Announcements

Final Project : Card Game

- Due December 12 In-class Demos
- · Advice: focus on lists before interface; two-player version 1st

Intermediate Deadlines

- Wed (11/30): Find project partner PAST
- Fri (12/2): Project proposal
 - At least 1 sentence email to <u>cs202-tas@cs.wisc.edu</u> (cc partner)
- Wed (12/7): Project draft to Learn@UW dropbox
 - Whatever you have completed

TA Lab Hours Today in 1370: 11:00 - 1:00

· Strongly recommend working in lab!

More Announcements

Extra Credit: Fill out survey for College Board

· Submit screenshot to Dropbox HW11-Extra Credit

Service-learning course (Bio375)

- Lead afterschool clubs for 4 8 graders about Scratch
- · Full enrollment of 15 students, but contact me if interested

Today's Topic: Performing Computation

Given knowledge of topics so far:

Build a sequential circuit for every needed computation (e.g., playing tic-tac-toe)

- Design new hardware for specific purpose
- Extremely impractical!
 - Don't have access to manufacturing processes
 - Long time to design and produce
 - Expensive

Want general purpose hardware that can execute any program written in software

General Program?

- Place to store instructions and data Memory
- 2. Do work perform mathematical/logical operations Processing unit
- 3. Determine next instruction to execute Control unit
- 4. Get data into computer to manipulate Input devices
- Display results to user Output devices

Stored Program Computer

1930s: Alan Turing

 Universal (Turing) Machine: provably capable of computing anything that is computable

1943: ENIAC – Electronic Numerical Integrator and Computer

- · US Army's Ballistic Lab
- Eckert/Mauchly: first general electronic computer
- Hard-wired program weeks of settings of dials + switches

1944: Beginnings of EDVAC

Program stored in memory

1945: John von Neumann

· Wrote report on stored program concept

Basic structure became known as

"von Neumann machine" (or model)

What kinds of data must bits represent?

Logical: True, False

· True: 1, False: 0

· Signed and unsigned integers, floating point

· Characters, words, strings, ...

· Pixels, colors, shapes, movies ...

Example 16-bit ISA

Assume: 16 bit instructions (very small!)

Assume: Each instruction has a four-bit opcode

- Bits [15:12]
 - specification of high-order bits; start with bit 0
- · How many different operations can be performed?
 - 4 bits \rightarrow 2⁴ combinations = 16 operations

Assume: 8 registers in architecture (RO-R7)

- · How many bits needed to specify register?
 - 3 bits -> 23 combinations = 8 registers

Explore 2 categories of instructions

Machine Instructions

Definition: Fundamental unit of work

· High-level code is compiled into many low-level machine

Instruction specifies two things

- · opcode: operation to be performed
- · operands: data/locations to be used for operation

Encoded as sequence of bits (just like everything else!)

Instruction Set Architecture (ISA)

· Exact encoding of computer's instructions and formats

Instruction Type #1: Arithmetic and Logical Ops

Example: ADD instruction

What must ADD instruction specify?

· Data: Operand1, Operand2, Result

Where should data reside?

In registers (too slow to operate on memory)

How to specify register?

• Each register is numbered; put register number in instruction

ALU

TEMP

Announcements

Hardware - Stored Program Computer Architecture

• Instructions are just bits -- it's all interpretation

Next: Software - Operating Systems

Intermediate Deadlines

- Wed (11/30): Find project partner PAST
- Fri (12/2): Project proposal
 - At least 1 sentence email to <u>cs202-tas@cs.wisc.edu</u> (cc partner)
- Wed (12/7): Project draft to Learn@UW dropbox

TA Lab Hours Today in 1370: 11:00 - 1:00

· Strongly recommend working in lab!

Extra Credit: Fill out survey for College Board

• Submit screenshot to Dropbox HW11-Extra Credit