Announcements

Final Project : Card Game
¢ Due December 12 - In-class Demos
* Advice: focus on lists before interface; two-player version 1st
Intermediate Deadlines
e Wed (11/30): Find project partner - PAST
* Fri (12/2): Project proposal
- At least 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)
* Wed (12/7): Project draft to Learn@UW dropbox
- Whatever you have completed

TA Lab Hours Today in 1370: 11:00 - 1:00

* Strongly recommend working in lab!

More Announcements

Extra Credit: Fill out survey for College Board
* Submit screenshot to Dropbox HWI11-Extra Credit

Service-learning course (Bio375)
¢ Lead afterschool clubs for 4 - 8 graders about Scratch
¢ Full enrollment of 15 students, but contact me if interested

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 202: Introduction to Computation

How does a computer...
execute instructions?

Professor Andrea Arpaci-Dusseau

MEMORY
_ Fan
INPUT T l OUTPUT
Keyboard Monitor
Mouse : PROCESSING UNIT Printer
Scanner LED

o | Disk

CONTROL UNIT

Today’s Topic:
Performing Computation

Given knowledge of topics so far:

Build a sequential circuit for every needed
computation (e.g., playing tic-tac-toe)
* Design new hardware for specific purpose
e Extremely impractical!
- Don’t have access to manufacturing processes
- Long time to design and produce
- Expensive
Want general purpose hardware that can execute
any program written in software

12/5/11

12/5/11

History of Computation:
s e il B Stored Program Computer
na y Ica ngme 1930s: Alan Turing
e | * Universal (Turing) Machine: provably capable
of computing anything that is computable
1943: ENIAC - Electronic Numerical Integrator
and Computer
e US Army’s Ballistic Lab
» Eckert/Mauchly: first general electronic
computer
* Hard-wired program - weeks of settings of
dials + switches
1944: Beginnings of EDVAC
* Program stored in memory
1945: John von Neumann
* Wrote report on stored program concept

Basic structure became known as

Charles Babbage (1830s): Father of computing B s
Ada Lovelace: Saw wider potential: first programmer; machine can only do as instructed von Neumann machine (Ol" model)

What do we need to Execute
General Program? Von Neumann Model
MEMORY

1. Place to store instructions and data Ags

Memory l
2. Do work - perform mathematical/logical operations INPUT T l OUTPUT

Processing unit s?ubszard PROCESSING UNIT ll\’n:r:::;?r
3. Determine next instruction to execute Scannerdill B LED

Control unit fo o
4. Get data into computer to manipulate . control 5

Input devices CPU: Central L :
5 DiSP|Gy el o ?processing)Uni’r CONTROL UNIT

. TOCessor,
Output devices

Processing Unit

Purpose: Manipulate and modify data PROCESSING UNIT

15t Component: ALU

* ALU = Arithmetic and Logic Unit
* Many operations

Review: Four-bit Adder

- ADD, SUB, AND and NOT
- Could have many functional
units (e.g., multiply, square root)

* Interface: Set one line high (ADD, AND, NOT)

ATREB; AN B A, B, AR
] (2% e [
A B A B A B A B
Full ¢ Full ¢ Full ¢ Full
Adder Adder Adder Adder
Cot S C S G S Ca S
Cu S S, iz S, S,
&j 1T ’ T &‘j } % 1T & C‘1
cR s

Where do A and B inputs come from? Where does output S go?

Processing Unit

Purpose: Manipulate and modify data PROCESSING UNIT

15t Component: ALU

* ALU = Arithmetic and Logic Unit

Von Neumann Model

* Many operations
- ADD, SUB, AND and NOT

- Could have many functional
units (e.g., multiply, square root)

¢ Interface: Set one line high (ADD, AND, NOT)

2 Component: Registers
* Small, temporary, fast storage in addition to memory
* Holds operands and results of functional units
* Not exposed to high-level programmer
* Results will be moved to/from registers and memory

datal MEMORY
INPUT | T l OUTPUT
Keyboard | : Monitor
Mouse : PROCESSING UNIT Printer
Scanner 3 LED
me | =

icontrol

CONTROL UNIT

12/5/11

Low-Level View of

Random Access Memory (RAM)

"

worg sefect L |
I

nput bits

D

s

i

Why is this

e Fh g
enable
address
decoder

:
;i
:

R
Bl &l
R
(b

output bits <

o

called “RAM"?

