registers �
•  Small, temporary, fast storage in addition to memory�
•  Holds operands and results of functional units�
•  Not exposed to high-level programmer�
•  Results will be moved to/from registers and memory�

Von Neumann Model�

control�

datal�

12/5/11	

4	

Low-Level View of �
Random Access Memory (RAM)�

address
decoder

word select word WE
address

write
enable

input bits

output bits

Why is this
called “RAM”? �

Higher-Level View of �
Random Access Memory�

Purpose: Store data and program instructions�
Address: Unique (n-bit) identifier of 2n locations �
Contents: m-bit value stored in location �

Each variable stored at different address�
Each instruction stored at different address�

How to move data to/from memory?�
Read = Load; Write = Store�
Interface defined through two registers + R/W signal�

•  MAR: Memory Address Register�
•  MDR: Memory Data Register�

• • •

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

Address � Contents�

16 memory locations�
n=4; m=8 �

Reading and Writing Memory�

How to read “Test” (kept at location 0011) ? �
1.  Programming environment does work of mapping �

human variable names to memory addresses�
2.  Write address 0011 into MAR �
3.  Send “read” signal to memory�
4.  Read data from MDR �

Test is 00101101 = 32+8+4+1 = 45 �

5.  Use ALU to add 45 and 3 �

How to write value 20 to Points (loc 1101)? �
1.  Write address (1101) into MAR �
2.  Write data (00010100) to MDR �
3.  Send “write” signal to memory�

• • •

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

Address � Contents�

00101101 0011 �1101 � 00010100

0010100

Using Random Access Memory�

How to change a value in memory?�
•  Cannot change memory directly in many architectures�
•  Requires both computation + memory�

Work with processing unit �
•  Load value of Points from memory into register�
•  Use ALU to add 1 to value of Points in register �
•  Write back new value of Points into memory�

Higher-level instructions correspond to many
machine instructions�

12/5/11	

5	

Von Neumann Model�

control�

datal�

Input and Output �

Purpose: Moves data in and out of memory to outside world�
•  Involves separate hardware device �

Some devices provide both input and output �
•  Disk, network: More on these in later lectures! �

Each device has own interface (set of registers)�
•  Example: Keyboard: data (KBDR) and status (KBSR) registers�

Device driver: (part of operating system)�
•  Low-level software that controls access to device�
•  Provides common interface to applications�

Von Neumann Model�

control�

datal�

Control Unit �
Purpose: Orchestrates execution of program�

•  Fetches program instructions from memory�
•  Tells processing unit what operations to perform�

How does it know what instruction to fetch?�
•  Program Counter (PC) contains address of next instruction �

How does it remember instruction to decode?�
•  Instruction Register (IR) contains current instruction �

12/5/11	

6	

What kinds of data must �
bits represent?�

Logical: True, False�
•  True: 1, False: 0 �

Numbers�
•  Signed and unsigned integers, floating point �

Text �
•  Characters, words, strings, …�

Images�
•  Pixels, colors, shapes, movies …�

Sound�

Machine Instructions – Today!! �

Machine Instructions�
Definition: Fundamental unit of work �

•  High-level code is compiled into many low-level machine
instructions�

Instruction specifies two things�
•  opcode: operation to be performed�
•  operands: data/locations to be used for operation �

Encoded as sequence of bits (just like everything else!)�

Instruction Set Architecture (ISA)�
•  Exact encoding of computer’s instructions and formats�

Example 16-bit ISA �
Assume: 16 bit instructions (very small!)�

Assume: Each instruction has a four-bit opcode �
•  Bits [15:12] �

–  specification of high-order bits; start with bit 0 �
•  How many different operations can be performed?�

– 4 bits  24 combinations = 16 operations�

Assume: 8 registers in architecture (R0-R7) �
•  How many bits needed to specify register?�

– 3 bits -> 23 combinations = 8 registers�

Explore 2 categories of instructions�

Instruction Type #1: �
Arithmetic and Logical Ops�

Example: ADD instruction �

What must ADD instruction specify?�
•  Data: Operand1, Operand2, Result �

Where should data reside?�
•  In registers (too slow to operate on memory)�

How to specify register?�
•  Each register is numbered; put register number in

instruction�

12/5/11	

7	

Example: ADD Instruction �

Assume: Eight registers (R0-R7) �
•  How many bits are needed to specify each register?�

–  3 bits to specify 8 registers�

What is this instruction specifying?�
“Add the contents of R2 to the contents of R6, and store the result
back in R6.”�

4 bit opcode�

Programming environment manages this mapping between variables and registers �

Instruction Type #2 �
Where does control unit get next instruction from? �

•  Default: Fetch next sequential instruction �

How does Control Unit fetch sequentially?�
Set Program Counter: PC = PC + 1 �
Set MAR = PC�
Read from memory�
Set Instruction Reg: IR = MDR �

Instruction Type #2: Control�
Why does program sometimes want to execute different
non-sequential instruction?�

•  Program specifies control structure�
•  Examples: forever loop, if-then, receive message�

Type 2: Instructions that change contents of PC�
•  Jumps: unconditional (always change PC)�
•  Branches: conditional (change PC only if�

some condition is true)�

Jmp to location of�
 “move 10 steps”�

Change PC to �
different location �

If Points != 1 �
 branch to �
“play sound”�

Change PC�
only in some cases�

Example: JMP Instruction �

Set PC to value contained in register�
•  Address of next instruction to fetch�

What is this instruction specifying?�
“Load the contents of R3 into the PC.”�

12/5/11	

8	

Von Neumann Model�

What is the flow of this add instruction?�

Address: 0xaaaa �

Announcements�
Hardware – Stored Program Computer Architecture�

•  Instructions are just bits -- it’s all interpretation �
Next: Software – Operating Systems�

Intermediate Deadlines�
•  Wed (11/30): Find project partner – PAST �
•  Fri (12/2): Project proposal�

–  At least 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)�
•  Wed (12/7): Project draft to Learn@UW dropbox�

TA Lab Hours Today in 1370: 11:00 – 1:00 �
•  Strongly recommend working in lab! �

Extra Credit: Fill out survey for College Board�
•  Submit screenshot to Dropbox HW11-Extra Credit �

