Announcements

Final Project : Deadlines

• Wed (12/7): Project draft to Learn@UW dropbox by 5pm
 - Whatever you have completed TODAY
 - No partner changes after TODAY (email us if problems)
• Due December 12 – In-class Demos
 - Final version due at 5pm
 - Demo with TA for grading – last week

Upcoming Office/Lab hours

• Wednesday: 11-12 Instructor in Office, 12-2 Victor in Lab
• Thursday: 2-4 Instructor in Office, 4-6 Thea in Lab

More Announcements

Extra Credit: Fill out survey for College Board

• Screenshot to Dropbox HW11-Extra (1/2 hw grade)

Final Exam: 15% of final grade (others 10%)

• 12/21 (Wed) from 2:45 - 4:45 pm in Noland 132
• Part 3 of course: 10% – 1 hour
• Cumulative portion: 5%
 - On-line AP test (take: 100% or don’t take: 0%)
 - Must take on laptop or in lab with TA supervision
 - After this Monday
 - Due: Exam day (Dec 21st)
 - Bring laptop to Final exam if didn’t take beforehand

How does a computer... send messages over the Internet?

Brief History of Networking

1970
1980
2000

“Internet” developed

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department
CS 202: Introduction to Computation
Professor Andrea Arpaci-Dusseau

1989: World Wide Web
Caveat: Internet ≠ Web

Internet:
- Collection of computers connected on network
- Communicate with TCP/IP protocol

Web (WWW):
- Hyperlinked content (web pages) stored on servers
- Request and serve pages using HTTP protocol
- Built on top of the internet

Modern Internet

Simple to connect and use

Need:
- Device capable of speaking right protocol (TCP/IP)
- IP “address” given by Internet provider
- Connection to provider’s servers (via modem, DSL, wireless, etc.)

Able to access any other machine on Internet!

Today’s Challenges

Interesting example of large, heterogeneous system

Challenge 1:
- How to find someone when no one knows everybody?

Challenge 2:
- How to build reliability on top of unreliable protocols?

Challenge 3:
- How to cooperate when not in your selfish best interest?

First Challenge

Challenge 1:
- How to find someone when no one knows everybody?

Scenario: Imagine you’re royal leader with 10,000 peasants in your kingdom

- You need to deliver message to all of them
- “We are being attacked! Come fight for me!”

How might you do that?
Candy Distribution

How long does it take to distribute a piece of candy to everyone in the room?

First, try a slow approach...

How long did this take?

Candy Distribution #2

Use a hierarchical approach to distribute a piece of candy to every person in the room

Who should be in charge of each sub-tree?

What information should each sub-root know?

How long does this take?
How can peasant send msg to faraway peasant?

Solution: Hierarchy

King

Duke

Count

Knight

Peasants

What if knight leaves army? What must happen?

Solution: Hierarchy

King

Duke

Count

Knight

Peasants

Summary of Hierarchies

Advantages
- Manages complexity
- Decentralized
 - No single entity knows or controls everything
- Boss doesn’t know all employees
 - Manager filters info; only propagate relevant info up
- Managers/employees don’t know about other branches

Disadvantages
- Can be tricky to handle new entities leaving/entering system
- Can be bad if too much info is passed up to boss (overworked if micromanage)

How to find machine?

Scenario: Want to send message to www.cs.wisc.edu
- Must translate www.cs.wisc.edu to IP address to send messages
- How are we going to find IP address???

Can’t have one server that knows all IP addresses

Use hierarchy!
Hierarchy in Networks: Domain Name System (DNS)

How to find machine?
Ask appropriate DNS server in hierarchy
• Contact DNS server managing “edu” namespace
• Contact DNS server managing wisc.edu
• Get IP address: 128.105.7.31

Use IP address for routing messages thru physical network hierarchy based upon address

Challenge 2
How to send message reliably when medium might not deliver your message?

Is there some unreliable communication device you use everyday?

What problems do you experience w/ cellphones?

How do you deal with them?

Reliability Problems and Solutions
Can’t quite understand message?
• “Could you say that again?”
• Retransmit message

Don’t hear anything?
• “Can you hear me???” <wait> “Can you hear me???”
• Timeout and retry

Sick of listening to other person repeating themselves?
• “I heard you. Go on.”
• Acknowledgements
Reliability on Unreliable Protocol

TCP/IP Protocol
IP: Internet Protocol
- Makes best-effort to get your message to destination
TCP: Transmission Control Protocol
- Builds on top of IP
- Ensures message gets there

All messages broken up into packets

<table>
<thead>
<tr>
<th>Destination address</th>
<th>TCP Book-keeping info</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 bits</td>
<td></td>
<td>About 1500 byte</td>
</tr>
</tbody>
</table>

IP: Delivering Messages

Internet contains connected computers called routers
Message divided into multiple packets (Example: 3)
Packets hop from router to router to destination
- Each packet can use different routers!

Internet
Google.com

What can go wrong?

Two problems for today
- Packets may arrive out of order
- Packet may be dropped and never arrive
How can TCP over IP fix these problems?

Basic TCP Protocol

Concerns:
- Packets may arrive out of order
- Packet may be dropped and never arrive

Don’t have human hearing if message makes sense!

What should be in book-keeping info to help?
Out of order?
Sender:
- Associate unique sequence number w/ each packet
Receiver
- Sort packets by sequence number
Demo: Reconstructing Message
Student A sends message to student B
 • Message divided into multiple “packets”

Student A must add information to packets so receiver can reconstruct

Students in between are “routers”
 • Different packets take different routes, take different amounts of time

What does receiving student need to do to reconstruct message?

Demo: Lost Packets
One bad router in our network
 • Drops packets that are sent through it

What must receiver do now to reconstruct packet?

Why should the receiver send “acks” of what it has received instead of requests for missing packets (“negative ack -- nacks”)?

Basic TCP Protocol
Concerns:
 • Packets may arrive out of order
 • Packet may be dropped and never arrive

Don’t have human hearing if message makes sense!

What should be in book-keeping info to help?
Packet dropped?
Receiver
 • Acknowledge packets that arrived (by sequence number)

Sender
 • Resends packet if no acknowledgment in some time-out interval

Challenge 3
How to cooperate when not in your selfish best interest?

Routers contain fixed amount of memory
 • Queue full → packets dropped

Goal is to avoid stressing network and dropping packets
Not just one person’s fault that network is overloaded!
How should good sender react?

Packets getting dropped?
- Send fewer packets → Halve the transmission rate
- How do you know packets are being dropped?
 - Don’t receive acknowledgements

All packets getting through?
- Can probably send more → Increase transmission rate a little

Desired behavior included in TCP/IP software
- “Congestion control”

No enforcement mechanism in Internet!
- Allows cheating, VoIP Telephony, streaming media

How does Web work?

User-level apps run HTTP protocol on TCP/IP

Client (web browser): Sends requests to server
- Use TCP/IP to find server and ensure requests arrive
- HTTP protocol: “GET filename”

Server: Replies with requested file
- Reads file from file system; sends over network
 - Doesn’t know anything about contents of file
- Easy to make your own web server!
- Implementation Issue: Speed

Client: Does work to interpret .html file, display in browser

Today’s Summary

Internet: Built using TCP/IP to send packets
- Use hierarchy for decentralized control
- Build reliability (TCP) on top of unreliable layer (IP)
- Congestion control: Slow down when you see problems