Higher-Level View of
Random Access Memory

Address “ Contents

0000
Purpose: Store data and program instructions gg%
Address: Unique (n-bit) identifier of 2" locations 82(1)2) [00101101 | |
Contents: m-bit value stored in location 0101
0110 .
Each variable stored at different address A 101tr(§tf1o
Each instruction stored at different address 1110 10100010
1111
How to move data to/from memory? 164’"2’“08"Y locations
Nn=4; M=

Read = Load; Write = Store
Interface defined through two registers + R/W signal
MAR: Memory Address Register
MEMORY

MDR: Memory Data Register
MAR

Readi

ng and Writing Memor

Address Conans

0001
0010
“ " ! >
How to read T'esf (Ifep’r at location 0011) ? T O0IOT101
1. Programming environment does work of mapping o100
human variable names to memory addresses 0101
2. Write address 0011 info MAR 0110 0
3. Send “read” signal to memory _ﬁ%%:’_
4. Read data from MDR 1101
Test is 00101101 = 32+8+4+1 = 45 11112
5. Use ALU to add 45 and 3
" MEMO
Pol
set Points |to E] oo

How to write value 20 to Points (loc 1101)?

1. Write address (1101) into MAR
2. Write data (00010100) to MDR

3. Send “write”

" signal to memory

Using Random Access Memory

‘change Points |by @)

How to change a value in memory?
e Cannot change memory directly in many architectures
* Requires both computation + memory
Work with processing unit
* Load value of Points from memory into register
* Use ALU to add 1 to value of Points in register
e Write back new value of Points into memory
Higher-level instructions correspond to many
machine instructions

12/5/11

Von Neumann Model

s MEMORY
INPUT | T l OUTPUT
Keyboard Monitor
Mies PROCESSING UNIT Printer
Scanner LED
Disk Disk

icontrol

CONTROL UNIT

INPUT OUTPUT
e | Input and Output Sk
Tt B

Purpose: Moves data in and out of memory to outside world
* Involves separate hardware device

Some devices provide both input and output
¢ Disk, network: More on these in later lectures!
Each device has own interface (set of registers)
* Example: Keyboard: data (KBDR) and status (KBSR) registers

Device driver: (part of operating system)
* Low-level software that controls access to device
* Provides common interface to applications

Von Neumann Model

MEMORY

e

e

OouTPUT

PROCESSING UNIT

Monitor
Printer
LED
Disk

icontrol

CONTROL UNIT

Control Unit

Purpose: Orchestrates execution of program
» Fetches program instructions from memory
* Tells processing unit what operations to perform

How does it know what instruction to fetch?
* Program Counter (PC) contains address of next instruction

How does it remember instruction to decode?
e Instruction Register (IR) contains current instruction

CONTROL UNIT

12/5/11

What kinds of data must
bits represent?

True, False | 0 1 0 1 |

e True: 1, False: O

L

* Signed and unsigned integers, floating point

¢ Characters, words, strings, ...

* Pixels, colors, shapes, movies ...

Machine Instructions

Definition: Fundamental unit of work

* High-level code is compiled intfo many low-level machine
instructions

Instruction specifies two things

* opcode: operation to be performed
* operands: data/locations to be used for operation

Encoded as sequence of bits (just like everything else!)

Instruction Set Architecture (ISA)
* Exact encoding of computer’s instructions and formats

Example 16-bit ISA

Assume: 16 bit instructions (very small!)

