Motivating Exercise

Play 20 questions in pairs
- Repeat few times
- Person A thinks of a number between 1 and 100
- Person B guesses number with YES/NO questions
 - Try to ask as few questions as possible!
 - Record how many guesses needed
- Switch roles and play few times more

Repeat with numbers between 1 and 1000
- Handout sheet of number grid may be useful
- Cross off guesses or numbers that secret can’t be

How many guesses on average did it take you?

Best algorithm for searching?

BINARY SEARCH

Guess number midway between “lo” and “hi”

(lo starts out at 1, hi at 1000, midway = 500)

Ask “Lower than this midway number?”

If Yes then
 - Set hi = midway - 1
 - Guess number ½ btwn lo and hi (< 250?)
ELSE
 - Set lo = midway
 - Guess number ½ btwn lo and hi (< 750?)
Repeat

Play guessing game again with 1000 numbers – should need 10 or fewer guesses!
How would you implement Binary Search for Key?

Exercise Guessing Game:
What is the secret to be guessed?
- Integer between 1 and 1000 partner is thinking of
- Ask if guess is lower (or higher) than secret

Binary Search for Specified Key:
What is the secret to be guessed?
- Secret is index in List holding key we are looking for
- Guess position in list
- Ask if item at guess is lower (or higher) than key

Different Assumptions for Linear vs. Binary Search?

Binary search assumes list is sorted!
- Does not work unless items in list are in order

Trade-off: For a fast search, should application spend time to sort data or not?
- Will look at sorting algorithms later...

Review: Linear Search

Algorithm checks every element in list (in order) to see if it is the one...

Variables
- Valuable Numbers List
- Key: Input - What we are searching for
- Key Index: Output - Index where we found Key
- index: local variable

Binary Search in Scratch

Goal: Same inputs and outputs to script, but faster

Same Variables
- Valuable Numbers List
- Key: Input - What we are searching for
- Key Index: Output - Index where we found Key
- index: local variable

Faster: Use index to skip around List efficiently

Invariant (condition always holds true)
- lo <= index of Secret key <= hi
- True before loop begins
- True every time after
Running Binary Search: Ex 1

10/19/11

Looking for key 85

<table>
<thead>
<tr>
<th>Loop</th>
<th>Index</th>
<th>Item</th>
<th>Item > Key?</th>
<th>Lo</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>16</td>
<td>Yes</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>9</td>
<td>No</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13</td>
<td>No</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7</td>
<td>Yes</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>=</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Round: rounds up to nearest integer (hint: round(8.5) = 9)

Looking for key 33

<table>
<thead>
<tr>
<th>Loop</th>
<th>Index</th>
<th>Item</th>
<th>Item > Key?</th>
<th>Lo</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>16</td>
<td>Yes</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>8</td>
<td>No</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>15</td>
<td>No</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7</td>
<td>Yes</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>=</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Running Binary Search: Ex 2

How many guesses to find Key with Linear Search?

How many loops?
N = Elements in List

- Best case (minimum)?
 - 1 loop!
- Worst case (maximum)?
 - N loops
- Average case?
 - N/2 loops
 - O(N)
 - Just like Find Max

Looking for key 34

<table>
<thead>
<tr>
<th>Loop</th>
<th>Index</th>
<th>Item</th>
<th>Item > Key?</th>
<th>Lo</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>16</td>
<td>Yes</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>9</td>
<td>No</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13</td>
<td>No</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7</td>
<td>Yes</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>=</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

What does Key Index equal when script ends?
Key Index still 0
Can use to signify that key not in List

Running Binary Search: Ex 3

Looking for key 34

<table>
<thead>
<tr>
<th>Loop</th>
<th>Index</th>
<th>Item</th>
<th>Item > Key?</th>
<th>Lo</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>16</td>
<td>Yes</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>9</td>
<td>No</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13</td>
<td>No</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7</td>
<td>Yes</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6</td>
<td>=</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

What does Key Index equal when script ends?
Key Index still 0
Can use to signify that key not in List
How many Guesses Needed?

<table>
<thead>
<tr>
<th>N</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decision Tree for 1..16

How many questions needed to find answer between 1 and 16 (16 numbers)?

Only 4 questions for 16 numbers

Decision Tree for 1..32

How many questions needed to find answer between 1 and 32 (32 numbers)?

Double range of numbers covered

Just one more question --> 5 questions

Decision Tree for 1..64

How many questions needed to find answer between 1 and 64 (64 numbers)?

Double again range of numbers covered

6 questions
Decision Tree for N items

- How many questions needed for N integers?

 - Each level of tree corresponds to one question
 - How deep (or high) is tree of N integers?
 - 1 question → 2 numbers
 - 2 questions → 4 numbers
 - 3 questions → 8 numbers
 - 4 questions → 16 numbers
 - 5 questions → 32
 - 6 questions → 64
 - Q questions → 2^Q numbers

Game of 20 Questions

- How many objects can you choose between with 20 questions?

 - 2^20
 - This is approximately 1 million objects (1,048,576)

Complexity of Binary Search

- How many iterations of
- What assumptions does binary search make?

Check-Up

- Is it possible for index of secret key to be < lo?

- How many iterations of repeat loop are needed for a list containing 1024 (1K) elements?

 - 1048576 (1024 K) elements?
Announcements

How to efficiently search for element in a List
- $O(N)$ guesses to find using Linear Search
- $O(\log_2 N)$ guesses to find using Binary Search
 (depth of tree)
 - Assumes data is sorted!

Homework 5: Due Friday at 5pm
- Gallery will open Friday morning for Extra Credit submissions; submit by Friday midnight
- Vote over weekend for Round 1
- Can you figure out how Mozart Dice Game works?