Assume: Each instruction has a four-bit opcode
 Bits [15:12]
- specification of high-order bits; start with bit O
* How many different operations can be performed?
- 4 bits > 2* combinations = 16 operations
Assume: 8 registers in architecture (RO-R7)

e How many bits needed to specify register?
- 3 bits -> 23 combinations = 8 registers

Explore 2 categories of instructions

Instruction Type #1:
Arithmetic and Logical Ops

PROCESSING UNIT

Example: ADD instruction

What must ADD instruction specify?
e Data: Operandl, Operand2, Result
Where should data reside?
* In registers (too slow to operate on memory)
How to specify register?

* Each register is numbered; put register number in
instruction

12/5/11

Example: ADD Instruction

Assume: Eight registers (RO-R7)

e How many bits are needed to specify each register?

- 3 bits to specify 8 registers
4 bit opcode
5 2 AV B SRR 10 S5O BRI 8 e Tk A6 S5 B A e 3 M) S g0

| app | pst | srci|o]o o] src2]

15 1. 451538281 1.0 10 BONE B8~ 7 (ST BMRE i) 1 R0
R L o s - L e B o S b I O
What is this instruction specifying?

"Add the contents of R2 to the contents of Ré, and store the result
back in R6.”

set points |to points + bonus change points |by bonus

Programming environment manages this mapping between variables and registers

Instruction Type #2

Where does control unit get next instruction from?

* Default: Fetch next sequential instruction

when __ clicked

move steps

turn & §B) degrees
change size by

next costume

move steps

turn & §B) degrees
change size by
next costume
move steps
turn & §B) degrees
change size by

next costume

How does Control Unit fetch sequentially?
Set Program Counter: PC = PC + 1

Set MAR = PC
Read from memory

Set Instruction Reg: IR = MDR

Instruction Type #2: Control

Why does program sometimes want to execute different
non-sequential instruction?

* Program specifies control structure

* Examples: forever loop, if-then, receive message

Type 2: Instructions that change contents of PC
« Jumps: unconditional (always change PC)

* Branches: conditional (change PC only if
some condition is true)

m If Points != 1 ‘}ﬁ

JImp to location of

for b t
“move 10 steps” iy ranchido

move steps
turn & degrees
change size by

o for @) secs

“play sound”

play sound meow |

Change PC to

different location Chendglfc

only in some cases

next costume

Example:

JIJMP Instruction

Set PC to value contained in register
* Address of next instruction to fetch

155: QA5 3 2] 15711055.9; 8 T 6 4 & 2 1
| oMp |0 0 0/ Base [0 0000
B I G e B L el 0 8 7 6 5 4 5 24 ik
L1000 e O 0505, 0 0 el 0. 0L DL ORD -0)

What is this instruction specifying?
“Load the contents of R3 into the PC.”

forever
move steps
turn & §B) degrees
change size by

next costume
B

12/5/11

Von Neumann Model

MEMORY
INPUT | T l OUTPUT
Keyboard H Monitor
Modce © | PROCESSING UNIT Printer
Scanner : LED

ok | Disk

CONTROL UNIT

What is the flow of this add instruction?
15

T e e A G A TR . S R MU T S OO S 0‘

[app Dst | srci o]0

o
n

(2]

s

Q

N

15514513 4 214 S

Y
Address:Oxaaaa‘OOO111001000

-]

o w
e
o

Announcements

Hardware - Stored Program Computer Architecture
 Instructions are just bits -- it's all interpretation

Next: Software - Operating Systems

Intermediate Deadlines
* Wed (11/30): Find project partner - PAST
* Fri (12/2): Project proposal
- At least 1 sentence email to cs202-tas@cs.wisc.edu (cc partner)
* Wed (12/7): Project draft to Learn@UW dropbox
TA Lab Hours Today in 1370: 11:00 - 1:00

* Strongly recommend working in lab!

Extra Credit: Fill out survey for College Board
¢ Submit screenshot to Dropbox HWI1-Extra Credit

12/5/11

